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Abstract: Conventional waste heat recovery systems usually require water (e.g. to supply steam for a turbine) and imply 
the wearing of moving parts, to the detriment of usability in case of drought and/or in the long term. Unconventional 
approaches (thermoacoustic and thermoelectric conversion of heat into electricity) overcome these obstacles, but their 
utilization for multi Kilowatt (KW) electric power in an industrial environment is jeopardized either by large working 
pressure, excessive noise, the need for cooling systems or huge magnetic fields. Welander and Erhard et al. discuss the 
existence and the stability of steady-state convection driven by an applied temperature gradient of a fluid circulating in 
a tube that forms a vertical, closed loop. Convection ensures the spontaneous conversion of heat into mechanical energy 
through competing buoyancy, drag and heat conduction between the fluid and the walls of the tube. Crucially, their 
results do not depend on the nature of the drag. If the working is an electrical conductor and a magnetic field is applied, 
the impact of the resulting Lorenz force acts as a drag on the motion of the fluid just like viscosity; the viscous and the 
magnetic drag are dealt with on an equal basis. The magnetic drag transforms the mechanical energy of the convective 
motion of the fluid into electric energy. Since convection is driven by a temperature gradient, spontaneous, water-free 
conversion of heat into electricity occurs with no moving part at atmospheric pressure. Such conversion is suitable for 
the purposes of waste heat recovery. As an example, let a 1-cm-radius tube filled GalinstanTM (a commercially available, 
atoxic liquid metal alloy) be rolled up in a double helix wrapped around a 30-m-tall, 3-m-radius chimney located above 
a furnace. If there is a 350 K temperature difference between the bottom of the tube (near the furnace) and the top, and 
if permanent magnets located on the tube provide a 0.017 T magnetic field, then conservative estimates show that we 
obtain 2 KW DC electric power with efficiency > 2.1%. This lower bound suggests that our system is competitive with 
thermoacoustic and thermoelectric conversion.
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Nomenclature
A  cross section
B  magnetic field
cp  specific heat at const. press. per unit mass
D  hydraulic diameter
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fD  D'Arcy factor
fN  numerical coefficient in Colebrook-White equation
F  drag force density
g  intensity of gravitational acceleration
h  wall-fluid heat exchange coefficient
H  modified squared Hartmann number
H  pitch
k  1/(wall-fluid heat exchange time-constant)
L  total length of the loop
MHD magnetohydrodynamic
m·  mass flow
Nu  Nusselt number
p   pressure
Pr  Prandtl number
r   helix radius
R  1/(drag time-scale)
RLorenz magnetic contribution to R
Rvisc  viscous contribution to R
R0  D/2
Re  Reynolds number
Rem  magnetic Reynolds number
s  arc length
s  unit tangent vector
dSlat  infinitesimal lateral surface
t  time 
tH  heat diffusion timescale
tloop   time required by one complete loop
tM  momentum diffusion timescale
T  fluid temperature
TA  thermoacoustic
TE  thermoelectric
T0  wall temperature
vs   v · s
v  velocity
V  vertical dimension
W  mechanical power
Wgrid power available to the load
WJoule power dissipated by Joule heating
WLorenz electromagnetic power
Wth  amount of heat exchanged per unit time
Wvisc power dissipated by viscosity
z  vertical unit vector
α  thermal expansion coefficient
αE  modified Prandtl number
βE  modified Rayleigh number
∆H  equivalent pressure drop
∆s  length of arc-like connection
∆Θ  max. jump of T
η	  efficiency 
ηL  lower bound on η
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κ  thermal conductivity
µ  dynamic viscosity
µ0  magnetic permittivity of vacuum
ν  kinematic viscosity
ρ  mass density
ρ0  reference value of ρ
σ  electrical conductivity

1. The problem
With the rising concern regarding global warming, waste heat recovery is of fundamental interest when it comes to 

reducing fuel consumption, lower harmful emissions, and improving production efficiency. to generate electricity out of 
waste heat, most approaches presently require the availability of water as a working fluid (possibly as steam) and rely on 
mechanical moving parts (e.g., turbines). The former may be a problem in the (all too likely) case of drought; the latter 
raises concerns about long-term maintenance, due to unavoidable mechanical wearing [1]. 

A list of today’s (2023) most widely investigated alternative approaches to waste heat recovery and conversion 
into electricity includes Thermoelectric (TE), Thermoacoustic (TA) and Magnetohydrodynamic (MHD) conversion. 
Unfortunately, none of them seem yet to be profitable. 

Significant drawbacks affect the first two when it comes to electric power of industrial interest (say, > 1 KW). 
As for TE, where a solid-state device converts heat flowing across the system (this flux being related to temperature 
difference inside the device) directly into electrical energy through the Seebeck effect, the (typically low) thermal 
conductivity of TE materials facilitates local overheating, which in turn affects the electrical resistivity and spoils 
therefore the optimum impedance matching between the source and the grid. Additional, dedicated, cooling systems 
prevent such overheating like in automotive applications; but these systems require water. Heat-to-electricity efficiency 
η is in the range of 1.3% /6% [2]; it overcomes 20% only when coupled to photovoltaic devices - of course, in daylight 
only [3]. As for thermoacoustics, where heat flux is transformed into acoustic energy and its acoustic energy is in turn 
transformed into electric energy through some mechanical or magnetic device, the amplitude of the sound wave becomes 
so large that the mechanical integrity of the system is at stake when it comes to electric power >> 10 KW. Beyond noise, 
further problems are the huge values of the magnetic field (≈ O(1) T - see Table 1 of [4]) and of the working pressure 
involved (≈ 5 bar - see Sec. 7.2 of [5]), which may lead to significant (magneto)mechanical stress; moreover, magnets 
may require a dedicated power supply. The efficiency is the product of the heat-to-mechanical conversion energy (sound) 
efficiency and of sound-electric conversion efficiency; typical optimum values are 0.28 times the Carnot efficiency and 
40% respectively so that η = 0.11 times the Carnot efficiency. If the highest temperature of the system is three times the 
lowest one, so that Carnot efficiency is 33%, then η = 3.6%. Such low value is due to unavoidable entropy production 
due to irreversible heat conduction - see Sec. 4c and Figure 28 of [6]. Admittedly, a record efficiency η = 19.8% has 
been claimed [7] - but with 40 bar working pressure.

