On the P-Adic Valuations of Stirling Numbers of the Second Kind

S. S. Singh¹, A. Lalchhuangliana¹, P. K. Saikia²

¹Department of Mathematics and Computer Science, Mizoram University, Aizawl, Mizoram, India
²Department of Mathematics, North Eastern Hill University, Shillong, Meghalaya, India
E-mail: sssanasam@yahoo.com

Received: 16 November 2020; Revised: 7 January 2021; Accepted: 15 January 2021

Abstract: In this paper, we introduced certain formulas for p-adic valuations of Stirling numbers of the second kind \(S(n, k) \) denoted by \(v_p(S(n, k)) \) for an odd prime \(p \) and positive integers \(k \) such that \(n \geq k \). We have obtained the formulas, \(v_p(S(n, n - a)) \) for \(a = 1, 2, 3 \) and \(v_p(S(cp^n, cp^3)) \) for \(1 \leq c \leq p - 1 \) and primality test of positive integer \(n \). We have presented the results of \(v_p(S(p^2, kp)) \) for \(2 \leq k \leq p - 1 \), \(2 < p < 100 \) and a table of \(v_p(S(p, k)) \). We have posed the following conjectures from our analysis:

1. Let \(p \neq 7 \) be an odd prime and \(k \) be an even integer such that \(0 < k < p - 1 \). Then
 \[
 v_p(S(p^2, kp)) - v_p(S(p^2, p(k+1)) = 3.
 \]

2. If \(k \) be an integer such that \(1 < k < p - 1 \), then the \(p \)-adic valuations satisfy
 \[
 v_p(S(p^2, kp)) = \begin{cases}
 5 \text{ or } 6, & \text{if } k \text{ is even} \\
 2 \text{ or } 3, & \text{if } k \text{ is odd}
 \end{cases}
 \]
 for any prime \(p > 7 \).

3. For any primes \(p \) and positive integer \(k \) such that \(2 \leq k \leq p - 1 \), then
 \[
 v_p(S(p, k)) \leq 2.
 \]

Keywords: p-adic valuations, stirling numbers of the second kind, congruence, primes, minimum period

MSC: 05A18,11A51,11B73, 11E95

1. Introduction

Stirling numbers of the first and second kinds were introduced by James Stirling [1]. These numbers have been found to be of great utility in various branches of Mathematics such as combinatorics, number theory, calculus of finite differences, theory of algorithms, etc. The \(p \)-adic valuations of Stirling numbers of the second kind appear frequently...
in algebraic topology by Davis [2] to obtain new results related to James numbers, v_r-periodic homotopy groups and exponents of $SU(n)$). More details of Stirling numbers of the second kind may be seen on Comtet [3] and Graham et al. [4].

Stirling numbers of the second kind are more interesting than the first kind by their intrinsic nature. There are many interesting results of 2-adic valuations of Stirling numbers of the second kind in the open literature. Recently, Wannemacker’s proof [5] of Lengyel’s conjecture [6], results of $v_p(k!S(c - 2n + u, k))$ for $c > 0$ by Lengyel [7], the proof of Wannemacker’s conjecture by Hong [8], the works of Amdeberhan et al. [9] and Zhao et al. [10] are other notable results of 2-adic valuation. Gessel and Lengyel [11] proved that for an arbitrary prime p and $n = a(p - 1)p^q$, $1 \leq k \leq n$

$$v_p(k!S(n, k)) = \left\lfloor \frac{k-1}{p-1} + \tau(k) \right\rfloor,$$

where a and q are positive integers such that $(a, p) = 1$, q is sufficiently large, $\frac{k}{p}$ is an odd integer and $\tau(p)$ is a non-negative integer.

Strauss [12] and Pan [13] discussed the problems of 3-adic valuations and 2-adic valuations of certain sums of binomial coefficients respectively. Sun [14] also presented the results of p-adic valuations for multinomial coefficients. Friedland [15] used 2-adic valuations of certain ratios of factorials to prove a conjecture of Falikman-Friedland-Lowery on the parity of degrees of projective varieties of $n \times n$ complex symmetric matrices of rank at most k. Some more results of p-adic valuations are also given in Gouvea [16], Koblitz [17] and Adelberg [18].

