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Abstract: This article describes the fabrication of electrochemical devices for the detection of a key environmental 
pollutant, 4-Nitrophenol (4-NPh). 4-NPh is a requirement for the synthesis of organophosphate pesticides. These 
pesticides are mostly used in the agricultural sector to obtain a high yield of agricultural products. The use of 4-NPh 
in the agricultural field results in poisonous levels of this compound in the soil and water. Different techniques have 
been used for its transformation by biological and chemical degradation. However, these strategies not only created 
highly toxic pollutant but also need fast operation and time consuming processes. In this background, we have reported 
a broad and efficient review of the electrochemical reduction of 4-NPh as a feasible alternate method. In this review 
paper, graphene oxide (GO), reduced graphene oxide (rGO), N-doped graphene oxide, functionalized graphene oxide, 
metallic nanoparticles coated graphene oxide, metal oxides covered on rGO, polymer functionalized graphene oxide and 
hybrids materials functionalized with graphene oxide (hydroxyl apatite and β-cyclodextrin) which have been fabricated 
on a glassy carbon electrode (GCE) to enhance the electrocatalytic reduction and increase the sensor activity of 
4-NPh are discussed. We have also described the effects of a few interfering phenolic pollutants such as aminophenol, 
hydroquinone, o-nitrophenol (o-NPh), trinitrotoluene, trinitrophenol, 2, 4-dinitrophenol (4-DNPh) and nitrobenzene. 
In the paper, easy and more effective electrochemical methods for the detection of 4-NPh with graphene- based 
nanocomposites modified on GCE for 4-NPh detection are summarized and discussed.
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1. Introduction
Hazardous pollutants result in a polluted environment and have an effect on humans and other living organisms 

[1-2]. A huge amount of toxic heavy metals are present in soil, water, air and plants. These toxic heavy metals are 
incorporated into food chain, biomagnify into food and effectively result in severe health effects [3]. Nitrates, ammonia, 
phosphates, salinity and electrical conductivity were used to manufacture fertilizers and are comparable with other 
fertilizers on the market. Microalgae and macrophytes removed 4.4% of the chemical organic demand (COD) when 
compared to nitrates (12.5%), ammonia (11.3%) and phosphates (70.47%). The nitrates, ammonia and phosphates were 
compared with other common fertilizers removing of 95 mg/g, 39.5% and 62.5%, respectively. L. minor was used in the 
preparation of fertilizer and L.minor and C.inerta were used to eliminate organic pollutant nutrients from palm oil mill 
effluent (POME) [4]. Pyrene was degraded by fungi to isolate new species to biodegrade remazol brilliant blue R (RBBR). 
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The biodegradation method has been developed with various parameters like agitation, concentration of glucose, 
temperature and salinity [5].

Environmental pollution is fashioned by means of the release of natural compounds waste from industries and a 
variety of dangerous wastes have contaminated the soil and water [6-7]. Consequently, the monitoring of pollutants 
is very important in soil and water and protects the surroundings from dangerous waste. The removal of organic 
compounds is very challenging to maintain water and soil resources. Even though, sensor methods have provided a 
good means of environmental protection such as water and soil [8]. However, simple and low-cost sensors for the 
evaluation organic pollutants such as nitrophenols (NPh) in water are needed [9]. Nitrophenols are toxic pollutants in 
human and animals. Nitrophenols are very crucial chemical substances for the manufacturing of pesticides, pigments, 
rubber chemical compounds, explosives and prescribed drugs [10]. They are continuously bleaching soil and damaging 
water environments, so in this sense they are among the foremost toxic chemicals [11]. Nitrophenols possess different 
properties such as they are toxic, inhibitory and bio-refractory natural chemicals. Amongst them, 4-NPh is the most 
important toxic and hazardous chemical that is detrimental to the health of living organisms in both soil and water 
environments [12]. If 4-NPh is continuously inhaled it causes health issues such as nausea, cyanosis, complications 
in humans and the Environmental Safety Corporation indexed and restricted its concentration to 0.43 µM in water 
environments [13-14]. Most fertilizers manufacturing industries use 4-NPh for the production of insecticides in 
agricultural use and act as intermediate compounds in fertilizers [15]. The plastic, paper, dyes, rubber industries are 
also major contributors to the presence of this pollutant in the environment. The effluents of these industries therefore 
contain small amounts 4-NPh which is released into the environment [16-18]. Despite the fact that, a low amount of 
4-NPh is present in soil and it still can cause diseases in humans and residing organisms. 4-NPh is without difficulty 
highly stable in the environment [19-22]. 4-NPh which is present in industrial wastewater, home wastewater and 
agricultural wastewater can cause infections in humans and other living organisms as shown in Figure 1.

4-Nitrophenol

ENVIRONMENT
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Waste water

Agricultural
Wastewater
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Waste water

Figure 1. 4-NPh discharged into environment from industrial waste water, domestic waste water and agricultural waste water

Numerous techniques have been explored for the complete oxidation of 4-NPh such as biodegradation [23], 
microbial catabolism [24], Fenton reagents [25], photocatalytic degradation [26] and electrochemical techniques [27]. 
However, these methods can make different aromatic compounds like p-benzoquinone, 4-nitrocathechol, hydroquinone 
and phenol and they have shown higher toxicity than 4-NPh [28-29]. Recently, the degradation of 4-NPh has been 
performed by a chemical reduction method. However, the chemical reduction method is used with good reducing agents 
and is more toxic than transition metals [30]. Furthermore, the chemical reduction technique needs high power operating 
conditions for the degradation of 4-NPh [31]. Electrochemical reduction of 4-NPh is a better alternate method for 
eliminating hazardous pollutants and it also produces toxic byproducts. The intermediate products are used in different 
chemical industries and are used in various applications [32-33]. Therefore, electrochemical reduction techniques can be 
applied for the electrochemical degradation of 4-NPh into 4-Aminophenol (4-APh) and it was also shown to be easy and 
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less time-consuming for the reduction of 4-NPh into 4-APh. 
In this review article, we have therefore focused on the electrochemical reduction of 4-NPh with various 

experimental procedures. The effective reduction of 4-NPh was conducted with various modified glassy carbon 
electrodes (GCE). Different graphene based modified GCE electrodes have been reported for the electrocatalytic 
reduction of 4-NPh.This review also discusses the modification of GCEs with some phenolic compounds with graphene 
based nanocomposites by electrochemical processes. Generally, effective and simple electrochemical processes for the 
reduction of 4-NPh by GCEs modified with graphene are discussed.