The remaining option, MHD, allows the transformation of the kinetic energy of a fluid that has high electrical 
conductivity and is immersed in a magnetic field [8]. If the electrically conducting fluid flows in a tube at constant 
velocity across the field lines of a constant magnetic field, then Direct Current (DC) electric current is collected on the 
walls of the tube. MHD does the job with no overheating (as the heat is advected by the fluid) unlike TE and silently 
(unlike TA), provided that an effective system of transformation of heat into the kinetic energy of the fluid is available. 
As a matter of principle at least, the only upper bound on the achievable electric power is set by the amount of kinetic 
energy of the fluid. As for waste heat recovery, the weak point of MHD is precisely the required conversion of heat - 
say, the internal energy of the fluid - into mechanical energy. If the fluid is either plasma or gas, then it is compressible, 
and a Venturi tube does the job. But then, plasmas are plagued by instabilities, while gases have negligible electrical 
conductivity; to raise the latter, they are inseminated with ions, and the process raises problems of pollution and 
consumption of materials. If the fluid is a liquid, then its electrical conductivity σ may be far from negligible (from 5 S/
m of seawater to 106 S/m in mercury). But liquids are basically incompressible, and Venturi is of no use. 

Nature seems to offer a solution. If the difference of temperature between the hottest and the coldest point in the 
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fluid is large enough and is kept constant by the external world, then convection spontaneously transforms heat flowing 
across the fluid into mechanical energy even at atmospheric pressure. This is just the well-known working principle of 
the thermosyphon, a	circulating	fluid	system	whose	motion	is	caused	by	density	differences	in	a	body	force	field	that	
result from heat transfer [9]. It works even if the fluid is electrically conductive, as it is well-known e.g. in geophysics. 
If σ is large enough (>> 1 S/m), then we show that conversion of a significant fraction of the resulting kinetic energy 
of the fluid into electric energy occurs provided that the system is immersed in a moderate magnetic field (<< 1 T). 
Admittedly, the fluid velocity associated with convection may be relatively low (< 1 m/s), so that the density of electric 
energy obtained through this process is also low. But energy is an additive quantity; if the fluid fills completely in a tube 
forming a long, closed loop with constant cross-section and flows across it because of convection, then the total electric 
energy output increases with increasing tube length and can be far from negligible. The fact that a unit length of the 
tube collects only a small amount of electric energy is in fact highly desirable as it prevents the formation of undesirable 
voltage peaks along the loop. Given the desired value of electric power, setting up a long tube filled with fluid that forms 
a closed loop (possibly rolled up like the copper wire of a solenoid) and is immersed in a magnetic field is much simpler 
than setting up a system of steam turbines and the like, as no solid moving parts are involved. Permanent magnets 
provide the required magnetic field with no need for a power supply. Moderate magnetic field and atmospheric working 
pressure rule out excessive mechanical stresses. If no phase transition and no electrochemical deposition of solid residue 
on the tube wall occurs, then we may safely take the thermophysical properties of the working fluid as uniform in the 
loop. The constant cross-section of the tube ensures that the fluid velocity is uniform along the tube so that a smooth 
MHD conversion process occurs uniformly along the loop.

This MHD conversion relies on large values of σ and works even for uniform magnetic fields. The process 
differs sharply from thermomagnetic convection [10, 11], a process relevant to magnetizable nanofluids [12-15] where 
the magnetic force acting of the fluid is a linear combination of terms that are proportional to the gradients of the 
components of the magnetic field - see equation (13) of [11] - and does not depend on σ (which, by the way, is ≈ 0.1 S/m 
in some ferrofluids [16]).

The aim of the present work is twofold: a) to discuss the natural convection of an electrically conducting fluid in a 
closed, long loop with a given difference ΔΘ of temperature between the hottest and the coldest point of the loop; b) to 
apply the results of this discussion to MHD conversion when a magnetic field B is applied and the fluid is electrically 
conducting. We invoke the familiar Boussinesq approximation and limit ourselves to the case of constant ΔΘ, having 
in mind the static conversion of energy. Moreover, we assume that the fluid is a chemically pure substance; as for 
electrically conducting liquids, this means liquid metals and excludes solutions like seawater. Consequently, we need 
no bother with electrolysis and other chemical processes which can lead to unwanted deposition of material on the tube 
walls. Furthermore, we assume that the temperature always remains within a range where there is only one liquid phase, 
for simplicity. The buoyancy force is counteracted by a drag force: the two forces are equal and opposite in a steady 
state. Finally, we assume also that the length of the loop is >> the hydraulic diameter of the tube. This inequality has two 
consequences. Firstly, the exchange of heat between the fluid and the wall of the tube rules heat conduction. Secondly, 
the impact on the viscous drag of the viscous forces acting among different fluid parcels in the fluid bulk is negligible in 
comparison with the impact of the friction of the fluid with the wall; the only fluid motion considered is parallel to the 
tube.

To show that a stable, steady convection exists and allows effective MHD conversion of thermal into electric energy 
we take advantage of the results of [17] and [18]. The former describes the convection of a single-phase incompressible 
fluid in a closed loop. Even if the author focuses his attention on the onset of oscillatory instabilities (due to the overplay 
of buoyancy, drag and heat transport, as previously stated also in [19] and [20]), his results are largely independent from 
the detailed description of the physical process underlying the drag. The same feature is shared by [18], which displays 
an extensive investigation (both linear and nonlinear) on the stability of a system that generalizes the loop of [17], and 
outlines the conditions for the existence and the stability of a steady state (envisaged also in [20]). Experiments [18, 21-
23] confirm the findings of [18], even if with B = 0. Since its results do not depend on what the drag is like, we apply it 
to an electrically conducting, viscous fluid in a closed loop where both viscosity and B contribute to the drag.

The paper is organized as follows. We discuss the model of [17] and [18] in Sec. 2. Steady states and their stability 
are investigated in Sec. 4. We discuss viscous and magnetic drag in Sec. 4. Useful formulas for numerical computation 
are derived in Sec. 6. A lower bound on the efficiency of the conversion of heat into electricity is computed in Sec. 7. 
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We discuss a practical example in Sec. 7, where we choose a commercially available metal liquid alloy, GalinstanTM, as 
working fluid. Conclusions are drawn in Sec. 8.