This paper consists of some interesting results about p-adic valuations for a few class of Stirling numbers of the second kind $S(n, k)$. This number $v_p(S(n, k))$, where either n or k is related to p, has been obtained independently for some values of p, n and k. The values of $v_p(S(n, k))$ are computed by using GP/PARI software and they are presented in Table 1.

2. Materials and methods

Definition 2.1 Let p be a prime. For any non-zero integer a, the p-adic valuation of a, denoted by $v_p(a)$, is defined as the exponent of the highest power of p dividing a.

It may be noted that $v_p(0) = \infty$ and $v_p(a)$ for a non-zero integer a, is a non-negative integer.

So, $v_p(25) = 0$, $v_p(25) = 2$.

Note that, for any prime p, $v_p(\pm 1) = 0$. For a given prime p and any two integers a and b, we have

$$v_p(a + b) \geq \min\{v_p(a), v_p(b)\}, \quad v_p(ab) = v_p(a) + v_p(b).$$

The p-adic valuation v_p can further be extended to the field of rational numbers, $r = \frac{a}{b}$, $a, b \in \mathbb{Z}$ and $b \neq 0$ as

$$v_p(r) = v_p(a) - v_p(b).$$

Definition 2.2 Given two non-negative integers n and k, not both zero, the Stirling number of the second kind $S(n, k)$ is defined as the number of ways one can partition a set with n elements into exactly k non-empty subsets.

Example 2.1 All partitions of the set $\{1, 2, 3, 4\}$ into 2 non-empty subsets are $\{1\} \cup \{2, 3, 4\}$, $\{2\} \cup \{1, 3, 4\}$, $\{3\} \cup \{1, 2, 4\}$, $\{4\} \cup \{1, 2, 3\}$, $\{1\} \cup \{2\} \cup \{3, 4\}$, $\{1\} \cup \{3\} \cup \{2, 4\}$ and $\{1\} \cup \{4\} \cup \{2, 3\}$. Hence, $S(4, 2) = 7$.

By convention, we set $S(0, 0) = 1$ and $S(0, k) = 0$ for $k \geq 1$. Thus, $S(n, k)$ is the number of ways of distributing n distinct balls into k indistinguishable boxes (the order of the boxes does not count) such that no box is empty.

It is clear that $S(n, k) = 0$ if $1 \leq n < k$ and $S(n, n) = 1$ for all $n \geq 0$.

We use the following properties to prove the results of $v_p(S(n, k))$:

$$S(n, k) = \frac{1}{k!} \sum_{i=0}^{k} \binom{k}{i} (-1)^{k-i} i^k,$$

(1)
which gives

\[S(n, 2) = 2^{n-1} - 1, \quad S(n, 1) = 1, \quad S(n, 0) = 0. \]

It is easy to derive the following specific identities of \(S(n, k) \) using the results of ([19] p. 115-116).

\[
S(n, n-1) = \binom{n}{2} \quad \text{if } n \geq 2, \\
S(n, n-2) = \binom{n}{3} + \binom{n}{4} \quad \text{if } n \geq 4, \\
S(n, n-3) = \binom{n}{4} + 10\binom{n}{5} + 15\binom{n}{6} \quad \text{if } n \geq 6.
\]

3. Results

In this section, we present some basic results of the \(p \)-adic valuations of Stirling numbers starting with \(S(n, n-1) \) for \(n > 1 \).

Proposition 3.1 For any positive integer \(n > 1 \) and an odd prime \(p \)

\[
v_p \left(S(n, n-1) \right) = v_p(n) + v_p(n-1).
\]

Proof. Using the identity (3), we have

\[
S(n, n-1) = \binom{n}{2} = \frac{n(n-1)}{2}.
\]

The multiplicative property of \(v_p(a) \) implies that

\[
v_p \left(S(n, n-1) \right) = v_p(n) + v_p(n-1) - v_p(2)
\]

\[
= v_p(n) + v_p(n-1)
\]

as \(v_p(2) = 0 \), \(p \) being odd.