2. The major uses of 4-NPh
4-NPh is widely utilized in the pharmaceuticals, insecticide, explosive and dye industries [34-36]. The majority 

of 4-NPh arises from the manufacturing of fertilizers like organophosphorus. Organophosphorus acts as an insecticide 
which includes parathion, methyl parathion and methamidophos and they are all poisonous agricultural chemicals create 
severe damages to humans, plants and other living organisms. 4-NPh is used as an intermediate to produce herbicides 
and pesticides. This has rendered it a major pollutant in water and is effortlessly soluble in water which also results 
in it becoming a cancer causing agent [37]. Pesticides also create problems for humans and plants and their 4-NPh 
intermediate has also created problems in the environment. The European environmental agency has set the maximum 
permissible limit of 0.1 g/l for pesticides in drinking water [38]. 3-methyl-4-NPh, 4, 6-dinitro-ocresol, parathion-methyl, 
fenitrothion are examples of compounds containing the 4-NPh intermediate and they are used in vegetation (wheat, 
corn and potatoes). These compounds enter the surface of water and sedimentations and they are able to easily persist in 
water [39]. These derivatives of 4-NPh are without problems soluble in drinking water [40]. The proposed mechanism 
for the conversion of of organophosphate into 4-NPh is shown in Figure 2. 
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Figure 2. The proposed mechanism path ways of organophosphate to 4-NPh

3. Analytical methods for 4-NPh detection
In the last ten years, different analytical methods have been recognized and used for the sensing of 4-NPh as shown 

in Figure 3. These methods include Capillary electrophoresis [41], High-Performance Liquid Chromatography [42], 
Spectrophotometry [43], Float-injection analysis [44] and Enzyme-related immune sorbent assay [45]. Even though, 
most of the analytical methods are expensive and demand longer time analysis, these drawbacks can be overcome. 
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Electrochemical methods are becoming increasingly popular for the detection of 4-NPh. The electrochemical approach 
offers the advantages of low cost, easily handling, good sensitivity and selectivity and in-situ detection [46-47]. The 
electrochemical analysis of 4-NPh using a bare GCE offers lower sensitivity, excessive over potential and interference 
problems [48]. Therefore, modified GCEs have been used to solve these problems and to improve the electrochemical 
detection of 4-NPh [49-51].
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Figure 3. Analytical methods for the determination of 4-NPh from wastewater samples

4. Electrochemical sensor principle
The electrochemical sensor is referred to as a growing chemical sensor in analytical chemistry. A chemical sensor 

has without difficulty been incorporated into devices and provides additional information on the environment. This 
sensor has also been validated to directly identify the chemical substances in environmental samples. Such sensors 
are also able to identify the physical state of the analyte [52]. The electrochemical sensor is a crucial device because 
of its excellent delectability simplicity, low cost and easy operation and it can be also used to analyse a wide variety 
of samples including industrial, clinical, environmental and agricultural samples. Electrochemical sensors can be 
divided into three types which include Potentiometric, Conductometric and Amperometric. The Potentiometric sensor 
works on the principle of equilibrium between the sensor interface and sample potential. The signal is measured 
between two electrodes. Conductometric sensors measure the conductivity of the sample with collection frequencies. 
An Amperometric sensor measures the potential of the sample between the reference electrode and working electrode 
for the duration of oxidation and reduction of samples and subsequently gives a current reading as a signal. The 
electrochemical sensor is consequently becoming more popular in Analytical Chemistry [53-57].

 The chemically modified GCE has demonstrated a greater ability for the detection of 4-NPh than the biologically 
modified GCE. The biological substrate does not give a good signal and demonstrates poor sensing due to fouling 
and the formation of an electrochemical polymerization film on the GCE [58]. Electrochemical sensor applications 
in biological samples include the detection of ascorbic acid, dopamine, glucose, hydrogen peroxide and metallic ion 
sensing via using the chemical sensor [59]. Electrochemistry converts an electrical sign into a digital signal for the 
detection of the analyte as shown in Figure 4. Typically, the cyclic voltammetry approach has produced the signal from 
chemical substrates and electricity and the associated signal is likewise associated with Linear Sweep Voltammetry, 
Potentiometric, Amperometric and Conductivity measurements [60]. The important processes of the electrochemical 
sensor have enhanced the electrocatalytic properties, sensitivity, selectivity and interference.
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Figure 4. Principle and modified route in the function of an electrochemical application

5. Electrochemistry of 4-NPh
Generally, 4-NPh has electrochemical properties that lead to the electrocatalytic reduction of 4-NPh to 4-APh 

at a GCE. At the electrode surface 4-electrons and 4-protons are transferred resulting in the conversion of 4-NPh 
into hydroxyl aminophenol an intermediate compound [61-62]. Further, the hydroxyl aminophenol is reduced to 
benzoquinone imine and the elimination of water occurs after which the final product of aminophenol is acquired from 
benzoquinone imine by the intermediate of hydroxyl aminophenol [63-64]. The electrocatalytic reduction mechanism of 
4-NPh into 4-APh is proposed. But, the floor amendment technique on the electrode has solved the problems including 
poor kinetic rate of the modified electrode and excessive overvoltage potential. This is an essential technique for 
boosting the sensitivity and selectivity of 4-NPh [65].

6. Different modified electrodes for 4-NPh
Electrochemical detection of 4-NPh has been performed with different GCE sensors by various electroactive 

nanomaterials. These nanomaterials include metallic nanoparticles, metallic oxides and metal oxide nanocomposites, 
polymer nanocomposites and carbon nanocomposites. Metallic nanoparticles are mainly silver nanoparticles [66] but 
bimetallic Au-CuNPs nanoparticles have also been applied for the electrocatalytic conversion of 4-NPh [67]. ZnONPs, 
CuONPs, Cu2ONPs, Alpha-MnO2NPs and Fe3O4NPs have been utilized as modified electroactive materials in the 
detection of 4-NPh [68-72]. Chitosan nanocomposites, polyaniline nanocomposite, poly (p-aminobenzene sulfonic acid) 
nanocomposites and poly(methylene blue) nanocomposites have also been applied for the electrocatalytic reduction 
4-NPh [73-76]. The carbon substances and metallic nanoparticles composites include CNTs, AgNPs/CNT, Mesoporous, 
Graphene oxide (GO), molecularly imprinted Graphene, AgNPs/rGO, AuNPs/rGO, MnO2NPs/GO, RGO/PSA and 
GO-Chit as shown in Figure 5 [77-87]. The electrochemical methods include Cyclicvoltammetry, Linear Sweep 
Voltammetry, Differential Pulse Voltammetry, Square Wave Voltammetry (SWV), Amperometry and Impedance 
Spectroscopy and all of these methods have been used for the detection of 4-NPh. Different nanomaterials have been 
classified for the electrocatalytic reduction of 4-NPh as shown in Table 1 [88-102].
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Figure 5. Different nanomaterials modified GCE for electrochemical detection of 4-NPh