2. The model 
We take a narrow tube of a uniform cross-section of area A = πR0

2, hydraulic diameter 02 / 2D A Rπ= =  and 
total length L >> R0. We form the tube into a closed loop made of 2 vertical, equally long branches with semicircular, 

arc-like connections of length 0
2
Ls s ∆ ≤ ∆ ≤ 

 
 at the top and at the bottom - see Figure 1 (Our results below are not 

affected if we drop the assumption of exactly vertical branches). We denote with s (0 ≤ s ≤ L) the arc length along the 

tube with unit vector s, where s = 0 at the bottom and 
2
Ls =  at the top. We identify the right branch ,

2 2 2
s L ss∆ ∆
≤ ≤ −  

the left branch 
2 2 2
L s ss L∆ ∆
+ ≤ ≤ − , the top arc-like section 

2 2 2 2
L s L ss∆ ∆ − ≤ ≤ + 

 
 and the bottom arc-like section 

,  0
2 2
s LL s L s∆ − ≤ ≤ ≤ ≤ 

 
. The tube is filled with incompressible, viscous, single-phase and (possibly) electrically 

conductive fluid. The tube walls are kept at a prescribed temperature T0 that varies along the loop, i.e. T0 = T0(s). The 
fluid is ruled by:

0∇⋅ =v

0
d p g
dt

ρ ρ= = −∇ − +
v z F

0 const.Tρ ρ α= − +

were we adopt Boussinesq approximation and g, p = p( ρ0, T ), ρ, α, T, ρ0, z, v and F are the intensity of gravitational 
acceleration, the fluid pressure, mass density, thermal expansion coefficient and temperature, a reference value of the 
mass density ρ (taken e.g. at 300 K), the vertical unit vector and the drag force per unit volume respectively. Since R0 

<< L, we write tM < tloop where momentum diffusion over the cross section occurs in a time 
2
0

4M
R

t
ρ
µ

≡  (μ is the dynamic 

viscosity) and the time required for a complete turn around the loop is loop
dst
vs

≡ ∮ . Then, (1) implies vs ≡ v · s = vs(t), 

so that loop
s

Lt
v

= . Moreover, heat diffusion over the cross section occurs in a time 
2
0

4
p

H M

R c
t t Pr

ρ
κ

≡ =  (κ  thermal 

conductivity, cp specific heat per unit mass at constant pressure, pc
Pr

µ
κ

≡  Prandtl number). Since R0 << L, we write 

tH < tloop. We also neglect the heat conduction within the fluid along the tube in comparison with the heat conduction 
between the fluid and the tube wall. Accordingly, we assume that T is uniform over each cross-section, i.e.: T = T(s, t). 
We encompass the inequalities tM < tloop and tH < tloop in 1 self-consistency condition:

0 max(1, ) 1
4

RRe Pr
L

<

( 0sv R
Re

v
≡  Reynolds number, 

0

v µ
ρ

≡  kinematic viscosity). We allow F to depend on both s and vs and write F · s = 

ρ0Rvs where R = R(s, vs) > 0 has the dimension of time-1. According to (2) and (3), the fluid is driven by the buoyancy 
force and is retarded by a drag force. Dot product of both sides of (2) by s gives:

(1)

(2)

(3)

(4)
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0 0
s

s
v p g Rv
t s

ρ ρ ρ
∂ ∂

= − − ⋅ +
∂ ∂

z s

regardless of the structure of R, i.e. of the detailed physical mechanism underlying F. We describe convection as a 1D 
flow moving along the closed loop - i.e., v = vs s - and subjected to given heat sources and sinks along the path. The heat 
transfer to the fluid is assumed to be proportional to the difference between the local temperature T0 of the wall and T:

0( )s
dT T Tv k T T
dt t s

∂ ∂
= + = −
∂ ∂

where k = k (s, vs) ≥ 0 has the dimension of time-1. Note that (6) includes no bulk heating term; we shall discuss this 
point below. Once the geometry (i.e. the dependence of z · s on s), T0(s, t), p = p(ρ0, T ), R(s, vs) and k (s, vs) are known, 
then (3), (5) and (6) provide ρ(s, t), vs(t) and T(s, t). Periodicity requires T0(s, t) = T0(s + L, t), T(s, t) = T(s + L, t) and 
ρ(s, t) = ρ(s + L, t). 

Figure 1. A narrow tube of total length L and hydraulic diameter D << L forms a closed loop and is filled with fluid. The loop is made of two vertical 
branches with connections at the top and the bottom. The tube is symmetric with respect to the vertical. Both vertical branches are thermally insulated (k 

= 0). The length of each short connection is Δs. The temperature of the wall is kept at 
2
∆Θ

−  and +
2
∆Θ

−  at the arc-like connection at the top and the 

bottom respectively, where the wall temperature at half height 1 3,  
4 4

Ls s = = 
 

 is set to zero. Since q > 0, the vertical unit vector z ⋅ s = +1 (-1) on the 

right (left) vertical branch. For the sake of clarity, both vertical branches displayed are straight; however, this is not required in our discussion

3. Steady states and their stability
Many authors discuss in detail the solutions of the system of equations (3), (5) and (6) in different cases [17, 18, 20-

(5)

(6)

s

z

s = L/2 + Δs /2

s = Δs /2

s = L/2 － Δs/2

s = L － Δs/2

s = L/2

L/2

s = 0
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23] and show that these solutions accurately describe experiments [18, 21-23]. Relaxation to a steady solution 0
t
∂ ≡ ∂ 

 

is possible. Lack of convection in the relaxed state occurs for vs = 0. This vs = 0 steady state is stable whenever the ratio 
βE of the buoyancy force and the drag force is < 1 [18]; we write down an explicit expression for βE below. (Periodicity 
makes the contribution of p to βE to vanish [17]). As βE > 1, convection starts with constant vs ≠ 0. As for a detailed 
description of this case see [17] for k = const. > 0, T0(s) = T0(s = 0), k = const. > 0, T0(s) = T0(s = 0) － ΔΘ in the bottom 
and in the top arc-like section respectively, with k = 0 elsewhere and Δs << L in both cases; see also [20] in a slightly 
different geometry. Here ΔΘ is the maximum and the minimum value of T0. At even larger values of βE (or, equivalently, 
of the flow rate [17]) spontaneous oscillations occur [18] regardless of the fluid inertia [20]. 

