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Abstract: Herein, we investigate the mixture of methylammonium lead iodide (MAPbI3) and formamidinium lead 
iodide (FAPbI3). The perovskite films were coated onto fluorine-doped tin oxide (FTO) glass substrates using a spin-
coating method, with the spin-coater set at 4,000 rpm for 20 s. We studied the influence of incorporation in MA(1-x)

FA(x)PbI3 films. The crystal structure of the perovskite films was characterized using X-ray diffraction (XRD). Optical 
properties were assessed using UV-Vis spectroscopy with a spectrophotometer, and photoluminescence (PL) was 
characterized using a He-Cd Si-CCD laser source and a Hamamatsu detector. Images depicting the characteristic 
morphology of the films were captured with a scanning electron microscope (SEM). Our measurements reveal that 
the crystallinity of the MAPbI3 thin film improved with the incorporation of FAPbI3. In the case of 70% FAPbI3, the 
morphology of the MA30FA70PbI3 mixture also improved, exhibiting a rough surface with pores. The optical properties 
were enhanced, and the mixed thin film demonstrated better stability compared to pure MAPbI3 and FAPbI3 thin films. 
These film characteristics indicate that the mixtures are particularly suitable for use in photovoltaic applications.
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1. Introduction
Perovskite-based solar cells have demonstrated significant advancements in photovoltaic conversion. They 

possess a structure of the form ABX3, where A represents a monovalent cation (MA+, Cs+, FA+ …) B denotes a divalent 
cation (Pb2+, Sn2+, Ge2+, or Cu2+) and X stands for a halide anion (I-, Cl-, Br- or O- …) [1]. Their conversion efficiency 
has markedly improved over the past few years, rising from 3.8% to 25.2%. Furthermore, they exhibit absorption 
capabilities across the visible spectrum [2-5] and can be easily synthesized from abundant and inexpensive materials 
[6]. Perovskite thin films can be fabricated using various techniques, including one-step solution deposition, two-step 
solution-assisted deposition [7], vapor phase deposition [8], Quantum Dot, and blade [9]. In this study, we employed 
a one-step deposition method using centrifugation. The low-temperature synthesis technique of perovskites enables 
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their utilization in various applications, such as electronic band gap tuning, medical radiography, light-emitting diodes 
(LEDs) [10], the degradation of organic dyes, and water separation reactions [11]. With a tunable band gap, low 
processing costs, excellent optoelectronic properties, long useful carrier diffusion length in solar cells, and high carrier 
mobility, perovskites exhibit significant potential as an innovative next-generation solar technology [12]. Despite these 
attractive potentials, the main disadvantage concerns the durability of the perovskite material, attributed to its instability 
in response to various external factors, including humidity, oxygen, high temperatures, and ultraviolet light [13]. 
Additionally, the presence of lead in the perovskite structure poses environmental concerns [14]. Therefore, perovskites 
offer ample opportunities for optimization. Strategies such as whole-cell encapsulation and surface engineering are 
employed to enhance film stability. These extrinsic strategies prevent the films’ surfaces from interacting with the 
atmosphere but do not provide intrinsic solutions for delaying degradation throughout the thin film [15]. Effective 
stabilization of the perovskite layers’ interior is crucial. Within the extensive perovskite family, the organic halides 1,4 
Methylammonium lead tri iodide (CH3NH3)PbI3 or MAPbI3 and Formamidinium lead iodide HC(NH2)2PbI3 or FAPbI3 
show particular promise. Studies on MAPbI3 materials focus on mixing MAPbI3 with FAPbI3 and other potentially more 
stable absorbers. Research has concentrated on combining the organic cations MA and FA to create compounds of the 
MA(1-x)FAxPbI3 type [16-20]. Indeed, MAPbI3 is the most widely used photon absorber; it remains stable under ambient 
conditions but has a high band gap (2.8 eV) [21]. Furthermore, FAPbI3 possesses a smaller band gap of around 1.47 eV, 
exhibits thermal stability, and has greater resistance to ultraviolet light compared to MAPbI3 [22]. MA(1-x)FAx organic 
monocation mixtures enable FA to crystallize in the desired dark phase and extend absorption to longer wavelengths 
[23]. The best yields obtained with MAxFA(1-x)PbI3 type perovskites are approximately 21.38% [24]. The objective 
of this work was to provide insights into the effects of optimizing the MA/FA ratio in MA(1-x)FAxPbI3 perovskites on 
stability, conversion efficiency, and material properties. The optical properties of the perovskite films obtained revealed 
that the inclusion of FA in the MAPbI3 structure reduces the width of the bandgap and decreases the degradation rate 
of the mixed perovskites. Additionally, an enhancement in sample absorption is observed. We recommend considering 
the perovskite mixture MA0.3FA0.7PbI3 as a more stable material than pure MAPbI3 and FAPbI3, which could be utilized 
as an absorber layer in solar cells. The purpose of this work is to determine the optimal MA and FA ratio where the 
perovskite material exhibits higher absorption and good stability under extreme environmental conditions.