Table 1. The different nanomaterials are classified for electrocatalytic reduction of 4-NPh

S.NO Modified GCE Linear range (μM) Detection limit (μM) References

1 PDDA-G 0.06-110 0.02 88

2 Ag-rGO 1-1100 0.32 89

3 GO/TiO2/GCE 0.02-80.57 3.9 90

4 GCE-AuNPs-rGO 0.05-2 0.02 91

5 Green Ag-NPs/GCE 0.09-82.5 60 92

6 GCE/Ag-chitosan 0.07-2.0 70 93

7 Cu-curcumin/GCE 0.1-030 68.2 94

8 GCE/rGO 50-800 200 95

9 NMP-Graphene 0.5-5.6 0.15 96

10 GCE-rGO-CD-CS 0.06-40 16 97

11 ZnO-chitosan 0.5-400 0.23 98

12 GCE-Green AgNPs 0.5-3000 0.5-3000 99

13 GCE-chitosan-BMIMBF-MWCNT 0.3-20 0.1 100

14 GCE-Au NPs 10-1000 8 101

15 GCE-PANi-GITN 0.03-3 0.0052 102

             PDDA-G: poly (diallydimethylammonium chloride)-graphene;
             NPs: nanoparticles;
             BIMIMBF: 1-butyl-3-methylimidazolium tetrafluoroborate;
             MWCNT: multi-walled carbon nanotube;
             rGO: reduced graphene oxide;
             PANi-G-ITN-Integrated polyaniline with graphene oxide-iron tungsten nitride nanoflakes;
             rGO-CD-CS Reduced graphene oxide-cyclodextrin-chitosan;
             NMP-N-methylphenazoniummethyl sulfate.
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7. Graphene materials for electrochemical sensors
Graphene is a kind of carbon material with a unique structure when compared to other carbon materials. Graphene 

comprises a 2D dimensional sheet of sp2 hybridizede carbon atoms. The dense arrangement of carbon is in a honeycomb 
crystal lattice. This carbon sheet layers are bonded with weak Van der Waals Forces [103]. Graphene has unique 
electrical conductivity when compared to other carbon materials. GO is synthesized by numerous methods which 
include heat, chemical conversion and electrochemical methods as shown in Figure 6. GO facilitates fast electron 
transfer between the edge of oxygen and defects [104-106]. Consequently electrochemical sensors can be prepared with 
graphene-based materials [107-109]. Chemically modified rGO has exhibited better electrochemical sensing due to 
oxygen-containing functional groups. This is without difficulty modified with special functionalization which include 
modification with biological molecules and polymers [110-112]. 4-NPh is easily detectable using metal nanoparticles, 
metallic oxide nanoparticles, carbon nanocomposites and polymer nanocomposites with graphene as shown in Figure 
7. This graphene nanocomposite has delivered a fast electrochemical sensor with unique analytes such nitrophenols, 
trinitrotoluene, picric acid (PA), nitrobenzene, H2O2 and dihydroxy benzene isomers.
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8. Electrochemical sensors of 4-NPh by using graphene materials nanocomposite
Metal nanoparticles, Metallic oxide nanoparticles, Polymers nanocomposites and Carbon nanocomposites are in 

high demand for the electrochemical detection of 4-NPh. These show superior accuracy with electrocatalytic sensing 
and selectivity with different analytes. GO has a 2D lattice shape and has significantly developed as an electrocatalyst 
and electrochemical sensor. It has a better electron transfer abilities due to the large number of functional groups such as 
COOH, OH and the epoxy group. The functional groups of GO can improve fast electron transfer between the electrode 
and analyte. This also involves heterogeneous electron transfer between the GO modified electrode and analytes. 
GO is also capable of faster electrochemical sensing when compared to other materials. GO has shown good electric 
conductivity, stability, sensitivity and kinetic electron transfer rate due to nano graphite impurities in carbon nanotubes 
[113]. Li, et al. fabricated a GO modified GCE (GO/GCE) and it showed good catalytic capability to reduce 4-NPh. The 
modified GO/GCE has a strong adsorptive capability and clear electronic characteristics due to hydrogen bonding and 
hydrophobic forces between GO and 4-NPh [114-115]. Since 4-NPh has an aromatic group, it can also engage in π-π 
stacking interactions with GO. There may also be electrostatic interactions between GO and 4-NPh where the N atom 
in 4-NPh can become positively charged. These properties have resulted in high electrochemical detection of 4-NP on 
GO. In contrast to different NPh chemical sensors based on chemically rGO substances, studies on the electrochemical 
detection of 4 NPh do not show better stability and reproducibility, but rather result in the selective reduction of 4-NPh 
once this is electrochemically detected. The reduction peak current concentration range is from 0.1 to 120 μM for 4-NP 
and its limit of detection (LOD) is 0.02 μM.

Electrochemical procedures have reported the electrodeposition of GO on GCE surface and formation of 
electrochemical reduction graphene oxide (ERGO) films is exhibited as crumpled, wrinkled and flake-like shapes [87-
90]. In recent years, researchers have improved the stability and sensitivity of modified ERGO on GCE films, which 
can be used to enhance electrochemical sensors [116-121]. In ERGO film formation a few defects are found such 
thickness management, inability to separate the films and analyte and the analytes are mostly present on the surface 
of ERGO films [122]. Hence, an easy route for synthesizing ERGO films on GCE has been developed and these can 
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be directly attached on GCE from GO dispersion with single step. Wu et al. reported the simple preparation of ERGO 
nanocomposite films by using a co-electrodeposited method [123]. Further, ERGO modified electrodes have been 
designed with single step electrodeposition methods. This system is used to assemble the ERGO films on GCE and 
result in good rapid electron transfer for the electrochemical sensor. Since this electrodeposition technique has been 
confirmed to be very significant it has been applied for ERGO based nanocomposite sensors for the electrochemical 
detection of analytes.

Rao et al. used electrochemically rGO films on GCE (ERGO/GCE) for the detection of 4-NPh [124]. This kind of 
modified electrode was used for the electrocatalytic reduction of 4-NPh because of edge plane defect of ERGO for the 
electrocatalytic reduction of 4-NPh. Therefore, ERGO/GCE are promising for the electrochemical sensing of 4-NPh. 
ERGO/GCE films were confirmed as electroactive substrates for sensing analytes. ERGO can be without difficulties 
shaped on the film on GCE with a one-step electrochemical approach and electrocatalytic activity through 4-NPh 
reduction and oxidation due to amino and hydroxyl groups. Chen et al. suggested that the modified ERGO/GCE film is 
formed by the electrodeposition technique. This technique has facilitated the use of ERGO films from GO due to fast 
electron transfer and the green approach [125]. Here, the graphene films are synthesized on GCE directly from GO with 
single steps of the electrodeposition method [126]. This modified ERGO electrode delivered a terrible fouling effect, 
desirable balance, sensitivity and higher electrochemical sensing of 4-NPh. 

