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Abstract: Security of some present day public key cryptosystem (PKC) is based on general linear groups as it is a good 
choice for developing such types of cryptosystems. This study presents various public key encryption schemes based on 
general linear groups. Different techniques including automorphisms in connection with conjugacy search problem and 
its generalization are used to develop these schemes. Further, the grouprings are chosen as a platform to enhance the 
security and efficiency. Numerous aspects related to our new proposal are also elaborated.
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1. Introduction
Due to rapid development in the area of information technology, a secure commercial and private communication 

has become a need. Therefore, faster and more efficient methods enable people to protect their valuable information. 
Adversaries are also there to penetrate this secret information. The field of cryptography has played a vital role in the 
secure transformation of important information between two or more people. The main purpose of cryptography is to 
send information between participants in such a way that the threats from adversaries can be prevented. The history of 
cryptography is very long and fascinating. It is the study of methods of transforming a secret message in such a way that 
it can be understood only by an authorized recipient who has been provided with a secret key for deciphering it. In 1985, 
Magyarik and Wagner [1] proposed a public key cryptography by using the elements of semigroup with undecidable 
word problems. A review of group based cryptographic methods was discussed by Myasnikov et al. [2] in the book 
Group-based Cryptography. But Birget et al. [3] told that the public key cryptosystem (PKC) proposed by Magyarik 
and Wagner [1] actually did not depends on word problem and as a result they developed a new scheme, which was 
based on finitely generated groups with hard problems. On braid group based cryptography, Anshel et al. [4] proposed 
a key exchange protocol in 1999 and the hard problem of this protocol was the difficulty of resolving equations over 
algebraic structures. In this paper [5], they mentioned that for PKC braid groups as a platform were a goodchoice. Later 
in 2000, Ko et al. [6] developed a new key exchange protocol by using braid groups. The conjugacy search problem 
(CSP) is the underlying hard problem for this protocol. Furthermore, many successful schemes were proposed in this 
area by Cha et al. [7] in 2001, Anshel et al [8] in 2003, Dehornoy [9] in 2004 and Anshel et. al [10] in 2006. Paeng et 
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al. [11] in 2001 also proposed a new scheme which was based on finite noncommutative groups. That method consists 
of the Discrete Log Problem (DLP) in the inner automorphism group. In this era, Magliveras et al. [12] in 2002 gave 
a remarkable idea about one way function and trapdoors which were generated on finite fields. In the meantime, on 
finite groups Magliveras et al. anticipated anew PKC scheme using one way function and trapdoors. Consequently, 
on integer matrices, Grigoriev and Ponomarenko [13-14] extended the difficulty of the membership problem [15] 
for a fnitely generated group of elements. In 2007, a new proposal was given by Cao et al. [16] on polynomials over 
noncommutative semigroups or rings. The method was named as Z modular method. As an application of this scheme 
Kubo [6] in 2008 presented a scheme based on a noncommutative dihedral group of order 6. Reddy et al. [17] in 
2008 developed a signature scheme over noncommutative groups and division ring by using Z modular method. The 
implementation of this scheme was built by Moldovyan and Moldovyan [18]. Another scheme was also formulated by 
Kanwal and Ali and Inam et. al [19-20] by using noncommutative platform groups. Now let us talk about some PKC 
schemes of groupring. A cryptosystem based on the structure of a groupring was proposed by Rososhek [21-22]. In 
2011, Kahrobaei et al. [23] developed a key exchange protocol based on matrices over groupring. After that many PKC 
schemes based on groupring were proposed. After that, many PKC schemes were proposed based on groupring [24, 26]. 
In 2016, S. Inam and R. Ali [25] developed a cryptosystem for which the underlying work structure is groupring. The 
main idea to apply the grouprings in cryptography depends on the fact that if the cardinality of the finite ring R is fixed, 
the cardinality of a groupring GR for a finite group is an exponent of the cardinality of a group G. Then cryptographic 
transformation performed by a legal user separately in the group G and in the ring R using polynomial algorithms and 
an illegal user has to solve computationally dicult problems in groupring GR. In this article, we would like to suggest a 
new technique of constructing PKC which is based on a general linear group over a groupring. The rest of the article is 
summarized as follows: Section 2 will deal with the denition of general linear group as well as groupring which will be 
helpful in next sections. In Section 3, we present the proposed PKC and an example will help to explain the proposed 
cryptosystem in detail. Without security, cryptosystems have no value, so in Section 4, a detailed discussion will take 
place on the security aspects of the proposed cryptosystem.