Applying Kummer’s theorem [20] to the binomial coefficient \(\binom{n}{2} = S(n, n-1) \), the above result can be put in the following form

\[
v_p \left(S(n, n-1) \right) = \frac{s_p(n-2) - s_p(n) + 2}{p-1},
\]

where \(s_p(n) \) denotes the sum of the \(p \)-adic digits of \(n \).

Corollary 3.1 Let \(p \) be an odd prime. For any positive integer \(n \) and \(c \) such that \(\gcd(p, c) = 1 \),

\[
v_p \left(S(cp^s, cp^s - 1) \right) = n.
\]

Proof. By the proposition, we have
\[v_p(S(cp^n, cp^n - 1)) = v_p(cp^n) + v_p(cp^n - 1).\]

Since \(v_p(cp^n - 1) = 0\) and using the multiplicative property of \(v_p(a)\), we can obtain
\[v_p(S(cp^n, cp^n - 1)) = v_p(cp^n) = n + v_p(c).\]

As \(\gcd(p, c) = 1\), it is clear that \(v_p(c) = 0\). This completes the proof.

Proposition 3.2 For any positive integer \(n \geq 2\) and an odd prime \(p\),
\[v_p(S(n, n - 2)) = \begin{cases} v_p(n) + v_p(n - 1) + v_p(n - 2) + v_p(3n - 5), & \text{if } p > 3, \\ v_3(n) + v_3(n - 1) + v_3(n - 2) - 1, & \text{if } p = 3. \end{cases}\]

These results can be proved in the similar manner.

Corollary 3.2 For any positive integer \(n\) and an odd prime \(p\),
\[v_p(S(cp^n, cp^n - 2)) = \begin{cases} n, & \text{if } p > 5, \\ n + 1, & \text{if } p = 5 \text{ and } n > 1, \\ n - 1, & \text{if } p = 3, \end{cases}\]

if \(c\) is a positive integer not divisible by \(p\).

Proposition 3.3 Let \(p\) be an odd prime. For any positive integer \(n \geq 6\),
\[v_p(S(n, n - 3)) = \begin{cases} v_p(n) + v_p(n - 1) + 2v_p(n - 2) + 2v_p(n - 3), & \text{if } p \geq 5, \\ v_3(n) + v_3(n - 1) + 2v_3(n - 2) + 2v_3(n - 3) - 1, & \text{if } p = 3. \end{cases}\]

Proof. Using the identity (5), we have
\[S(n, n - 3) = \binom{n}{4} + 10 \binom{n}{5} + 15 \binom{n}{6}, \text{ if } n \geq 6.\]

It can also be expressed as
\[S(n, n - 3) = \binom{n}{4} \left\lfloor \frac{n^2 - 5n + 6}{2} \right\rfloor = \binom{n}{4} \left\lfloor \frac{(n-2)(n-3)}{2} \right\rfloor = \binom{n(n-1)(n-2)(n-3)^2}{2^4 \cdot 3}.

The multiplicative property of \(v_p(\cdot)\) implies that
\[v_p\left(S(n, n - 3)\right) = v_p(n) + v_p(n - 1) + 2v_p(n - 2) + 2v_p(n - 3) - v_p(3)\]
as \(v_p(2) = 0\) and \(p\) being odd.

Using Kummer’s theorem \([20]\) to \(\binom{n}{4}\), we get the following result,

\[
v_p(S(n, n - 3)) = \frac{s_p(n - 4) - s_p(n) + s_p(4)}{p - 1} + v_p(n - 2) + v_p(n - 3). \tag{7}
\]

where \(s_p(n)\) denotes the sum of the \(p\)-adic digits of \(n\). This completes the proof.

Corollary 3.3 For any positive integer \(n\) and odd prime \(p\), the following result holds

\[
v_p(S(cp^n, cp^n - 3)) = \begin{cases}
 n, & \text{if } p > 3, \\
 n + 1, & \text{if } p = 3,
\end{cases}
\]

if \(p\) does not divides \(c\) (provided \(cp^n \neq 3\) if \(p = 3\)).