Oliveira et al employed the novel nanocomposite of N-methylphenazonium methyl sulfate (NMP) adsorbed on 
graphene for the electrocatalytic reduction of 4-NPh. This NMP/RGO is fabricated on a GCE electrode to facilitate 
the powerful electrochemical detection of 4-NPh. N-methylphenazonium methyl sulfate acts as an electron transfer 
mediator between RGO and GCE and has high stability, and results in the fast electrochemical redox reaction in 4-NPh 
determination [127-128]. This nanocomposite exhibits a non-covalent linkage between the RGO and NMP to enhance 
the electrocatalytic reduction of 4-NPh. NMP/RGO/GCE electrode detects 4-NPh at a concentration of up to 0.3 nM 
through DPV and 0.15 nM with the aid of Amperometry, (S/N = 3). NMP/GO/GCE electrode is viable, stable, sensitive 
and results in rapid determination of 4-NPh. 

9. Electrochemical sensor of 4-NPh by N-doped RGO nanocomposite
Enhanced electrical conductivity, electrocatalysis and electrochemical sensors are needed with modified GO 

containing heteroatoms such as S, N, P and B [129-130]. Amongst them, a N-doped graphene oxide structure may 
be involved in extraordinary applications [131-132]. N-doped graphene oxide supplies a quick electron transfer rate 
and reduces the band gap for electrochemical applications [133]. The nitrogen atom is smoothly doped with different 
chemical materials because of its atomic size and lone pair electron and it is able to without difficulty be doped with 
carbon materials consisting of carbon atoms with strong bonds [134]. The lone pair of electrons on the nitrogen atom 
is doped on rGO carbon materials that have aromatic moieties, increase electric conductivity and change the band gap 
of rGO [135-136]. GO has not exhibited any activity improvement, so N-doped graphene oxide can be utilized for the 
numerous applications of electrocatalysis and electrochemical sensors [137]. N-doped graphene oxide can be prepared 
by different methods including nitrogen plasma process [138], arc-discharge [139], segregation growth [140], chemical 
vapour deposition [141-142], thermal annealing [143-144], hydrothermal techniques [145-146] and solvothermal 
methods [147].

However, modification has been used on GCE and has more suitable electrochemical sensors and electrocatalysis 
[148]. The connectivity of the N-doped graphene oxide consisting of graphitic N, pyridinic-N and pyrrolic N have 
specific properties which increase the surface area and enhance the electrocatalytic activity with the thermal remedy 
of melamine and 2-methyl imidazole [149] as shown in Figure 8. Exceptional kinds of N-doped graphene oxide 
materials have shown the tremendous electrochemical behavior which is closer to the 4-NPh sensor. Zhang and 
coworkers prepared the N-doped graphene oxide with urea combination by using solvothermal methods [150]. 
Giribabu and coworkers prepared N-doped graphene oxide by using the solvothermal method of GO and sodium 
diethyldithiocarbamate mixture [151]. Dadkhah and coworker synthesized N-doped graphene oxide which was prepared 
by the solvothermal method of GO and 3-aminopropyltriethoxysilane (APTES). This improvement of N-GO has 
resulted in crucial issues together with structural modifications. Hydrogen bonding is formed the N atom and GO and π-π 
bond interplay of N-GO and analytes [152-153]. N-GO modified GCE is implemented for electrochemical application 
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10. Electrochemical detection of 4-NPh using functionalized on GO nano-
composite

GO is an attractive material and its properties are utilized in electrochemical applications. The GO is without 
difficulty agglomerated by chemical conversion techniques and it easily gets graphitized from GO due to van der walls 
forces and π-π stacking interplay [154]. These substances have controlled utility, so issues are involved in opposition 
to graphitization and agglomeration. The modification of GO substances are wanted with covalent and non-covalent 
bonds by using functionalization techniques. In which non-covalent strategies onto GO are special properties consisting 
of the blockage of the agglomeration of the layer of GO with the hydrophilic or hydrophobic organization, increased 
solubility and increase electrochemical application examine than covalent technique [155-156]. Therefore, polymers, 
non-covalent- polyelectrolyte and macromolecules are used to alter GO [157]. Peng et al. posted the research on a 
modified electrode via the usage of polyelectrolyte (poly (diallyldimethylammonium chloride) (PDDA))-functionalized 
GO for the electrochemical detection of 4-NPh [158]. Poly (diallyldimethylammonium chloride), PDDA is engaging in 
an ionic polymer and it can be bonded to GO sheets [159-162]. Therefore, PDDA is functionalized with GO to create a 
positive charge and so that it can without difficulty attract negative materials for different applications [163-164]. This 
electrostatic attraction of materials has reduced the electrochemical catalyst’s activity and resulted in low detection of 
0.02 µM of 4-NPh [165-166].

Bharath et al. proposed the synthesis of edge-carboxylated GO from graphite powder and magnetite-hydroxyapatite 
(m-HAp) which is coated on nicely defined GO through the use of the hydrothermal method. m-HAp onto GO 
nanocomposite offers an effective electrochemical detection of phenolic natural pollution for environmental protection 
[167]. m-HAp-GO nanocomposite confirmed the adsorbing behavior and it can’t be reused and recycled after treatment. 
The technique is wanted severely to solve the problems. So the guided side-carboxylated GO sheet is utilized by 
ball mill techniques. m-HAp nanocomposites covered on GO is conducted by way of hydrothermal approaches. The 
resulting m-HAp/ECGO is modified on GCE for the electrocatalytic reduction of 4-NPh [168]. The modified m-HAp/
ECGO/GCE sensor offerssuitable sensitivity, selectivity and the low detection limits which is 0.27 µM. Arfin et al. 
produced graphene oxide-poly (ethyleneimine) dendrimer (GO-PEI) functionalized modified GCE electrode through 
a drop-cast approach [169]. The modified GO-PEI/GCE shows better electrochemical sensing of o-NPh and good 
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redox properties is observed. GO-PEI/GCE offers the concentration of o-NPh from 5-155 μM and limit of detection 
is 0.10 μM (S/N = 3). GO-chitosan nanocomposite on the GCE is fabricated for the electrochemical sensor of 4-APh 
by using using the voltammetry approach [170]. GO with polyaniline nanocomposite (GO-PANI) was prepared and 
applied in the electrochemical determination of 4-APh. GO-PANI nanocomposite was fabricated on GCE to faciliate the 
electrocatalytic sensing of 4-APh through the cyclicvoltammetry approach. GO-PANI/GCE electrode has performed a 
higher electrochemical reaction in 4-APh with low detection limit, suitable sensitivity, better stability and simultaneous 
determination of 4-APh. This GO-PANI/GCE electrode is used as sensor and biosensor based on the method [171]. GO-
PANI nanocomposite GCE film is able to perform an effective electrocatalytic reduction of 4-APh and has a detection 
limit of 6.5 × 10−8 M. 