2. Preliminaries
This section will deal with some notations which will be helpful to develop the new PKC:
Definition 1 (General Linear group) The set of an m × m invertible matrices of degree m is known as the general 

linear group. The operation is the same as usual matrix multiplication. Since an invertible matrix has an inverse which 
is also invertible and also the product of two invertible matrices is again invertible, hence this forms a group. More 
precisely, the basic necessity is to identify what type of items/objects will come in the matrix entries. For example, if 
entries of the general linear group come from R (the set of real numbers), then it is represented by GLm(R) or GL(m, R) 
is the group of m × m invertible matrices of real numbers. In general, the general linear group of degree n over a ring R  
(such as the ring of integers) or any field F (such as the complex numbers), is the set of m × n invertible matrices with 
entries from F (or R), again with matrix multiplication as the group operation. Typically, it is denoted by GL(m, F) or 
GLm(F) or simply GL(m) if the field is understood.

Here we give some basic concepts of grouprings and units.
Definition 2 (Groupring and Units) Let us consider a ring R and a group G. Then, we can define the groupring [7] 

GR as the set of all linear combinations

1
1

1,g
g G

b gγ
∈

= ∑

where bg1
 ∈ R and have only finitely many of the b'g1

s are non-zero. The sum and product in groupring is defined as

( )1 1 1 1
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respectively. The equation (2) can be redefined as:

1
1

, where .v v g h
v G g h v

E v E b dγδ
∈ =

= =∑ ∑

Here we note that groupring GR is a ring with usual addition and multiplication defined in equations (1) and (2). 
We can also define multiplication as γ ∈ GR and ρ ∈ R, then

1 1
1 1

1 1( ) .g g
g G g G

b g b gργ ρ ρ
∈ ∈

= =∑ ∑

For more details on groupring, see Reference [5]. The invertible elements with respect to the multiplication are said 
to be units. The set of units under multiplication forms a group, it is denoted by U(RG). For more details, see References 
[20, 24].

Nevertheless, GR is in general not commutative and therefore M(n, GR) and GL(n, GR) do not make sense in 
general, that is why we need to be extremely careful while making choices for ground structures of group and ring.

In our case, we have taken a cyclic group of order n which is always abelian and ring is Zn, also a unitary  
commutative ring. Now in our proposed schemes, the matrices are either circulant or coming from the center of GL(n, 
GR). There are many units and group rings available of many different types that can be used. These can be non-
commutative as well as commutative. Shiplrain et al. [23] used the structure of non-commutative groupring.

Lemma 3 Let R be a ring of order m and G a group of order n. Then, GR is a finite groupring of size |R||G| = mn.
The very well known two hard problems are defined as follows:
Definition 4 (Discrete Log Problem, DLP) Let G be a multiplicative group such that |G| = n, and the generator g ∈ G. 

Find the unique integer b, 0 < b < n - 1, such that gb = y, b can be defined as logg y and y ∈ G.
Definition 5 (Conjugacy Search Problem) Let us consider a group G and two elements s and t such that s, t ∈ G 

and the information that s y = t for some y ∈ G to find at least one element y. Here s y means that ysy-1.
The general structure of proposed cryptosystem is defined in Section 3.

3. Proposed cryptosystem
The key generation, encryption and decryption algorithm will help us to define all the characteristics of the 

proposed scheme. To understand this scheme, a toy example will also be given in this section.
Alice and Bob agreed on the order of a matrix n and groupring GR. 
The implementation of our proposed scheme is elaborated as follows:
Consider the set M(n, GR), which contains all matrices with order n defined over the groupring GR. Take H, the 

collection of all circulant as well as invertible matrices of order n, with entries from groupring GR. Then H ≤ M(n, GR).
Algorithm 6 (Key Generation)
Input: A random matrix A ∈ GL(n, GR).
Output: A pair of keys public key Kp= (P1, P2, BD) and Kr = (B, D).
1. Generate the following matrices

B = A2 and D = A3.                                                                            (3)

2. Compute the matrices
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M = B2D and N = BD2,                                                                        (4)

using in step 1, equation (3).
3. Choose a randomly matrix R ∈ GL(n, GR).
4. Calculate the conjugates of R by M and N

P1 = (R)M = M -1RM,                                                                                 (5)

P2 = ((R)-1)M = M -1(R)-1M,                                                                     (6)

and

BD.                                                                                        (7)

Algorithm 7 (Encryption)
Input: A plaintext message P and public key Kp.
Output: A ciphertext C = (c1, c2).
1. Convert the plaintext P in the form of a matrix m ∈ M(n, GR).
2. Select a random integer n0 ∈ N.
3. Compute a matrix