Proof. By the proposition, we have

\[
v_p(S(cp^n, cp^n - 3)) = v_p(cp^n) + v_p(cp^n - 1) + v_p(cp^n - 2) + 2v_p(cp^n - 3) - v_p(3).
\]

Since \(v_p(cp^n - 1) = v_p(cp^n - 2) = v_p(cp^n - 3) = 0\) if \(p \geq 5\), we get

\[
v_p(S(cp^n, cp^n - 3)) = v_p(cp^n)
\]

\[= n + v_p(c).
\]

As \(\gcd(p, c) = 1\), it is clear that \(v_p(c) = 0\).

For the case \(p = 3\), \(2v_p(c3^n - 3) - v_p(3) = 1\) and \(v_p(c3^n - 1) = v_p(c3^n - 2) = 0\) and hence

\[
v_p(S(c3^n, c3^n - 3)) = v_p(c3^n) + 1
\]

\[= n + 1
\]

This completes the proof.

Now, we give an alternate proof of the primality of integer \(n\) by divisibility of \(S(n, k)\) given by Deamio and Touset \([21]\). The proof of corollary 2 in their paper is not correct if we take \(n = 4\) and \(p = 2\), then \(S(4, 3) = 6 \equiv 1 \mod 2\) and \(2 | S(4, 3)\). We tackled this problem, in this paper, more simpler manner. This problem with an alternate solution also appears in Pólya et al. \([22]\).

Theorem 3.1 If \(p\) is an odd prime, then \(p | S(n, k)\) if \(s_p(k) > s_p(n)\).

The above theorem is an immediate consequence of \(([18], \text{Lemma 2.1})\) which states that

\[
v_p(S(n, k)) \geq \frac{s_p(k) - s_p(n)}{p - 1}. \tag{8}
\]

Replacing \(n\) by an odd prime \(p\) in the above theorem, we get the following results.

Corollary 3.4 If \(p\) is an odd prime, then \(p | S(p, k)\) if \(2 \leq k \leq p - 1\).

The problem in the above Corollary 3.4 appears in Graham et al. \([4]\) and proof was given by Demaio and Touset \([21]\).

Theorem 3.2 A positive integer \(n\) is a prime if and only if \(n | S(n, k)\) for all \(2 \leq k \leq n - 1\).

Proof. The generating function of \(S(n, k)\) in terms of falling powers is given by

\[
x^n = \sum_{k=0}^{n} S(n, k) x^k \tag{9}
\]
for any non-negative integer \(n \).

If \(n \) is a positive integer such that \(n \mid S(n, k) \) for all \(2 \leq k \leq n - 1 \), put \(x = n \) in Equation (9)

\[
n^n = \sum_{k=0}^{n} S(n, k) \{n\}_k
\]

\[
= \{n\}_n + \{n\}_1 + \sum_{k=2}^{n-1} S(n, k) \{n\}_k
\]

\[
= n(n-1)(n-2)\cdots2\cdot1 + n + \sum_{k=2}^{n-1} n(n-1)\cdots(n-(k-1))S(n, k).
\]

It follows that

\[
r^{n-1} = (n-1)(n-2)\cdots2\cdot1 + \sum_{k=2}^{n-1} (n-1)(n-2)\cdots(n-(k-1))S(n, k)
\]

Since \(n \mid S(n, k) \) for all \(2 \leq k \leq n - 1 \), we get

\[
0 = (n-1)! + 1 \mod n
\]
or

\[
(n-1)! = -1 \mod n.
\]

Hence, \(n \) is prime.

The converse follows from Corollary 3.4.

Lemma 3.1 If \(p \) is a prime, then

\[
\nu_p\left(\binom{p-1}{i}\right) = \left(\binom{p-1}{i} \cdot (-1)^i \right) \geq 1 \text{ or } \nu_p\left(\binom{p-1}{i}\right) = 0.
\]

Proof. For \(i = 0 \), the case is trivial.

We assume that \(i > 0 \). The binomial coefficient \(\binom{p-1}{i} \) is given by

\[
\binom{p-1}{i} = \frac{(p-1)!}{(p-1-i)!i!}.
\]

Therefore,

\[
i! \binom{p-1}{i} = (p-1)(p-2)\cdots(p-i+2)(p-i+1)(p-i)
\]

\[
= (-1)(-2)\cdots(-i) \mod p
\]

\[
= (-1)^i i! \mod p.
\]

Since \(0 < i < p, \gcd(p, i) = 1 \). Then,
\[
\binom{p-1}{i} = (-1)^i \mod p.
\]

Theorem 3.3 Let \(p \) be an odd prime. For any positive integer \(n \geq p \),

\[v_p(S(n, p)) = 0 \]

if and only if \((p-1)|(n-1)\).