As suggested in a seminal paper of [19], dissipation can destabilize the periodic motion up and down of a fluid in a 
gravitational field, like e.g. the convective motion of the fluid in our closed loop. In the words of [17], as	the	flow	rate	is	
increased	above	the	critical	value	there	is	one	upper	and	one	lower	value	of	Rtloop	 for	which	neutral	oscillations	occur;	
in	the	range	between	these	the	solutions	are	amplified. Reliable steady conversion of heat into electricity requires that 
convection not only actually occurs, but that it is also stable. The analysis of [18] generalizes the analysis of [17] to the 
case T0(s) = T0(L － s) (corresponding to symmetric heating of the fluid around s = 0) while dropping the assumption 
Δs << L. In both [17, 18] and [20], however, two processes rule the flow of energy across the system: heat conduction 
between the fluid and the wall - with typical timescale k-1 - and the drag along the tube - with typical timescale R -1. 
According to (4), both processes are concerned with the interactions of the fluid particles with the wall of the tube, 
rather than with each other: accordingly, suitably modified definitions of Prandtl, Rayleigh and Hartmann number shall 
be at hand below. We discuss both processes to check stability. 

As for heat conduction, heat exchange occurs across the lateral surface of the arc-like connection at the bottom 
with length Δs where k ≠ 0 Within this connection, let us focus our attention on a sector of infinitesimal length ds. In 
this sector, the external world supplies the fluid with an amount dWth = hW(T(s) － T0(s))Ads of heat per unit time, where 
we compute the proportionality factor hW  [18] by recalling that with dWth = h(T(s) － T0(s))dSlat with h heat exchange 
coefficient and dSlat = 2πR0ds; hence:

0

2
W

hh
R

=

Similar considerations apply to the arc at the top, where the heat flows towards the external world; numerical data 
do not change as far as h is the same. We apply both (6), (7) and the first principle of thermodynamics to our sector and 
write 0 0 0 0 0

0

2 ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))W th p p
h dTT s T s Ads h T s T s Ads dW c Ads c k T s T s Ads

R dt
ρ ρ− = − = = = − . It follows that:

0 0

2

p

hk
c Rρ

=

Moreover, equation (6) in steady state provides us with a reasonable estimate of vs:

sv k s= ∆

Experimentally, both the flow rate (∝ vs) [22] and Re [21, 22] are proportional to the heat flux (∝ h ∝ k ); 
moreover, our assumption of identical values of h both at the top and at the bottom arc-like connection agrees with the 
experimental observation that the value of the Nusselt number 0hR

Nu
κ

≡  is basically constant along the heated zone [23].

As for the drag, we rely on the discussion of [18], which provides also extensive description of experimental results 
confirming theoretical predictions. In the case of symmetric heating a steady, convection state with vs ≠ 0 exists, is stable 
and the amplitude of all perturbations goes exponentially to zero without any oscillation whenever:

(7)

(8)

(9)
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0

2
2

W
E

p W

f
c h

α
ρ

≡ <

and, simultaneously,

2
0

1

21
1

21
2

p
E

W
W

L s
cag sR

L ss hf
s

ρ
β

π

− ∆ +   ∆≡ >   − ∆∆     +   ∆  

where 
0

2 | | 2W
s

f R
vρ

≡ =
F , R1 is the first coefficient of the cosine-Fourier series in the angle s

s
πϕ =
∆

 of the quantity 

0

0

( )
( )W

W
p

h T s
q s

cρ
+  in the case 

2
Ls∆ = , qW (s) is the heat produced by dissipative processes per unit time and unit volume 

of fluid and 

21

21
2

L s
s

L s
s

− ∆ + ∆ − ∆ + ∆ 

 is a corrective multiplicative factor which takes into account that 
2
Ls∆ ≤  and reduces to 1 

(to 2) if  
2 2
L Ls s ∆ → ∆ << 

 
. (Here we refer to equations (2), (3), (4), (5), (16) and to the discussions of pages 491 and 

500 of [18], where the quantities αE and βE are referred to as α and β respectively). If we neglect bulk heating - as in our 
equation (6) above - then we may neglect qW(s). Furthermore, if we take the same T0(s) of [17] (namely, T0(s) = T0(s = 0), 
T0(s) = T0(s = 0) － ΔΘ in the bottom and in the top arc-like section respectively) then:

1
0

2
= W

p

h
R

c
∆Θ

πρ

(Here we refer to Table D-1 and Sec. 4-11-16 of [24]). Together, (7), (8), (10) and  fW = 2R give:

E
R
k

α =

i.e., αE plays the role of a modified Prandtl number, being the ratio of the inverse drag-relevant timescale and the inverse 
timescale relevant to heat conduction between the fluid and the wall of the tube. Physically, small values of a correspond 
to an extremely good heat transfer at the fluid/wall interface. If αE < 2 any temperature disturbance is immediately 
suppressed. This prevents feedback of such temperature disturbances after one cycle (as in [17] and [19]) and leads to 
exponentially decreasing disturbance amplitudes [18]. To grasp the physical mechanism of instability at large αE, let us 
quote [17]: a	warm	pocket	of	fluid	(undergoes a stronger buoyancy. Then, it)	creates	maximum	flow	rate	going	through	
the	upper	part	and	minimum	flow	rate	going	through	the	lower	part	of	the	loop.	Accordingly,	it	passes	quicker	through	
the	heat	sink	than	through	the	heat	source,	and	the	latter	becomes	more	effective.	Similarly,	 the	heat	sink	acts	more	
effectively	on	a	cold	pocket	of	fluid. A good heat transfer between the fluid and the wall prevents the formation of warm 
pockets and tends therefore to suppress this instability - see also Sec. 5.8.11 of [25]. Finally, for 

2
Ls∆ <<  equations (7), 

(8), (11), (12) and fW = 2R give:

2
E

g
Rk s
α ∆Θβ =

∆

(10)

(11)

(12)

(13)

(14)
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This parameter is proportional to the forcing temperature difference ΔΘ and comparable to the Rayleigh number in 
the Bénard convection problem; it is basically the ratio of buoyancy and drag forces (The factor 2 is the multiplicative 
factor which corresponds to 

2
Ls∆ << ). As anticipated, convection starts as βE > 1; thus, (11) and (10) are the conditions 

for the existence and the stability of the steady convective state respectively. Both depend crucially on k and R. The 
former is described by (8). We need information on the latter.

4. Drag
The drag force ρ0RLAvs does an amount: 

2
0 sW RLAvρ=

of mechanical work per unit time on the fluid. Both in [17] and [18] viscosity is referred to only vaguely; indeed, their 
discussion relies on no detailed description of the physical process underlying the drag. In the words of [17] the present 
stability	problem	does	not	change	qualitatively	in	the	more	general	case. We take advantage of this fact below. 