Y = (BD)n0.                                                                                  (8)

4. Find the following conjugates with the help of Y defined in step 3,

Q1 = (P1)
Y = Y -1P1Y,                                                                              (9)

Q2 = (P2)
Y = Y -1P2Y,                                                                            (10)

Q3 = m(P1)
Y = mY -1P1Y.                                                                      (11)

5. Pick any randomly invertible element ρ of groupring and calculates theciphertext

c1 = ρ-1(Q2) = ρ-1Y -1P2Y,                                                                     (12)

c2 = ρm(Q1) = ρmY -1P1Y.                                                                     (13)

Algorithm 8 (Decryption)
Input: A ciphertext C and private key KR.
Output: A plaintext message P.
1. Compute the inverse matrix D-1.
2. Calculate the conjugate

L = (c1)
B = B-1(c1)B.                                                                         (14)
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3. Use equation (14) in step 2, find t as

t = (L)D-1
 = DLD-1.                                                                          (15)

4. Decrypt the ciphertext to obtain m

m = tc2t.                                                                                   (16)

Theorem 9 In view of proposed cryptosystem, the correctness of decryption algorithm is guaranteed.
Proof. We can easily prove by noticing the equation (14) and (15),

t = (L)D-1
 = DcB

1 D
-1.                                                                         (17)

Now by using equation (13) and equation (17), we have

                                                 ( )
12

2 1 1 ,DY Yc t P mP Lρ
-

=

                                                      2 1 1 1 1
1 1 1 1. . ,B BY PY Dc D mY PY Dc Dρ - - - -=

      2 1 1 1 1 1
1 1 1 1. . .PY DB c BD mY PY DB c BDρ - - - - -=

Use equation (12) in the last step and follow as

                                        1 1 1 1 1 1
2 2.tc t mY M RMY DB Y P YBDρ ρ- - - - - -=

                                               1 1 2 2 1 1 1 1 1 1.mY D B RB DY DB Y N R NYBDρ ρ- - - - - - - - -=

                                               1 1 2 2 1 1 2 1 1 2 .mY D B RB DY D B Y R B DYρ ρ- - - - - - - -=

Since B, D, B2D and BD2 are the integral multiples of A, all the defined matrices commutes.

1 1 1 2 2 1 2 1 1 2
2tc t mY D B RYB DD B Y R B DYρρ- - - - - - - -=

                                                   1 1 2 2 2 1 1 2mY D B RYB B Y R B DY- - - - - -=

                                                   1 1 2 1 1 2mY D B RYY R B DY- - - - -=

                                                   1 1 2 1 2 1,mY D B RR B DY YY- - - - -= 

                                                   1 1 2 2 1, 1mY D B B DY RR- - - -= =

                                                   1 1 2 2, 1mY D DY B B- - -= =
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                                                   1 1, 1mY Y D D- -= =

                                                   .m=

3.1 A toy example

This section concludes with a toy-example which illustrates our proposed cryptosystem. For this purpose, let us 
consider cyclic group G = C3, the ring R = Z2 where G = C3 = {1, z, z2} = <z> = <z: z3 = 1> and R = Z2 = {0, 1} Then, 
one can define

2
2 3 :g g

g C
C a g a R

∈

  = ∈ 
  

∑

{ }2 2 2 2
2 3 0,  1,  ,  1 ,  ,  1 ,  ,  1GR C z z z z z z z z= = + + + + +

Let GL(2, GR) be the general linear group of matrices of order 2 over a groupring. 
Let us consider the random matrix

2

2

1 1
(2, ).

z
A GL GR

z z

 +
 = ∈
  

Next, Alice will compute the following matrices from the equations (3) and (4)

                                          

2 2 2 2

2 2 2

1 1
,  ,

1 1

z z z z z z
B D

z z z z z

   + + + +
   = =
   + + +   

22

2 2
1 1 and .

1 1 1 1

z z zz z zM N
z z z

   ++ + +  = = 
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Now, she again chooses a random matrix

2

1
(2, ).

1 1

z
R GL GR

z z z

 
= ∈ 

+ + +  

and computes the matrices defined in equations (5), (6) and (7)

                                           

2 2
1

2
,

1

z z z
R

z z z
-

 +
 =
 + + 

      

2 2

1 22 2

0 1 1 1
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1 1
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P P
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2

2 2

0
.