10.1 Electrochemical sensor for NPh by using GO-MIP nanocomposite 

Liu, et al proposed the electrochemical application of 2, 4-DNPh with the molecular imprinted polymer (MIP) 
with GO nanocomposite modified GCE electrode. 2, 4-DNPh is used as a template to prepare MIP [172]. MIP-GO has 
an extraordinary surface area, great selectivity and shows better electrocatalytic determination of 2, 4-DNPh. GO-MIP/
GCE electrode has exhibited a low detection limit is 0.4 µM (S/N = 3) with DPV and GO-MIP/GCE resulted in the 
good sensitivity.

10.2 Electrochemical sensor for 4-NPh by using GO-chitosan nanocomposite 

Deng et al advanced a newly modified electrode based on the acetylene black paste electrode graphene-chitosan 
composite film (GO-chit/ABPE) and it is able to electrochemically determine 2-NPh and 4-NPh simultaneously [173]. 
This resulted in detection limits of 200 nM for 2-NPh and 80 nM for 4-NPh, respectively. GO-Chit/ABPE electrode was 
successfully used for the electrocatalytic determination of 2-NPh and 4-NPh. The fabricated GO-Chit/ABPE electrode 
gave desirable stability, sensitivity and reproducibility and higher electrochemical detection of o-NPh and p-NPh. 
Tang et al introduced the graphene-chitosan composite film modified GCE (GO-Chit/GCE) become prepared for the 
simultaneous detection of p-NPh and o-NPh. GO-CS/GCE confirmed better electrocatalytic interest for the reduction of 
p-NPh and o-NPh. The detection limit (S / N = 3) of 0.09 μM at GO-CS/GCE for o-NPh and detection limit of 0.1 μM. 
GO-CS was validated as a promising sensor for the simultaneous detection of NPhs isomers [174].

Yin et al reported that a graphene-chitosan composite is immediately coated on GCE electrode and it is capable 
of using the modified electrode for electrocatalytic reduction of 4-APh. GO-Chitosan nanocomposite has unique 
properties like excessive surface area easily made film shapes of chitosan polymers, good electrical conductivity and 
best electrocatalytic reduction of 4-APh. GO-chitosan has exhibited the efficient electrochemical utility of 4-APh 
with detection limit is 0.057 µM (S/N = 3) [175]. Fana et al proved that a graphene oxide polyaniline (GO-PANI) 
nanocomposite was used for an electrochemical application of 4-APh. GO-PANI nanocomposite is prepared through an 
in situ polymerization approach and this nanocomposite film is coated on GCE for the electrochemical determination of 
4-APh with the cyclicvoltammetry method. This GO-PANI nanocomposite sensor exhibited a low detection limit 6.5 × 
10-8 M, excessive sensitivity and better stability for the electrochemical detection of 4-APh [176]. 

10.3 Electrochemical sensor for 4-NPhs by using poly(sulfosalicylic acid)/GO 

Zheng et al proposed a new developed rGO-poly (sulfosalicylic acid (PSA) nanocomposite which was synthesized 
by a single step of the electrochemical approach. PSA/rGO nanocomposite was successfully fabricated on GCE for the 
electrochemical determination of acetaminophen. PSA/rGO/GCE electrode exhibited an extraordinary electrochemical 
detection of limit is of 0.041 µm (S/N = 3), high reproducibility, high stability and anti-interference capacity. The PSA/
rGO/GCE electrode suggests a fantastic electrochemical behavior of acetaminophen with a synergistic effect between 
the PSA and rGO film to increase the electrochemical detection of acetaaminophen [177].
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11. Electrochemical sensor of 4-NPh by using MNPs with GO nanocomposite
Metals and Metallic oxide nanocomposites modified GCE are extensively used as electrochemical sensors. 

These nanomaterials are coated on GO to show the best electrocatalytic behavior, great conductivity, selectivity and 
electrochemical sensing after modification with GCE. These nanomaterials give the better reduction peak current in 
4-NPh detection and low interference effects.

Yang reports the synthesis of a GO/AgNPs nanocomposite via a hydrothermal method and AgNPs were 
uniformly coated on the GO sheet. AgNps/GO nanocomposite was coated on GCE and it can be tested for the super 
electrochemical sensingof 4-NPh with the low detection limit of 0.114 μM. This nanocomposite exhibited the following 
characteristics such as stability, anti-interference and sensitivity [178]. Mohamed Noor et al. reported the preparation 
of a reduced graphene oxide-silver (rGO-AgNPs) nanocomposite by using a microwave method and the rGO-
AgNPs nanocomposite was modified on a GCE to provide rGO-AgNPs/GCE. This rGO-AgNPs/GCE was used for 
the electrocatalytic reduction of 4-NPh and additionally exhibited the limit of detection 0.32 μM. These observations 
confirmed that the rGO-AgNPs nanocomposite exhibited desirable selectivity toward the detection of 4-NPh even in the 
presence of different interfering molecules [179].

Ikhsan et al conducted a simple synthesis of a silver nanoparticle-coated GO AgNPs-rGO nanocomposite with 
Tollen’s reagent at different time intervals. AgNPs-rGO nanocomposite modifies GCE to give AgNPs-rGO/GCE. This 
modified AgNPs-rGO/GCE was able to engage in the electrochemical detection of 4-NPh bythe use of SWV with a 
detection limit of 1.2 nM [180]. Karuppiah et al verified that the green method of preparation of silver nanoparticles 
with justicia Glauca leaf extract as a reducing agent. In addition, the silver nanoparticles were dispersed on GO to 
provide the AgNPs-rGO nanocomposite and this AgNPs-rGO nanocomposite was modified on the GCE to apply the 
electrochemical software for the detection nitrobenzene [181]. AgNPs-rGO/GCE showed a low limit of detection of 0.261 
µM and showed the best selectivity and anti-interference.

