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Abstract: The paper regards the impact of four different turbulence models on the air flow pattern in a confined 
rectangular space. The following approaches are analyzed. The Baseline (BSL) Reynolds model, the Speziale-Sarkar-
Gatzki (SSG) Reynolds model, the Menter’s shear-stress transport (SST) model and the basic k-ε model. Computational 
fluid dynamics (CFD) results are compared with the experimental measurements in four different planes. The Reynolds 
number for the given conditions is equal to 5000. The k-ε model yielded the most accurate results with regard to the 
experimental data but its reliability decreased near the wall region. With respect to the other models, it was also found 
that the k-ε approach generated the least circulating flow.
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1. Introduction
Computational fluid dynamic (CFD) modelling enables to obtain comprehensive data regarding the specific process 

and allows one to understand the governing phenomena behind it. It also eliminates the need for complex experimental 
measurements which can be expensive and time consuming. It is a powerful tool that can model multiphase, turbulent 
and reacting flows. However, in order to obtain credible information regarding the analyzed case, such a complex 
simulation would require to incorporate specific sub-models which accurately describe the process in terms of 
thermodynamics, fluid mechanics, chemistry and physics.

The present paper is focused mainly on the issue of fluid mechanics. It considers a turbulent air flow in a confined 
space [1-11]. The topic is important and can be referred mostly to the air flow within buildings. The aim of the study is 
to assess the impact of examined turbulent models on the air flow pattern with regard to the experimental data and to 
understand which models yield the most reasonable results. An accurate description of the turbulent flow is, in fact, a 
fundamental step in computational fluid dynamic modelling. Based on the literature, no specific model was found that 
managed to be the most accurate in each analyzed process. Every model has its own specific features that makes it more 
or less appropriate for the specific case.

Many turbulence modelling approaches have been developed so far. The most widely used ones are based on the 
Reynolds averaged Navier-Stokes (RANS) equations: k-ε, BSL Reynolds, SST, SSG Reynolds. The k-ε model [3] is 
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one of the most common models. It is a two equation approach which includes two extra turbulent properties of the 
flow: turbulent kinetic energy-k and eddy dissipation rate-ε. They both determine the energy and scale of turbulence. 
The k-ε model has been shown to be accurate for free-shear layer flows with small pressure gradients and for wall-
bounder internal flows with small pressure gradients [12]. The SST approach [13] is also a two equation eddy-
viscosity turbulence model that combines k-ω model and k-ε model. K-ω is used in the inner region of the boundary 
layer, whereas k-ε is applied in the free shear flow. BSL Reynolds [14] model and SSG Reynolds [15] model solve 
the Reynolds stress transport equations. It allows to model the turbulence transport in a more accurate way. The BSL-
RSM is an ω based RSM which models the transport of turbulent dispersion in the same way as SST model (by 
adopting a blending function). The pressure-strain correlation is an important factor in the RSM approach. It describes 
the distribution of energy among the Reynolds stresses, the fluctuating velocity field and the mean velocity field. The 
SSG Reynolds incorporates a more advanced approach for modelling of the pressure-strain correlation. It is meant to 
describe more accurately the redistribution mechanism of the Reynolds stresses that leads the turbulence to isotropy 
[15]. These RANS-based turbulence models are relatively robust and numerically stable approaches which also reduce 
the computational effort of the simulation in comparison with such approaches as large eddy simulation (LES) or direct 
numerical simulation (DNS). The present paper analyzes the RANS method with the aforementioned k-ε, BSL Reynolds, 
SST and SSG Reynolds turbulence models. The structure of the paper is as follows: Section 2 considers the model set-
up. Section 3 handles the results and discussion. Section 4 handles an additional quantitative assessment of the accuracy 
of a particular turbulence model through the error analysis of the Figures 3-6 with regard to the experimental data. 
Section 5 considers conclusions.

2. Model set-up
This section describes the geometry and boundary conditions. The analysis is performed on a 2D domain by 

using a CFD software Ansys CFX. Gas phase is modelled assuming an Eulerian approach. The flow is assumed to 
be incompressible. Both the continuity equation and RANS equation are solved. The SIMPLE algorithm is used for 
pressure-velocity coupling. Second-order schemes are used for spatial discretization. The geometry is presented in 
Figure 1.

Figure 1. 2D Simulating mesh with the geometry [1]

The geometry has the following specification:

L = 9 m, H = 3 m, h = 0.168 m, t = 0.48 m, w = 1 (2D case)

Inlet conditions are given by the velocity and the Reynolds number:
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where the kinematic viscosity v = 15.3 × 10−6 m2/s at the inlet temperature of 20°C.

h

o
z

x
y

w

t H

L



Engineering Science & Technology 48 | Jakub Mularski, et al.

The mesh was generated in ICEM software. It is a structured, rectangular and non-uniform mesh consisting of 20 
770 nodes. The mesh has been additionally refined near the walls.

In the case of boundary conditions a symmetry-type condition was set for the biggest side surface. Inlet was 
assigned with the velocity inlet condition with the normal velocity equal to 0,445 m/s. Outlet was assigned with the 
Outlet type condition with the average static pressure equal to 0 Pa. For rest of the surfaces a wall-type condition was 
set. Walls were considered to be with no slip and smooth.

The experimental measurements, which the numerical analysis is based on, are made by laser-doppler anemometry. 
They were performed by [16].