1

z
BD

z z z

 
 =
 + + 

So Alice’s public key is Kp.
Next Bob will do the following steps:
He presents a plaintext as a matrix

2

0 1
(2, )m M GR

z z

 
= ∈ 

  

First he chooses a natural number n0 = 3 and then computes the matrix

2

1 0
,

1 1
Y

z z

 
=  

+ +  

and its inverse is

1
2

1 0
.

1 1
Y

z z
-  

=  
+ +  

He calculates the conjugates using equations (9) and (10)

2 2

1 22 2 2 2

1 1 1
 and .

1 1 1

z z z z z
Q Q

z z z z z

   + + + +
   = =
   + + + +   

Let ρ = z2 ∈ GR be the invertible element of groupring. The inverse is

( ) 12 .z z
-

=

Finally he computes the matrices using equations (12) and (13)

2 2 2

1 22 2 2

1
 and ,

1 1 1 1

z z z z z z
c c

z z z z z z

   + + +
   = =
   + + + + + +   

to get the ciphertext C = (c1, c2).
To obtain the original plaintext, Alice will perform the following steps:
First she calculates the matrix

( )
1 2 2

2
.

1
D z z z

t L
z z z

-  +
 = =
 + + 

She finally obtains original plaintext/message as
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2

0 1
.m

z z

 
=  

  

4. Security analysis of proposed cryptosystem
In Section 3, we have proposed the PKC. It is not enough to propose the new cryptosystems but the security aspects 

are very important. The security of proposed PKC against different attacks are discussed in this section.
Let us consider that, an attacker only knows the ciphertext c1 and c2 as defined in equations (12) and (13) 

respectively. An adversary knows only the matrices P1, P2 and BD which are publicly announced and defined in 
equations (5), (6) and (7) respectively. To find the plaintext m, he has to find unknown matrix Y and invertible element 
ρ of groupring. Here he has a large system of nonlinear equations for the ciphertext corresponding to plaintext. For this, 
he assumes randomly invertible element ρ0 = ρ and gets

0 1 1,c Qρ = (18)

2 0 2.c mQρ= (19)

Then he put each solution by letting Y = Y0 in the above equations (18) and (19) and get

1
2 0 0 1 0( ) .c m Y PYρ -=

He finds the corresponding solution m = m0. Thus, for each fixed ρ0 = ρ, an attacker receives number of forms (Y0, 
m0). Here we have a large system of equations with a large number of unknowns as the adversary has to solve firstly the 
DLP then he has to find the conjugators and in the end he will solve the system of nonlinear equations. No matter how 
an adversary rearranges these equations, the problem of having a product of two unknown matrices cannot be avoided 
which leads to a large system of nonlinear equations in the large number of unknown entries. This solution becomes 
infeasible.

Now we will talk about the known plaintext attack. Let us consider an attacker knows the ciphertext C = (c1, c2) 
corresponding to plaintext m(i = 2, 3, 4, ..., j). Let the plaintext ciphertext be the pair (m, C). From this plainte-ciphertext 
pair, he wants to find the next plaintext mj+1 corresponding to the ciphertext Cj+1. In the above proposed PKC, these 
types of attacks are impossible because of choosing dierent Y to get encryption of every new plaintext. Hence, it does 
not provide any information to find the next unknown plaintext ciphertext pair. As a consequence, we have shown that 
our proposed cryptosystem is secured against known plaintext attack.

In the structure of groupring, the units form a group, so it is impossible to decide which invertible element used 
in the cryptosystem. In groupring structure, to find the units and their inverses is one such a big problem named as the 
unit problem in applications. In cryptography, units are very useful by the said property. Due to this reason, researchers 
move to develop the cryptosystem based on algebraic structures specially groupring. Many authors think that units of 
groupring have the similar properties just like the properties of prime numbers. By using Lemma 3, with the choice of 
large n and m we have a large structure of groupring. So for the parameter m, we suggest that n ~ 10100. With the choice 
of said m, brute force attack is not possible. 

5. Conclusion
The successful of quantum algorithm radiate doubts on many PKCs based on discrete logarithm and integer 

factorization problem. We have shown in Section 4 that the proposed scheme is secure against known plaintext attack. 
In the given example, we have considered the fix groupring and fix unit for encryption and decryption and observes that 
to find the units and their inverses is such a big problem itself. Our main aim is to construct a variant of ElGamal public  
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key cryptosystem based on a general linear group over a groupring. As we know that for the general linear group, we 
have more options for the matrix entries, for example GLn(zn[Cm]) = (n.m)n(nm)n. In view of the example, it will be 
valuable to say that the complex parametric structure of units provide indeterministic peculiarities. As a result, this 
scheme is more secured than the others.
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