Tang et al organized an unconventional sensor of AuNPs/rGO nanocomposite and it can be made on the GCE 
film electrode for the electrochemical detection of 4-NPh. The AuNPs/rGO/GCE sensor is prepared by using the 
electrochemical deposition cyclicvoltammetry technique. The AuNPs/rGO/GCE sensor exhibited the good electron 
change between the electrolyte and electrode and effortlessly improved the electrocatalytic response of 4-NPh. This 
sensor showed a low detection of 4-NPh with 0.01 µM and 0.02 µM by using Difference Pulse Voltammetry and SWV, 
respectively. AuNPs/rGO/GCE showed anti-interference activity, reliability and effective electrochemical of detection 
of 4-NPh [182]. Jiao et al. verified the synthesis of gold nanoparticles coated with GO nanocomposite (AuNPs/rGO) 
film by the electrochemical technique. AuNPs/rGO nanocomposite performed as a sensor with the aid of GCE and this 
AuNPs/rGO/GCE is implemented for the electrochemical dedication of 4-NPh with electrochemistry techniques. AuNPs 
wereimmobilized on rGO materials to improve the peak current and shifted the reduction potential of 4-NPh with the 
cyclicvoltammetry approach. It was well determined that the AuNPs/rGO/GCE films showed a good electrochemical 
signal for 4-NPh. AuNPs/rGO/GCE showed a low detection limit of 1.0 × 10-8 M, excessive sensivity, repeatibilty 
and stability in 4-NPh detection [183]. Wenbei et al showed the unconventional technique of modifying GO with gold 
nanoparticles (AuNPs/GO), wherein AuNPs is loaded in a very small amount of 10% and AuNPs is dispersed on the 
grpahene oxide sheet without any aggregation. AuNPs-GO nanocomposite is fabricated on GCE to present AuNPs/GO/
GCE and it can be capable of detecting the 4-NPh by means of the Amperometric method with low detection of 0.47 
µM. Au-GO/GCE can be effectively used as a powerful sensor material for the detection of 4-NPh [184-185].

Ezhil Vilian confirmed the environmentally friendly sensor of Pd-GA/rGO nanocomposite which is prepared 
with GA as a reducing agent. Pd-GA/rGO nanocomposite resulted in higher electrocatalytic and catalytic reduction 
of nitrophenol [186]. The catalytic abilities of Pd-GA/rGO nanocomposite are improved for GO to offer the good 
electrostatic interaction of rGO and 4-NPh. PdNPs exhibited more surface with GA-rGO and it is able to effortlessly 
unfold out on the GA-rGO surface to cause rapid electron transfer and electrocatalytic reduction of 4-NPh. Pd-GA/rGO 
nanocomposite modified GCE electrode gave a lower overpotential, excessive sensitivity and limit of detection is 9 fm (S/
N = 3) with SWV. Pd-GA-rGO nanocomposite suggests higher catalytic activity with 4-NPh and the synergistic effect 
produced between the rGO and PdNPs to enhance the electrocatalytic and catalytic of 4-NPh as proven in Figure 9. 
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Figure 9. (A) Schematic illustration of 4-NP electrochemical reduction at Pd-GA/RGO/GCE. (B) (a-d) LSV curves of 4-NP on Pd-GA/RGO in 0.05 
M PBS with various concentrations (from curve I to xxviii = 0-400 pM). (b) EIS of the Pd-GA/RGO with various 4-NP concentrations (from curve a, 
to n = (0-300 pM) in PBS (pH = 7) containing 5 mM Fe(CN)6

3−/4− with 0.1 M KCl. (c) SWV curves of increasing different (0-80 pM) concentrations 
of 4-NP obtained with a Pd-GA/RGO sensor in a pH 7.0 solution. (d) Consequent calibration plot for cathodic peak currents and 4-NP concentrations. 

Conditions: 0.05 M PBS (pH 7.0). Reprinted with permission from ref. 186, copyrights (2014) Elsevier Publications.
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12. Electrochemical sensor of 4-NPh by using MONPs with GO nanocomposite

Stirring at 60 °C

3h

Stirring for 2h

Sonication

GO

1h

Transferred to autoclave 
at 180 °C for 24 hrGO/SrTiO3 

nano composite

Sr(OH)2.8H2O
+

DEG

Tі(ОВu)4

+
ТВАН

(A)

(B)

Potential (V)

Potential (V)

(a)

(d)

C
ur

re
nt

 (μ
A

)

C
ur

re
nt

 (μ
A

)

2

4

6

8

10

-1.0 -0.6-0.9 -0.8 -0.7

-0.5 -0.4 -0.3 -0.2

Concentration (μM)

Concentration (μM)

Pook current (μA
)

Pook current (μA
)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

Potential (V)

Potential (V)

(b)

(c)

C
ur

re
nt

 (μ
A

)

C
ur

re
nt

 (μ
A

)

Concentration (μM)

Concentration (μM)

Pook current (μA
)

Pook current (μA
)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

3

4

5

6

7

2

-0.45 -0.20-0.40 -0.35 -0.30 -0.15-0.25

-0.20-0.40 -0.35 -0.30 -0.15-0.25

4.0
4.5
5.0
5.5
6.0
6.5
7.0

4.5
5.0
5.5
6.0
6.5
7.0

3

4

5

6

7

2

1
2

4

6

8

12

10

3.0
3.2
3.4
3.6
3.8
4.0
4.2

Figure 10. (A) Schematic representations for in-situ grown rGO/SrTiO3. B(a-d) Differential pulse voltammograms of MGCE (a) for p-NP, (b) for 2,4-
DNP, (c) for 2,4-DNT and (d) for TNP at different concentration (0.1-1 mM) in PBS (pH 7.0) with a scan potential of 100 mV/s. The inset showing 

the calibration plots of peak current versus concentration. Reprinted with permission from ref. 190, copyrights (2014) Elsevier publications
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MnO2-reduced GO nanocomposite is utilized as a modified electrode on GCE for the electrochemical application 
of 4-NPh. Right here, MnO2 nanoparticles is loaded on reducing GO by means of the electrodeposition method. MnO2-
rGO/GCE has remarkably showed the best electrocatalytic reduction of 4-NPh with the limit of detection of 10 nM. 
This sensor nanocomposite exhibited better stability, high selectivity, speed of electron transfer and reproducibility 
in 4-NPh detection [187]. Haldorai et al suggested the alpha-MnO2-Reduced GO nanocomposite can be prepared by 
using a residue free method. MnO2-Reuced GO nanocomposite is at once, bound without any binding agent within the 
electrocatalytic reduction of 4-NPh. This sensor displays a low detection limit of 0.017 µm through SWV. This MnO2-
rGO/GCE electrode resulted in higher sensitivity, anti-interference capacity, and powerful electrocatalytic detection of 
4-NPh [188]. 