Proof. Using the above Lemma 3.1, we have

\[
p!S(n, p) = \sum_{i=1}^{p-1} \binom{p}{i} (-1)^{p-i} i^p
\]

\[= \sum_{i=1}^{p-1} \binom{p}{i} (-1)^{p-i} i^p \mod p.\]

Since \(\binom{p}{i} = \binom{p-1}{i-1} \), we get

\[(p-1)!S(n, p) = \sum_{i=1}^{p-1} (-1)^{p-i} i^{p-1}.\]

Using Wilson’s theorem, the preceding congruence reduces to

\[S(n, p) = \sum_{i=1}^{p-1} i^{p-1} \mod p,\]

as \(p \) is odd.

Now, we use the following well known results

\[
\sum_{i=1}^{p-1} i^{p-1} = \begin{cases}
0 \mod p, & \text{if } (p-1)|(n-1) \\
-1 \mod p, & \text{if } (p-1)|(n-1).
\end{cases}
\]

Hence, the theorem follows.

Theorem 3.4 Let \(p \) be an odd prime and \(c \) be a positive integer such that \(1 \leq c \leq p-1 \). Then, for positive integers \(n \) and \(k \) such that \(k \leq n \),

\[v_p(S(cp^n, cp^k)) = 0. \]

Proof. The theorem is a special case of ([18], Th. 2.2).

We have

\[cp^n - cp^k = c(p^n - p^k) = c(p-1) \sum_{j=0}^{n-k} p^{j+k} \]

which implies that \(cp^n - cp^k \) is divisible by \(p-1 \). We also have \(1 \leq c \leq p-1 \) and \(1 \leq cp^k \leq cp^n \).

It follows that \(S(cp^n, cp^k) \) is a minimum zero case and hence we have
\[v_p(S(cp^n, cp^k)) = \frac{s_p(cp^n) - s_p(cp^k)}{p - 1} = 0, \]

since \(s_p(cp^n) = s_p(cp^k) = s_p(c) = c. \)

Theorem 3.5 Let \(p \) be an odd prime, then

\[v_p(S(p^n, 2p)) \geq n \]

for every integer \(n \geq 2. \)

Proof. Using identity (1)

\[
(2p)!S(p^n, 2p) = \sum_{i=0}^{2p} \binom{2p}{i} (-1)^{2p-i} p^i \]

which can also be written as

\[
(2p)!S(p^n, 2p) = \sum_{i=0}^{2p} \binom{2p}{2p-i} (-1)^{2p-i} (2p-i)^{p^i} \]

Since \(\binom{m}{i} = \binom{m}{m-i} \) for every integers \(0 \leq i \leq m \) and \(2p - i = i \mod 2 \), we have

\[
2(2p)!S(p^n, 2p) = \sum_{i=0}^{2p} \binom{2p}{i} (-1)^{2p-i} (i^{p^i} + (2p-i)^{p^i}). \]

(11)

If \(p \mid i \) for \(0 \leq i \leq 2p \), then

\[2p - i = -i \mod p, \]

which also yields the congruence

\[(2p - i)^{p^i} = -(i)^{p^i} \mod p^{n+1}. \]

It follows that

\[
\binom{2p}{i} (-1)^{2p-i} ((2p-i)^{p^i} + (i)^{p^i}) = 0 \mod p^{n+2}, \text{ since } p \mid \binom{2p}{i}. \]

(12)

Thus, each terms of the right hand side of (11) is divisible by \(p^{n+2} \) and hence

\[(2p)!S(p^n, 2p) = 0 \mod p^{n+2} \]

Therefore

\[v_p((2p)!S(p^n, 2p)) \geq n + 2 \]

\[v_p(S(p^n, 2p)) \geq n \]
Hence, the theorem follows.