If the external world applies no magnetic field, then the drag is only due to viscosity (formally, we write R = 
Rvisc). In this case, W is just equal to the amount Wvisc = (ρ0 Rvisc LAvs) · vs of heat produced by viscosity per unit time in 
the fluid. The explicit expression of Rvisc  depends on the detailed description of viscous losses, which in turn depends 
usually on the actual value of vs. According to (4), we identify the friction with the wall as the main source of viscous 

drag. Moreover, if we identify the total amount 0( )visc loop visc s s
s

LW t R LAv v
v

ρ⋅ = ⋅ ⋅  of energy dissipated by viscosity in 

the time tloop with the product of the total fluid volume L · A and an equivalent pressure drop 
2

0

2
D sf L v

H
D
ρ

∆ =  ( fD Darcy 

factor) then we obtain 2
0 0

1 1
2visc s s D s

s

R L A v v L A f L v
v D

ρ ρ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ , hence ρ 0Rviscvs = ΔH, i.e.:
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Where - according to Colebrook-White equation - fD depends on both D = 2R0, Re and the wall roughness. We 
anticipate that in real-life applications Reynolds number satisfies:

Re > 2,300

and in this case we write:

1/2  ;   0.3164D N Nf f Re f−= ⋅ =

Let us apply a constant and uniform magnetic field B perpendicular to the direction of the flow: B · s = 0. If the 
fluid has a scalar electrical conductivity σ such that the magnetic Reynolds number Rem ≡ μ0σvsR0 (μ0 = 4π · 10-7 T · m · A-1 
magnetic permittivity of vacuum) satisfies:

Rem << 1

then a Lorenz force with volume density j ^ B acts on the fluid, where j = σ v ^ B is the density of an electric current 
which can be collected on the tube walls [8]. Inequality (19) means that the fluid motion leaves the magnetic field lines 
unaffected - see Sec. 66 of [26]; j is constant in steady state, then we speak of DC current. The Lorenz force acts on the 
fluid as a further drag with intensity σ|B |2vs on the fluid and adds to F, so that:

(15)

(16)

(17)

(18)

(19)
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visc LorenzR R R= +

2

0

| |
LorenzR σ

ρ
≡

B

visc LorenzW W W= +

Inequalities (17) and (19) play the role of self-consistency conditions for the description of the drag provided by (16) 
and (20). 

Apart from that, we stress again the crucial point that the results of both [17] and [18] invoked so far do not depend 
on the detailed nature of the drag; we may therefore apply them to the case where both viscous and magnetic drag occur. 
In contrast with Rvisc, RLorenz does not depend on vs. Moreover, the quantities Wvisc = ρ0RviscLAvs

2 and WLorenz = (ρ0RLorenzLAvs) 
· vs = |B |2LAvs

2 are the amount of work spent by the fluid per unit time in order to overcome the viscous and the Lorenz 
drag respectively. We may further split WLorenz = WJoule + Wgrid , where WJoule is the amount of heat dissipated per unit 
time in the fluid through Joule heating and Wgrid  is the DC electric power actually picked up at the tube walls, which 
can be made available to the electric grid. The actual partition between WJoule and Wgrid  depend on the external electric 
impedances the tube walls are connected to. Under optimal impedance matching: 

2 2| |
2 2

Lorenz s
grid Joule

W LAv
W W

σ
= = =

B

for the maximum power transfer theorem. Let us introduce the dimensionless quantity Lorenz Lorenz

visc visc

W R
H

W R
≡ = . It is 

equal to the ratio of Lorenz and viscous force; should 1 1 2
0viscR v R− −=  as for the viscous damping timescale in Newtonian 

fluids where viscous dissipation is ruled by bulk effects rather than by interactions with the wall, H would just reduce 
to the squared Hartmann number of MHD [8]; we may therefore say that H is a modified squared Hartmann number. 
Relationships (20) and (21) give then:

2

0

1 | |HR
H

σ
ρ

+
=

B

and

12 grid
HW W

H
+

≡

If σ|B |2 → 0 (i.e., either the fluid is an electrical insulator or the magnetic field is too weak) then H → 0 and viscous 
processes rule the drag. In contrast, if σ|B |2 is large enough, then H >> 1 and the drag is basically of magnetic origin. In 
this case, (23) tells us that basically one half of the amount W of work spent per unit time by the fluid to overcome the 
drag and keep on moving along the tube is converted into useful electric power Wgrid . Since steady convection is driven 
by a constant ΔΘ, this is equivalent to direct conversion of thermal into electric power. 

5. Useful formulas
It is possible to write both |B |, vs and ΔΘ as functions of αE and βE. Together, (13), (20) and (22) give:

(20)

(21)

(22)

(23)
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Together, (13), (16), (18), (20), (22) and the definitions of D, H, Re and v give:

2

2
3 2 20

0
4 1

1s E
N

v R k
f H

ρ
α

µ
 

=  + 

Together, (9), (14), (16), (18), (20), (25) and the definitions of D, H, Re and βE give:
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Together with equation (8), equations (24)-(26) are useful because they allow us to rewrite |B |, vs and ΔΘ in terms 
of quantities of practical interest for a system with given geometry (R0, L, Δs...) and required working conditions (ΔΘ, 
Wgrid) with a fluid with known physical properties ( ρ0, σ, α...) - precisely through αE and βE. Together, indeed, (9), (24), (25) 
and the definitions of A and Wgrid give:

1/25/2 2
0 0 0

4 3
0 0

8 grid

N

WR R k
H

f s R Lk
ρ

π µ ρ
    =     ∆     

where Wgrid ∝ H, in agreement with (21) and the definition of H. Moreover, (9), (25) and (27) give:

2
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4 3
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π ρ
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where (27) ensures that grid
E

W
H

α ∝ < ∞  at all values of H. Substitution of (27)-(28) in (24)-(25) provides us with the 

values of |B | and vs (hence the mass flow) for a system with given geometry and a given working fluid, which we want 
to deliver a DC electric power Wgrid to the grid. Furthermore, it must be checked that the value of vs satisfy the self-
consistency conditions (17) and (19). Finally, we rewrite (26) as follows:

2 3 3
0 01 1 ;   8

1E c E
c N

R k
f H g

ρ∆Θβ ∆Θ α
∆Θ µ α

 
= =  + 

3

Together, (28) and (29) provide both conditions (10) and (11) of existence and stability of a steady operation 
configuration with a simple meaning. Firstly, (10) and (29) mean that convection requires that the temperature jump ΔΘ	
is larger than a minimum value. Secondly, if H is too low then of course η is too small, as no Lorenz force acts on the 
fluid. Finally, αE

3 ∝ (H + 1)3 and ΔΘ ∝ H + 1; if follows that if H becomes too large then ΔΘc too increases until βE < 1, 
(11) is violated and convection is suppressed; if we raise |B | to raise Wgrid then |B | just chokes the flow as the magnetic 
drag is too strong. In other words, a magnetic field which is too strong stops convection; if it is too weak, no electric 
energy is obtained. Analogously, (11) and (28) imply that in stable conditions Wgrid cannot be larger than an upper 
threshold, which in turn increases with L.