Alam et al. showed that a reduced graphene oxide-Zinc oxide (rGO/ZnO) nanocomposite is prepared by a simple 
chemical reduction method with polyethylene glycol. The rGO/ZnO nanocomposite is effectively performed onto 
GCE for electrochemical application of 2-NPh. This r-GO/ZnO nanocomposite is modified on GCE a thin layer of 
nanocomposite and increases the electrochemical sensing abilities, results in high sensitivity and a low detection limit of 
0.27 nM. This rGO/ZnO nanocomposite suggests a new approach for the improvement of better electrochemical sensing 
of 2-NPh [189].

The synthesis of rGO/SrTiO3 nanocomposite is performed with the aid of a simple wet chemical approach with 
an in-situ technique. The rGO/SrTiO3 nanocomposite is covered onto GCE with drop casting method. rGO/SrTiO3 
nanocomposite exhibited fast electron transfer among the active substances and analytes and development of electrode 
substances and electrolytes. It has been implemented for the electrochemical detection of nitro-substituted phenols such 
as 4-NPh, 2, 4-DNPh, 2, 4-dinitrotoluene (2, 4-DNT) and 2, 4, 6-Trinitrophenol (TNP) with low detection of (LOD) 
110 nM, 134 nM, 128 nM and 146 nM, respectively [190]. rGO/SrTiO3 showed the excellent activity such as stability, 
reliability and anti-interference in the nitro aromatic pollutants results. The modified rGO/SrTiO3/GCE exhibited a good 
electrochemical sensor of 4-NPh within the nitro-aromatic pollution as proven in Figure 10. Mahyar suggested brand 
new sensor of PtNPs-rGO nanocomposite on GCE for the electrochemical sensor of PA. PtNPs-rGO/GCE electrode is 
efficaciously applied the selective and sensitivity electrochemical sensor for PA with low detection limit of 1 μM [191].

Electrochemical determination of nitrophenol derivative of acetaminophen has used the sensor of Fe3O4NPs 
coated PDDA-GO nanocomposite. Fe3O4NPs-PDDA-GO nanocomposite film is fabricated on GCE as a modified 
electrode for the sensitive detection acetaminophenol with cyclicvoltammetry. Fe3O4NPs-PDDA-GO/GCE film sensor 
can be capable of determining the electrocatalytic activity of acetaminophenol with the aid of the usage of differential 
pulse voltammetry approach. The modified Fe3O4NPs-PDDA-GO/GCE electrode resulted in significant detection of 
acetaminphenol with low detection of 3.7 × 10-8 M (S/N = 3). The proposed electrochemical sensor also exhibited good 
reproducibility and stability and has been used to discover acetaminophen [192].

13. Electrochemical detection of NPhs by using cyclodextrin based GO nano-
composite

Liu et al pronounced a β-cyclodextrin functionalized on reduced graphene oxide sheets (β-CD-RGO) 
nanocomposite which is used as a sensor for 4-NPh derivatives including p-NPh, o-NPh and m-NPh [175]. (β-CD-
RGO) nanocomposite is coated on GCE to supply the modified (β-CD-RGO/GCE) electrode and is implemented in 
the electrocatalytic detection of NPhs. Here, RGO is a high surface region substance and easily accepts the host-guest 
group of cyclodextrin compounds. β-CD-RGO/GCE electrode has performed a higher electrocatalytic reduction in NPh 
and offers better redox peak current with the cyclicvoltammetric technique. β-CD-RGO/GCE was discovered for the 
electrochemical detection of NPhs to show good low detection limits of 0.05 µM, 0.02 µM and 0.1 µM with p-NPh, 
o-NPh and m-NPh, respectively. β-CD-RGO/GCE has brought appropriate sensitivity, true adsorptive, selectivity and 
anti-interference in the direction of NPhs.
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Li et al proposed a newly developed sensor of cyclodextrin functionalized with chitosan-reduced graphene oxide 
(CD-CS-RGO) for electrochemical utility of o-NPh and p-NPh by use of cyclicvoltammetry techniques [176]. CD-
CS-RGO nanocomposite is conducted on GCE to give CD-CS-RGO/GCE sensor in o-NPh and p-NPh simultaneous 
detection. This CD-CS-RGO hybrid nanocomposite has an existing synergetic effect among CS-RGO and CD and it 
is feasibly combined to enhance the electrocatalytic reduction of NPhs. CD-CS-RGO nanocomposite also exhibited 
the electrostatic interaction force among cyclodextrins (CDs) and chitosan. This attraction force has been improved 
the electrocatalytic determination of o-NPh and p-NPh modified CD-CS-/GCE electrode. CD-CS-RGO/GCE is a 
satisfactory sensor in the determination of o-NPh and p-NPh with the limits of detection of 0.018 µM (S/N = 3) and 0.016 
µM (S/N = 3) respectively. CD-CS-RGO/GCE electrode showed good stability, sensitivity, reproducibility and higher 
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electrochemical detection of o-NPh and p-NPh. 

Table 2. Electrochemical sensing of 4-NPh using GCE modified with various nanomaterials

S.NO Materials Analytical technique Limit of 
detection (µM) Linear range (µM) Correlation 

coefficient (R2) pH Ref.