Theorem 3.6 Let p be a prime and n and k be two positive integers with $k \leq p - 1$, then there exists a positive integer m in $1 \leq m < p - 1$ such that

$$S(n, k) = \begin{cases} S(m, k) \mod p, & \text{if } n \not\equiv 0 \mod (p-1), \\ (p-1-k)! \mod p, & \text{if } n \equiv 0 \mod (p-1). \end{cases}$$

Proof. By division algorithm, we have

$$n = (p - 1)q + m$$

where q is the quotient and m is the remainder such that $0 \leq m < p - 1$.

Now

$$k!S(n, k) = \sum_{i=1}^{k} \left(\begin{array}{c} k \\ i \end{array}\right)(-1)^{k+i} x$$

$$= \sum_{i=1}^{k} \left(\begin{array}{c} k \\ i \end{array}\right)(-1)^{i} (p-1)^{q+m}$$

$$= \sum_{i=1}^{k} \left(\begin{array}{c} k \\ i \end{array}\right)(-1)^{i} m \mod p$$

since $p^{r+1} \equiv 1 \mod p$ for $1 \leq i \leq k \leq p - 1$ by Fermat’s little theorem.

If $m \neq 0$, we have

$$k!S(n, k) = k!S(m, k) \mod p.$$

Since k is less than p, it follows that $p \mid k!$ which results

$$S(n, k) = S(m, k) \mod p.$$

for every n such that $n \not\equiv 0 \mod p - 1$.

Next, if $m = 0$, we have

$$k!S(n, k) = \sum_{i=1}^{k} \left(\begin{array}{c} k \\ i \end{array}\right)(-1)^{k+i} \mod p$$

$$= \sum_{i=1}^{k} \left(\begin{array}{c} k \\ i \end{array}\right)(-1)^{i} - (-1)^{k} \mod p$$

$$= (-1)^{k+1} \mod p,$$

We also know that

$$\binom{p-1}{k} = (-1)^{k} \mod p \text{ or}$$
\[
\frac{(p-1)!}{(p-1-k)!k!} = (-1)^k \mod p \quad \text{or} \quad \frac{1}{k!} = (-1)^{k+1}(p-1-k)! \mod p
\]

which implies that

\[S(n, k) = (p - 1 - k)! \mod p,
\]

which completes the proof.

From the above theorem, we see that if \(1 \leq m < k\)

\[S(n, k) = 0 \mod p \quad \text{since} \quad S(m, k) = 0.
\]

However, the case for \(m = k\) results

\[S(n, k) = 1 \mod p.
\]

We can write the following results

Corollary 3.5 Let \(p\) be an odd prime and \(k\) be a positive integer less than \(p\), then

\[
S(n, k) = \begin{cases}
1 \mod p, & \text{if } n = k \mod (p-1), \\
0 \mod p, & \text{if } n = i \mod (p-1) \text{ for } 1 \leq i \leq k - 1.
\end{cases}
\]

If we applied the above theorem and corollary to the special cases for \(k = p - 1, p - 2\) and \(p - 3\), we get

\[
S(n, p - 1) = \begin{cases}
1 \mod p, & \text{if } n = 0 \mod (p-1), \\
0 \mod p, & \text{otherwise}.
\end{cases}
\]

\[
S(n, p - 2) = \begin{cases}
1 \mod p, & \text{if } n = 0, p - 2 \mod (p-1), \\
0 \mod p, & \text{otherwise}.
\end{cases}
\]

\[
S(n, p - 3) = \begin{cases}
2 \mod p, & \text{if } n = 0 \mod (p-1), \\
3 \mod p, & \text{if } n = p - 2 \mod (p-1), \\
1 \mod p, & \text{if } n = p - 3 \mod (p-1), \\
0 \mod p, & \text{otherwise}.
\end{cases}
\]

assuming \(p \neq 3\) for the last two cases.