3. Results and discussion
In order to obtain convergence, the following number of iterations were required:
k-ε: 689, SST k-ω: 1106, Baseline (BSL) Reynolds stress: 2147, Speziale-Sarkar-Gatski (SSG): 1767.
As for monitoring the convergence, residuals were set to 10-6 for all equations.
Figure 2 depicts velocity streamlines for each turbulent model. One may observe a similarity between the k-ε 

model and the shear-stress transport (SST) approach. On the other hand, entirely different velocity field is predicted by 
the BSL-RSM and SSG-RSM. Additionally, BSL-RSM, SSG-RSM and the SST approach were found to generate much 
more intense circulating flow than the k-ε approach. To further determine which field correctly corresponds to reality, 
Figures 3-6 present the relative velocity field in 4 planes predicted by the analyzed turbulence models with respect to 
the experimental data. The k-ε model, despite its simplicity, manages to reproduce the most accurate results in each 
plane with regard to the rest of the models. In Figure 3, none of the adopted models were able to generate a velocity 
profile ideally similar to one obtained from experimental measurements. The k-e approach, even though it reproduced 
the results with relatively highest accuracy, failed to predict the results appropriately near the wall region. In fact, each 
of the models overpredicted the velocity value close to the walls. In Figure 4, the velocity profiles obtained by the 
k-ε model and the SST k-ω model were in relatively close agreement with the experimental data. The BSL approach 
significantly overpredicted the velocity close to the wall, while the SSG-RSM underpredicted its value. In the case of 
Figure 5, the best compliance with experiment was achieved by the k-ε approach. The BSL model reproduced the results 
with the worst accuracy. Judging by Figure 6, the best agreement with experimental measurements was obtained by the 
SST model and the k-ε model. The BSL approach showed the worst accuracy. 
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Figure 2. Velocity streamlines for each turbulent model

1,2

1

0,8

0,6

0,4

0,2

0
1,210,80,6-0,6 0,4-0,4 0,2-0,2 0

Y/
H

,-

u/u0,-

k-epsilon, x = H

shear-stress, x = H

bsl-reynolds, x = H

ssg-reynolds, x = H

Experiment

Figure 3. Relative distance with regard to relative velocity for x = H



Engineering Science & Technology 50 | Jakub Mularski, et al.

1,2

1

0,8

0,6

0,4

0,2

0
10,5-0,5 0

Y/
H

,-

u/u0,-

k-epsilon, x = 2H

shear-stress, x = 2H

bsl-reynolds, x = 2H

ssg-reynolds, y = 2H

Experiment
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Considering the comparison of the velocity profiles obtained for various turbulence models with the experimentally 
determined profiles, some of the vortices visible in the drawings are non-physical in nature. This is caused by the 
deficiencies of certain turbulence models used in some of the cases. This applies in particular to vortices visible through 
stream lines for BSL and SSG models, obtained between two cross-section planes x = H and x = 2H.

It seems that the fact of obtaining the worst results, using turbulence models, which are by far the most complicated 
in calculations, may be associated with the simplification of the model used. This simplification imposed the use of the 
“symmetry” boundary condition. Combined with a relatively small number of mesh elements, this created the situation 
of a few mesh elements in the Z-axis direction. Due to the fact that the symmetry condition causes a “mirror image” of 
the values in combination with the fact of more complicated formulas that more accurately take into account the transfer 
of stress in different directions, it seems that the use of symmetry could cause error propagation in subsequent iterations. 
The mutual influence of the size of the numerical mesh, the use of the symmetry condition and the use of more complex 
turbulence models indicates importance of meshing process on the quality of obtained results.

4. Error analysis
Based on Figures 3, 4, 5 and 6, an accuracy of the particular turbulence model has been assessed with an error 

analysis-Table 1. Average values of absolute errors are presented. The absolute error is defined as:

Δe = |xexp − xnum|

where xexp and xnum are the experimental and numerical values.
The error was calculated for 25 measurement points and the corresponding numerical results for each of the 

turbulence model. The average value of the error was subsequently obtained.
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Table 1. Average errors between the experimental and numerical results

Δe for SSG Δe for BSL Δe for SST Δe for k-ε

x = H 0.149 0.361 0.108 0.076

x = 2H 0.113 0.207 0.080 0.058

y = 0.02H 0.193 0.259 0.166 0.071

y = 0.972H 0.297 0.351 0.259 0.219

Judging by Table 1, one can notice that the average error is the lowest for the k-ε approach, whereas it is the highest 
for the BSL Reynolds approach. The highest errors were found to be near the wall region.

5. Conclusions
Based on the simulation results of the air flow in a confined rectangular space and comparing them with the 

experimental results, one can conclude that for the case under consideration with the Reynolds number equal to 5000, 
the most accurate turbulence model is the k-ε model. This way of thinking is dictated not only by the best mapping of 
experimental results but also by the lowest amount of iterations needed to achieve convergence of calculations at the 
required level. However, the accuracy and reliability of the k-ε approach was substantially diminished close to the wall 
region. On top of that, the k-e model generated the weakest circulating flow, with respect to the other models.

To sum up, numerical modeling lacks strict mathematical rules regarding the selection of a numerical grid, adapting 
the turbulence model to the modeled problem and possible simplifications such as the use of the symmetry condition. 
The accuracy of the selection of these elements is visible “a posteriori” after the simulation. From this, one can draw the 
general conclusion that the experience of the person performing the simulation is crucial to obtain the results with the 
required accuracy, while minimizing the time needed to obtain such results.
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