1 GO LSV 0.02 0.1-120 0.9975 4.8 46

2 RGO DPV 42 50-800 0.9942 4.2 81

3 aGR/MIP DPV 0.005 0.01-100, 200-1000 0.9970 4.0 82

4 rGO-AgNPs SWV 0.0012 0.01-0.1, 0.1-1.0, 1.0 
-11.0, 11.0-101.0, 0.998 7.2 83

5 AuNP/RGO DPV 0.01 0.05-2.0 & 4.0-100 0.9981 5.0 84

6 AuNP/RGO SWV 0.02 0.05-2.0 0.9961 5.0 84

7 MnO2-RGO LSV 0.01 0.02-0.5 & 2-180 0.991 & 0.995 7.5 85

8 bGr-Chit/ABPE LSV 0.08 0.1-20 & 20-80 0.9976 1.0 87

9 cEGS DPV 0.04 0.2-20 0.998 5.6 127

10 dERGO DPV 0.55 3.3-34.4 0.9952. 7.0 128

11 eNMP/Gr DPV 0.0003 0.001-1.17 0.998 5.0 132

12 NMP/Gr Amp 0.15 0.50-5.60 0.999 5.0 132

13 N-rGO LSV 0.007 0.020-0.5 0.9953 6 155

14 fPCZ/N-GE CV 0.062 0.8-20.0 0.9971 4.6 156

15 gPDDA-G LSV 0.02 0.06-110 0.9964 7.0 162

16 hAuNPs/TWEEN/GO Amp 0.078 5-300 0.999 7.4 169

17 im-HAp/ECG DPV 0.27 0.2-994 0.9913 5.0 172

18 GR-CS DPV 0.09 0.1-140 0.9891 4.5 179

19 RGO-Ag Amp 0.114 1-500 0.9981 4.0 181

20 rGO-Ag Amp 0.32 1-1110 - 6.0 182

21 rGO-Ag SWV 0.0012 0.1-1.0 0.998 7.2 183

22 AuNP/RGO DPV 0.01 0.05-2.0 0.9981 6.0 184

23 AuNP/RGO SWV 0.02 4.0-100 0.9975 6.0 184

24 jERG-AuNP LSV 0.01 0.036-90 0.9983 4.0 185

25 kG-Au 10 % Amp 0.47 0.47-1075 0.9943 Low pH 186

26 lPd-GA/RGO SWV 0.0009 0.00002-0.0008 0.9564 7.0 187

27 MnO2-RGO LSV 0.01 0.02-0.5 & 2-180 0.991 & 0.995 7.5 188

28 αMnO2-RGO SWV 0.017 1-100 0.9995 7.0 189

29 mrGO/SrTiO3 DPV 110 0.3-0.8 - 7.0 190

30 nCD-RGO DPV 50 1000-10000 0.997 4.0 191

31 RGO-CD-CS DPV 0.016 0.06-0.16 & 5-40 0.9870 5.0 193

32 β-CD-Au@CGS DPV 0.0038 0.01-5 & 5-200 0.998 6.0 194
aMolecularly imprinted graphene (GR/MIP);
bAcetylene black paste electrode modified with a graphene-chitosan composite;
cGraphene nanosheets (GS);
dElectrochemical reduction graphene oxide (ERGO);
eN-Methylphenazonium methyl sulfate and graphene;
fPolycarbazole (PCZ)/nitrogen-doped graphene (N-GE);
gPoly(diallyldimethylammonium chloride) (PDDA) functionalized graphene (PDDA-G) composite film;
hPolyoxyethylene sorbitol anhydride monolaurate (TWEEN 20) graphene oxide;
iMagnetite-hydroxyapatite (m-HAp) (m-HAp/ECG);
jElectrochemically reduced graphene oxide-gold nanoparticles;
kGraphene with gold nanoparticles (G-Au 10%);
lPd-gum arabic/reduced graphene oxide (Pd-GA/RGO);
mPerovskite (SrTiO3) and reduced graphene oxide (rGO) (rGO/SrTiO3);
nβ-Cyclodextrin functionalized reduced graphene oxide (RGO-CD-CS).
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This sensor is also utilized in the electrochemical detection of o-NPh and p-NPh in environmental samples. Liu 
et al exhibited the new improvement of a cyclodextrin functionalized graphene nanosheets CD-GNS sensor which 
is applied for electrochemical detection of o-NPh. CD-GNS nanocomposite was fabricated on a GCE to improve 
the electrochemical determination of o-NPh. CD-GNS/GCE electrode has mostly contributed to the electrochemical 
detection of o-NPh because the cyclodextrin is without problems resulted in a massive surface of GO nanosheets. This 
CD-GNS/GCE sensor confirmed a better detection limit of 0.3 µM (S/N = 3) in addition to proper selectivity, excellent 
stability and reproducibility for the detection of o-NPh [193].

Xu et al discovered that the synthesis of hydroxypropyl-β-cyclodextrin (HP-β-CD) functionalized with GO 
modified on GCE enhanced the selectivity and sensitivity for 4-NPh [170]. CD increases the water solubility, chemical-
physical properties and improvesthe electrocatalysis with GO. CD-GO nanocomposite is modified with GCE to give 
CD-GO/GCE for the electrocatalytic reduction of NPh derivatives. CD-GO/GCE electrode results in quick electron 
transfer and also the fast electrocatalytic activity of 2-NPh due to CD converting properties after functionalization on 
RGO. The prepared CD-GO/GCE showed good stability, selectivity and sensitivity in the determination of 2-NPh with 
cyclicvoltammetry methods of o-NPh with the detection limit of 1× 10-8 M (S/N = 3). CD-GO/GCE has been tested for 
anti-interference in the presence of cresol, o-chlorophenol, 2, 4, 6-trichlorophenol, o-aminophenol and catechol.

Yang et al reported a green approach of AuNPs bound on carboxylic graphene nanosheets (AuNPs-CGS) without 
an external reducing agent [194]. This AuNPs-CGS nanocompsoite is similarly modified with CDs to give β-CD-
Au@CGS nanocompsite. The CDs with thiol and amine functional groups easily forms an Au@CGS nanocomposite. 
β-CD-Au@CGS/GCE nanocompsite is efficiently coated on GCE to offer β-CD-Au@CGS/GCE which is applied 
for simultaneous electrochemical detection of 4-NPh and hydrqunione as shown in Figure 11. The β-CD-Au@CGS/
GCE delivered a low detection limit of 4-NP and HQ are 6.5 nM and 3.8 nM (S/N = 3), respectively. β-CD-Au@CGS/
GCE sensor offers advantages such as high surface area, excellent conductivity, selectivity, high-host-guest molecular 
capability and anti-interference. Table 2 shows the electrochemical sensing of 4-NPh using GCE modified with various 
nanomaterials.

14. Conclusions and future outlook
In this review the recently published literature for the electrocatalytic application of 4-NPh using graphene 

based nanocomposite has been discussed. The electrochemical determination of 4-NPh has been achieved by 
cyclicvoltammetry methods and enhancement of sensitivity and selectivity has been observed with GO nanocomposites 
modified on GCE. Although, GO materials showed a low detection limit in the electrochemical sensing of 4-NPh by 
using modified GCE with electrochemical techniques method. Graphene based nanocomposites have delivered the good 
interaction between the modified GCE and 4-NPh, stability of the modified electrode, reproducibility of the modified 
on GCE electrode, selectivity and sensitivity of the modified GCE electrode and finally modified electrode to apply for 
electrochemical sensing of other interference such as HQ, TNP, TNT, APh, o-NPh. The aim of the review was to show 
that, Graphene nanocomposite materials are utilized for the electrochemical determination of 4-NPh with selectivity and 
sensitivity toward the 4-NPh in environmental samples. A variety of GO based nanocomposites have been used for the 
electrochemical application of 4-NPh and the GO based nanomaterials such GO and rGO. Metal nanoparticles with GO, 
Metal oxide with GO materials, polymer with GO, N-doped graphene oxide materials, cyclodextrin functionalized with 
graphene oxide. These materials have developed the new modified sensor to increase the electrochemical determination 
of 4-NPh and long time stability, sensitivity, selectivity and reproducibility. For the aim of future work, more novel GO 
based materials are needed for the development of electrochemical detection of 4-NPh sensing with good sensitivity and 
selectivity for sensors in practical applications. These materials can result in a good modified GCE electrode and good 
sensor system for the determination of 4-NPh in the near future. 
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