4. Discussions

We have computed \(v_p(S(p^2, kp))\) for primes \(3 \leq p \leq 100\) and \(2 \leq k \leq p - 1\) using PARI/GP software.
Table 1. \((p, k)\) such that \(v_p(S(p, k)) = 2\) for \(3 \leq p \leq 1000\) and \(2 \leq k \leq p - 1\)

<table>
<thead>
<tr>
<th>((p, k))</th>
<th>((p, k))</th>
<th>((p, k))</th>
<th>((p, k))</th>
<th>((p, k))</th>
<th>((p, k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5, 3)</td>
<td>(167, 7)</td>
<td>(307, 12)</td>
<td>(463, 340)</td>
<td>(653, 429)</td>
<td>(857, 592)</td>
</tr>
<tr>
<td>(13, 5)</td>
<td>(167, 103)</td>
<td>(307, 146)</td>
<td>(467, 278)</td>
<td>(659, 457)</td>
<td>(859, 300)</td>
</tr>
<tr>
<td>(19, 14)</td>
<td>(173, 52)</td>
<td>(317, 188)</td>
<td>(499, 63)</td>
<td>(661, 417)</td>
<td>(859, 357)</td>
</tr>
<tr>
<td>(29, 14)</td>
<td>(181, 166)</td>
<td>(331, 20)</td>
<td>(499, 320)</td>
<td>(677, 367)</td>
<td>(859, 558)</td>
</tr>
<tr>
<td>(31, 16)</td>
<td>(193, 23)</td>
<td>(337, 261)</td>
<td>(509, 324)</td>
<td>(683, 271)</td>
<td>(863, 712)</td>
</tr>
<tr>
<td>(41, 13)</td>
<td>(193, 45)</td>
<td>(353, 162)</td>
<td>(521, 169)</td>
<td>(683, 401)</td>
<td>(877, 77)</td>
</tr>
<tr>
<td>(42, 12)</td>
<td>(197, 85)</td>
<td>(359, 96)</td>
<td>(521, 180)</td>
<td>(691, 468)</td>
<td>(877, 204)</td>
</tr>
<tr>
<td>(47, 12)</td>
<td>(211, 62)</td>
<td>(359, 316)</td>
<td>(521, 479)</td>
<td>(700, 330)</td>
<td>(877, 542)</td>
</tr>
<tr>
<td>(53, 5)</td>
<td>(211, 159)</td>
<td>(373, 230)</td>
<td>(523, 343)</td>
<td>(709, 371)</td>
<td>(881, 63)</td>
</tr>
<tr>
<td>(53, 41)</td>
<td>(223, 61)</td>
<td>(379, 253)</td>
<td>(523, 483)</td>
<td>(709, 669)</td>
<td>(881, 72)</td>
</tr>
<tr>
<td>(53, 45)</td>
<td>(227, 187)</td>
<td>(383, 323)</td>
<td>(569, 123)</td>
<td>(733, 47)</td>
<td>(881, 408)</td>
</tr>
<tr>
<td>(73, 8)</td>
<td>(233, 7)</td>
<td>(397, 78)</td>
<td>(569, 363)</td>
<td>(751, 744)</td>
<td>(887, 149)</td>
</tr>
<tr>
<td>(79, 14)</td>
<td>(239, 134)</td>
<td>(401, 198)</td>
<td>(577, 119)</td>
<td>(761, 54)</td>
<td>(887, 208)</td>
</tr>
<tr>
<td>(89, 32)</td>
<td>(239, 219)</td>
<td>(409, 45)</td>
<td>(577, 434)</td>
<td>(773, 143)</td>
<td>(887, 443)</td>
</tr>
<tr>
<td>(89, 34)</td>
<td>(241, 15)</td>
<td>(409, 80)</td>
<td>(593, 498)</td>
<td>(773, 262)</td>
<td>(907, 611)</td>
</tr>
<tr>
<td>(107, 16)</td>
<td>(251, 233)</td>
<td>(419, 133)</td>
<td>(601, 303)</td>
<td>(787, 228)</td>
<td>(911, 560)</td>
</tr>
<tr>
<td>(127, 8)</td>
<td>(251, 247)</td>
<td>(419, 256)</td>
<td>(601, 515)</td>
<td>(797, 290)</td>
<td>(919, 163)</td>
</tr>
<tr>
<td>(139, 28)</td>
<td>(257, 131)</td>
<td>(419, 310)</td>
<td>(607, 173)</td>
<td>(809, 119)</td>
<td>(929, 347)</td>
</tr>
<tr>
<td>(149, 5)</td>
<td>(269, 98)</td>
<td>(431, 25)</td>
<td>(607, 242)</td>
<td>(811, 733)</td>
<td>(929, 469)</td>
</tr>
<tr>
<td>(151, 50)</td>
<td>(271, 211)</td>
<td>(431, 112)</td>
<td>(607, 518)</td>
<td>(821, 533)</td>
<td>(929, 801)</td>
</tr>
<tr>
<td>(151, 58)</td>
<td>(283, 91)</td>
<td>(431, 116)</td>
<td>(617, 209)</td>
<td>(827, 257)</td>
<td>(937, 528)</td>
</tr>
<tr>
<td>(157, 45)</td>
<td>(283, 201)</td>
<td>(433, 91)</td>
<td>(647, 117)</td>
<td>(827, 765)</td>
<td>(941, 342)</td>
</tr>
<tr>
<td>(163, 101)</td>
<td>(291, 76)</td>
<td>(439, 308)</td>
<td>(647, 309)</td>
<td>(839, 50)</td>
<td>(947, 85)</td>
</tr>
<tr>
<td>(163, 127)</td>
<td>(293, 162)</td>
<td>(461, 341)</td>
<td>(653, 369)</td>
<td>(839, 744)</td>
<td>(947, 116)</td>
</tr>
</tbody>
</table>