(24)

(25)

(26)

(27)

(28)

(29)
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6. Efficiency

The efficiency of conversion of thermal power into electric power is grid

th

W
W

η ≡  where Wth = ∫dWth is the amount 

of heat supplied by the external world to the fluid across the lateral surface of the tube in the arc-like connection at 
the bottom (and the domain of integration corresponds to this arc). Now, in the approximation of negligible heating 
of the fluid bulk underlying (6) and (12) W is negligible. Then, the amount of heat Wth － W which goes from the fluid 
to the external world across the lateral surface in the arc-like connection at the top is ≈ Wth and (20), (21) and (23) 
imply that Wgrid is also negligible. This approximation is therefore pessimistic, and provides just a lower bound ηL < 
η on η. Accurate estimates of η require full description of the fluid heat balance in the vertical branches, including 
radiative cooling through the walls of the tube as well as both viscous and Joule heating. At given Wgrid, moreover, 
underestimating η is equivalent to overestimate Wgrid hence vs (via (21)); thus, (9) provides us with an upper bound vM > 
vs.

However, together with the assumption of vanishing k along both left and right vertical branch of the loop our 
approximation ensures that the only source and the only pit of heat in the fluid is the thermal interaction with the external 
world through the walls of both top and bottom arc-like connections. As such, it implies that the maximum value of T is 
attained by the fluid at the exit of the bottom arc-like connection, and that this value is also equal to the value of T at the 
entry in the top arc-like connection, and vice versa for minimum value of T. Broadly speaking, the smaller W, moreover, 

the smaller Wvisc , the smaller s viscv W∝  the larger 
T
s

∂
∂

 in (6), the more effective the heat exchange with the wall, 

the nearer the difference of the values of T at the exit and the entry of the bottom arc-like connection to its maximum 
attainable value ΔΘ, the more accurate the following simple result:

0 0 0 0th th p p p s p s
dT dsW dW c Ads c A  dT c Av dT c Av
dt dt

ρ ρ ρ ρ ∆Θ= = = = =∫ ∫ ∫ ∫

Together, (9), (14), (15), (23), (30) and the definition of η give the following lower bound on η:
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According to (11) and (31), an obvious way to raise ηL for a fluid with α given is to raise L, as 0 1.
1

H
H

≤ ≤
+

 Of 

course, ηL never exceeds 1 even at large L; but then, at large L is is impossible to neglect W ∝ L, and the approximation 
of negligible heating underlying (31) breaks down. Moreover, L must be large enough to satisfy the self-consistency 
condition (4). We may achieve large values of L by taking advantage of the fact that our results do not require that 
the vertical branches of our loop are vertical straight lines. Indeed, if we replace each straight vertical branches of 
Figure 1 with a vertical helix with pitch H ≥ D, height V and radius r - see Figure 2 - then the length of each branch is 

2 2H 2
H

V D rπ−
+ , the total length of the loop is 2 2 2 22 H 2 2 2 H 2 2

H H
V D VL r s r sπ π−

= + + ∆ ≈ + + ∆  for V >> 

D, and as a whole the loop resembles a DNA molecule. We retrieve the vertical straight branches of Figure 1 in the 
H
2

r
π

<<  limit, with 
2
L V=  vertical dimension. In contrast, if H

2
r

π
>>  then 22

H
rL V π

≈ ⋅ , which in turn is maximized 

as H = D:
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π π
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(30)

(31)

(32)
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so that L may be >> 2V. If 
0

V
R

 is large enough, L can attain huge values. We can assembly many helices together 

just by braiding them as H ≥ D. More simply, we can also assemble the ascending and the descending helix of each 
loop parallel to each other to form a closed loop where the fluid continually flows (see the caption of Figure 2 for the 
meaning of ‘ascending’ and ‘descending’ here). The helices can be oriented either clockwise, or both counterclockwise, 
or like in a DNA molecule (one clockwise, the other counterclockwise). 

Figure 2. The helicoidal shape of one vertical branch. This shape may replace the vertical straight shape of a vertical branch (say, 
2 2 2
s L ss∆ ∆
< < − ) of 

Figure 1 and reduces to it as r → 0. The pitch H cannot be shorter than D. Here we replaced the two vertical branches of the loop in Figure 1 with two 
twin helices, like a DNA molecule, with the fluid flowing upwards along one (‘ascending’) helix and downwards along the other (‘descending’) helix. 
Two arc-like connections with length Δs (not displayed here) connect the two helices at the top and at the bottom. Here V plays the role of the length 

2
sL ∆

= −  of one straight vertical branch of Figure 1. The fluid flows all along the closed loop formed by the ascending helix, the top connection, the 

descending helix and the connection at the bottom. Coaxial helices are also feasible

7. An example
To fix the ideas, we may think of a chimney that allows the environmentally safe escape of exhaust gases away 

from a furnace. The chimney can sustain both ascending and descending helices which are fixed to it and wrap it. The 
furnace provides the heating at the bottom, and radiative cooling occurs either at the top or - more realistically - all 
along the helices. In this lay-out r is basically the radius of the flue and V is the height of the chimney. (To break the 
symmetry and prevent the fluid from going on following both helices they can be located slightly asymmetrically with 
respect to the furnace). Along the helices, permanent magnets locally provide the required magnetic field. Once a fluid 
with suitable physical properties (including α and σ) is available, the system provides a cheap conversion of the thermal 
energy which would otherwise be lost per unit of time through the chimney into useful electric energy, thus allowing 
recovery of energy and reducing fuel consumption with no need of water, no moving parts and negligible maintenance 
issues.

Let us come up with some numbers. We work with a tube whose hydraulic diameter and its arc-like connection are 
D = 0.02 m and Δs = 1 m respectively. The tube forms a closed loop made of an ascending helix, a descending helix and 
two arc-like connections. Both helices have a pitch D and wrap a chimney with V = 30 m and r = 3 m. The tube is filled 

r

D

H

V
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with GalinstanTM, a commercially available, atoxic, liquid metal alloy which remains in the liquid state between 254 K 
and 1,573 K at atmospheric pressure and leaves no solid residue when conducting an electric current. Its properties are 
listed in Table 1. We assume that the difference between the temperature at the bottom - i.e., near the furnace - and the 
temperature of the external environment which the fluid is thermally coupled to in the top arc-like connection is ΔΘ = 
350 K. Permanent magnets are located along the tube to provide a magnetic field perpendicular to the tube. 