The obtained values of \(v_p(S(p^2, kp))\) for different values of \((p, k)\) are

\[
v_p(S(p^2, kp)) = \begin{cases}
7, & \text{if } (p,k) = (7,4) \\
6, & \text{if } (p,k) = (37,4),(59,14),(67,8) \\
3, & \text{if } k = p-1 \text{ and } (p,k) = (37,5),(59,15),(67,9) \\
5, & \text{if } k \text{ is even and } (p,k) \neq (7,4),(37,4),(59,14),(67,8) \\
2, & \text{if } k \text{ is odd and } (p,k) \neq (37,5),(59,15),(67,9).
\end{cases}
\]

We also provide in Table 1, the pairs of \(p\) and \(k\) where \(v_p(S(p, k)) = 2\) for \(3 \leq p \leq 1000\) and \(2 \leq k \leq p - 1\). It should be noted that \(v_p(S(p, k)) = 1\) for all the remaining pairs \((p, k)\).

After a closed examination of the output, we have observed that the arrays of \(v_p(S(p^2, kp))\) follow certain patterns which interpret as conjectures.

1. Let \(p > 7\) be an odd prime and \(k\) be an even integer such that \(0 < k < p - 1\). Then

\[
v_p(S(p^2, kp)) - v_p(S(p^2, p(k+1))) = 3.
\]

2. If \(k\) be an integer such that \(1 < k < p - 1\), then the \(p\)-adic valuations satisfy
\[v_p(S(p^2, kp)) = \begin{cases} 5 \text{ or } 6, & \text{if } k \text{ is even} \\ 2 \text{ or } 3, & \text{if } k \text{ is odd} \end{cases} \]

for any prime \(p > 7 \).

3. For any odd prime \(p \) and a positive integer \(k \) such that \(2 \leq k \leq p - 1 \),

\[v_p(S(p, k)) \leq 2. \]

5. Conclusions

This paper deals with some results of \(p \)-adic valuations of Stirling number of the second kind, \(S(n, k) \) for odd prime \(p \). We have derived the formulas for \(v_p(S(n, n - 1)) \), \(v_p(S(cp^n, cp^n - 1)) \), \(v_p(S(n, n - 2)) \), \(v_p(S(p^n, p^n - 2)) \), \(v_p(S(n, n - 3)) \) and \(v_p(S(p^n, p^n - 3)) \). It has been shown the primality test of \(n \) using divisibility of \(n \) to \(S(n, k) \), \(1 < k < n \). We have obtained the results that \(v_p(S(n, p)) \) depends on the divisibility of \(n - 1 \) by \(p - 1 \) and \(v_p(S(cp^n, cp^n)) = 0 \) for every integer \(n \geq k \geq 1 \) and \(p - 1 \geq c \geq 1 \). We also posed three conjectures after analyzing Table 1 and computational results of (13).

References