We want to obtain an electric power Wgrid = 2,000 W. We ask ourselves if steady convection occurs, if it is stable (i.e., 
if both (10) and (11) are satisfied) and - in case - we ask ourselves how large are the required intensity of the magnetic 
field and if all self-consistency conditions (4), (17) and (19) are satisfied. We want also both the upper bound on the 
fluid speed along the tube and the lower bound on the efficiency. 

Equations (9), (24), (27), (28), (29), (31) and (32) and the definitions of Re and Rem give αE = 0.426, βE = 1.043, H 
= 5.007, Re = 1.239 · 104, Rem = 0.02, L = 5.655 · 104 m, |B| = 0.017 T, 0.462M

mv
s

= , and ηL = 2.1%. 

Some final remarks. Both (4), (10), (11), (17) and (19) are satisfied, hence steady state conversion of thermal into 
electric power is feasible. Even in our far-from-optimized, back-of-the-envelope analysis the lower bound on efficiency 
is near to the values of TE [2, 3] and TA [6] conversion. Moreover, the intensity of the required magnetic field is fully 
compatible with the utilization of permanent magnets applied directly to the tube, and no external power supply is 

required. Local values ( 3| | | | 7.6 10s M
Vv  v  
m

−= ≤ = ⋅B B ) of the electric field are scarcely dangerous. Furthermore, no 

solid residues (e.g., no salt deposit) affect the flow as no electrolysis occurs in GalinstanTM. Furthermore the total mass 
of GalinstanTM involved (≈ 1 · 105 Kg) is constant, needs no refilling, flows and produces electric power continuously 
24/7 and is much less than the mass of the chimney (≈ 5 · 105 Kg for a 30-m-high cylindrical corona with outer radius 3 
m and thickness 0.5 m, made of bricks with specific weight 2,000 Kg/m3); accordingly, installation on existing chimneys 
should raise no relevant problem. Finally, our estimate holds just on a back-of-the-envelope, over-conservative basis. 
Less pessimistic estimates of efficiency shall be the outcome of more accurate, numerical, future simulations.

Table 1. Properties of GalinstanTM

Properties of GalinstanTM

ρ0 6.44 · 103 Kg · m-3

cp 2.96 · 102 J · Kg-1 · K -1

h 4.40 · 103 W · m-2 · K -1

α 1.83 · 10-5 K -1

κ 1.65 · 10-1 W · m-1 · K -1

μ 2.40 · 10-3 Kg · m-1 · K -1

σ 3.46 · 106 S · m-1

We refer to both Table 1 of [27] and Table 4 of [28]. As for α, we take the value for Ga. As for h, values in the range 4.40 · 103 ≤ h ≤ 7 · 104 W · m-2 · K -1 
are reported; conservatively, we took the lowest value. The resulting value of Pr is 4.305 
Remarkably, σ is about 3 times larger and 7 orders of magnitude larger than the corresponding values for Hg and ferrofluids (0.1 S · m-1) [16] 
respectively

8. Conclusions
As a novel approach to waste heat recovery, we have investigated the convection of an electrically conducting, 

viscous, incompressible, single-phase fluid in a tube with the constant hydraulic diameter and shaped as a vertical 
closed loop, which the external world applies a temperature difference to. We invoke the model of [17] and its extension 
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discussed in [18]. For a given distribution of temperature of the wall of the tube, in this model:
(a) the motion of the fluid is ruled by both the buoyancy force and the drag force exerted by the wall of the tube on 

the fluid. 
(b) heat conduction between the fluid and the wall of the tube is the only process ruling both the heating and 

cooling of the fluid. 
If the wall is kept warmer at the bottom than at the top (i.e., if the external world applies a suitable temperature 

gradient to the loop) then convection is possible. In a steady state, the same amount of heat flows per unit time from 
the external world into the fluid and vice versa through the wall of the arc-like connection at the bottom and at the top 
respectively. We adopt the familiar Boussinesq approximation. Moreover, the temperature of the fluid is uniform over 
each cross-section of the tube, as the timescale of both momentum diffusion and heat conduction across each cross-
section is much shorter than the time required for a complete turn around the loop. Accordingly, the fluid motion is 
basically 1D, directed along the tube.

The model predicts that the flow rate and the Reynolds number increase with increasing heat flux, and that the 
Nusselt number is basically uniform along the loop. These predictions agree with the results of the experiments of [21-
23] respectively. Experiments [18] also confirm two further predictions: convection with constant fluid velocity starts 
as buoyancy overcomes the drag and remains stable whenever good heat transfer at the fluid/wall interface suppresses 
instabilities. 

Even if experiments have been carried out with no magnetic field so far - i.e., with a purely viscous drag exerted 
on the fluid, so that the electric conductivity σ of the latter plays no role - the model relies on no detailed description of 
the physical nature of the drag. We take advantage of this fact; the novelty of this work is the inclusion of a magnetic 
field in the model. If a magnetic field is applied, then it exerts a Lorenz force on the electrically conducting fluid. A 
Lorenz force acts as a drag in analogy with the viscous drag. In contrast with thermomagnetic convection [10], which 
is relevant to the research on ferrofluids and where the magnetic force acting on the fluid depends on the gradients of 
magnetization and of a magnetic field [11], here the drag is proportional to σ. The additional drag due to the Lorenz 
force induces additional dissipation of power in the fluid. The interaction of the magnetic field with the moving, 
electrically conducting fluid produces an electric current. If the magnetic field is directed perpendicularly to the fluid 
flow, the electric current may be picked up at the wall and provide the power grid in the external world with DC electric 
power. Such power is proportional to the power dissipated in the fluid (which in turn is proportional to the squared fluid 
velocity) and is obtained at the expense of the mechanical power of the convective motion of the fluid, which in turn is 
driven by the externally applied temperature gradient. Conversion of heat into electricity follows. Since the tube cross-
section is uniform along the loop, both the fluid velocity and the density of collected electric power are also uniform 
along the loop.

Both the actual existence and the stability of this conversion in a steady state are described by the model of [17, 18] 
with a suitable description of the total (viscous + Lorenz) drag. The model computes also both the required magnetic 
field and temperature difference, as well as the resulting fluid velocity, for a loop of given geometry filled with a known 
fluid to deliver a known amount of electric power to the grid. 

Physically, convection starts when buoyancy overcomes the drag. The latter may include both a viscous drag and 
(if the magnetic field is ≠ 0) a magnetic drag. The latter induces in the moving, electrically conducting fluid an electric 
field, which in turn drives an electric current flowing perpendicularly to the flow. The latter can be picked up at the wall 
of the tube, the related electric power is obtained at the expense of the mechanical power of the fluid - then, eventually, 
of the amount of heat that flows from the hottest to the coldest point of the loop. 

However, convection may be unstable. A steady convection state (which can deliver a constant electric power) is 
destabilized if the heat transfer at the fluid/wall interface is poor. In this case, indeed, if a perturbation of temperature 
leads to the formation of a warm pocket of fluid, then the latter undergoes a stronger buoyancy. Thus, it creates a 
maximum flow rate going through the upper part and a minimum flow rate going through the lower part of the loop. 
Accordingly, it passes quicker through the heat sink than through the heat source, and the latter becomes more effective. 
Similarly, the heat sink acts more effectively on a cold pocket of fluid. A good heat transfer between the fluid and the 
wall prevents the formation of warm pockets and tends therefore to suppress this instability [17, 25]. 

When it comes to computing the efficiency of this conversion, admittedly, the model is over-pessimistic, as its tenet 
of the heat exchange with the wall being the only source of heat for the fluid just makes us neglect the Joule heating of 
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the fluid bulk which is intertwined with the production of electricity. Thus, the model can only estimate a lower bound 
on the efficiency. 

Given the DC power to the grid, moreover, underestimating the efficiency is equivalent to overestimating the 
amount of heat to be converted per unit of time which is carried by the fluid from the hotter bottom to the colder top of 
the loop, an amount which is proportional to the velocity of the fluid. The model provides therefore just an upper bound 
on this velocity.

It turns out that the lower bound on the efficiency increases with both increasing σ and increasing total length of 
the loop. To fix the ideas and figure out what the relevant orders of magnitude are like, we take advantage of the fact 
that the model of [17, 18] describes convection just as a 1D motion along the tube and makes no assumption concerning 
the overall shape of the loop, as far as the fluid is free to go up and down between a hotter section at the bottom and 
a colder section on the top of the loop. To obtain a very long, closed loop we imagine a 1-cm radius tube that forms 
two coaxial helices with a 3 m radius, 2-cm pitch and 30 m vertical size connected at the top and the bottom to form a 
double-helix loop, much like the DNA molecule. We may locate such tall helices around an existing chimney, which 
allows the escape of exhaust gases away from a furnace. The chimney can sustain both helices which are fixed to it and 
wrap it. The furnace provides the heating at the bottom, the fluid goes up following one helix, gets colder at the top, or 
- more realistically - all along the helices through radiative cooling and goes down following the other helix. (To break 
the symmetry and prevent the fluid from going on following both helices they can be located slightly asymmetrically 
concerning the furnace). Permanent magnets are located along helices and provide the required magnetic field. As a 
working fluid, we choose GalinstanTM, an atoxic, incompressible, single-phase liquid metal alloy with very large σ which 
leaves no solid residue. 

We have shown that it is possible to obtain 2 KW DC electric power with no instability and with the help 
of a 350 K difference between the temperature at the bottom - i.e., near the furnace - and the temperature of the 
external environment which GalinstanTM is thermally coupled to at the top of the loop (the temperature gradient is 
350 11.67
30

K
m

= ). For this purpose, we need a 0.017 T magnetic field, which is easily achievable by commercially 

available permanent magnets. The resulting lower bound on the conversion efficiency and upper bound on the fluid 

velocity are 2.1% and 0.462 m
s

 respectively. 

As for efficiency, this result suggests that the system is competitive both with Thermoelectric (TE) [2] and 
Thermoacoustic (TA) [6] energy conversion systems for the same electric power and at atmospheric pressure. As for 
the velocity, low velocities imply low values of the density of the collected electric power. The low value of the latter, 
in turn, allows static conversion of energy, facilitates built-in prevention of unwanted overvoltage, parasitic arcs and 
overheating already from the drawing desk and ensures that once implementation with optimal impedance matching 
between the system and the external world has occurred this matching endures long operation undisturbed with no need 
of additional cooling systems (in contrast with TE). Moreover, a low value of fluid velocity corresponds to moderate 
intensity of the magnetic field (too-strong magnetic fields just suppress convection altogether, too-weak fields give poor 
conversion to electric energy). In turn, moderate intensity of the magnetic field strongly reduces mechanical stresses 
(in contrast with TA) - thus facilitating both assembly, operation and maintenance - and allows utilization of permanent 
magnets, the uniformity of the field lines being easily obtained through suitable localization of pole pieces and air gaps 
along the tube. The Lack of electromagnets and superconductors allows the system to operate with no need for external 
auxiliary, power supply systems. Finally, if the fluid velocity is low then, the magnetic Reynolds number [8] too is low. 
This means that the fluid does not perturb the field lines of the superimposed magnetic field; the latter can therefore be 
accurately designed from scratch.

In conclusion, if a moderate external temperature gradient is maintained, then the convection of liquid metal in a 
closed loop with a uniform magnetic field allows the conversion of heat into electricity which:

• needs no water supply.
• involves no gears and no moving solid parts altogether.
• is silent (unlike TA).
• is environmentally safe (the liquid always remains confined with the loop).
• works 24/7 continuously (unlike TE with photovoltaic cells).
• depends weakly on weather (unlike TE with photovoltaic cells).
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• works at atmospheric pressure (unlike TA).
• allows easy maintenance (liquid losses due to possible leakage may easily be refilled).
• produces no solid residue (salt, and the like).
• involves no phase transition (GalinstanTM evaporates nowhere and freezes below -19 °C).
• requires no power supplies (permanent magnets only).
• has simple magnetic field geometry (unlike thermomagnetic convection).
• requires no active cooling system (unlike high power TE).
• has limited magneto-mechanical stress (low magnetic field unlike high power TA).
• has a conversion efficiency > 2.1% (competitive with TA at atmospheric pressure and TE).
• is compatible with existing industrial environment (as our example with the chimney shows).
More accurate estimates of the conversion efficiency, and discussion of the behaviour of the system at temperature 

< -19 °C (when GalinstanTM freezes, but overcooled liquid flow is still possible [29]) are the topic of future work. 
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