2. Materials and experimental procedure 
2.1 Materials

All precursor chemicals were purchased from Sigma Aldrich, St. Louis, MO, USA, and were used for the synthesis 
of MA(1-x)FAxPbI3 perovskites without prior refining. To deposit the layers, the perovskite solutions used contained 
different masses of three precursors: Methylammonium iodide (MAI) at a concentration of 99.99%, Formamidinium 
iodide (FAI) at a concentration of 99.99%, and lead (II) iodide (PbI2) at a concentration of 99.99%. The perovskite 
solutions were prepared in small, very dark brown bottles (to prevent the solutions from reacting with light) by 
dissolving the PbI2, FAI, and MAI precursors in a mixture of anhydrous N, N-dimethylformamide DMF0.9 and 
Dimethylformamide DMSO0.1. and dimethylsulfoxide Chlorobenzene (or toluene) was used as an anti-solvent.

2.2 Films preparation

The perovskite films were produced on clean fluorine-doped tin oxide (FTO) glass substrates. The substrates were 
washed with Hellmax soap in distilled water and rinsed with ethanol and acetone; all of these washing operations were 
performed using ultrasound. Organic matter was removed with UV-Ozone. To prepare the PbI2 solutions, 1 ml of the 
solvent mixture (DMF0.9 and DMSO0.1) was used to dissolve 0.461 g of PbI2 in a small dark brown bottle. The solutions 
obtained were kept on a hot plate at 60 °C for two hours. To create the perovskite solutions, each sample shown in 
Figure 1 contains a mixture of MAI(1-x) and Les FAI(x), to which 1 ml of the PbI2 solution was added. The different 
MA(1-x)FAxPbI3 solutions were then deposited onto the rotating substrate using the one-step spin-coating method. The 
number of precursors used was calculated using Eq. 1.
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(1-x) MAI + xFAI + PbI2 − MA(1-x) FAxPbI3

With x = {0; 0.25, 0.5, 0.75, 1} the FA portion. Figure 1.
The solutions were heated at 60 °C for two hours. Then, 100 μL of perovskite solution was used to coat the FTO 

glass substrate by spin-coating at 4,000 rpm for 20 s. The thickness of the thin film deposited is estimated to be between 
[insert estimated thickness]. During this operation, a few drops of chlorobenzene (or toluene) were deposited onto the 
wet perovskite films. Finally, the perovskite deposits obtained were thermally annealed at 110 °C for 20 minutes on a 
hot plate.

Figure 1. Synthesis procedures and sample photographs of MA(1-x)FAxPbI3 perovskite films

2.3 Lattice parameters

The parameters were calculated using the following Bragg’s equations:

2 2 2

2 2 2

1   and  2sin( )h k l n d
d a c

λ θ+
= + =

h, k, l: Miller indices and a and c are lattice constants,
d: Inter-planar-spacing,
a, c: Lattice constants,
λ: Wavelength of the CuK α radiation (0.154 nm), 
2θ: Difraction angle of the corresponding plane.

2.3.1 Grain size and effective lattice strain

The calculation of the effective grating deformation provides an overview of defects and distortions within the 
grains in the film. We use the following equation for this calculation:

(1)

Toluene-anti solvant
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k: Constant whose value is 0.94,
λ: 0.15406 nm wavelength of the X ray source,
D: Crystallite size or half-width (FWHM), 
ε: Deformation,
θ: Position of the peak in radians where is the Bragg angle.

2.3.2 Dislocation density

The dislocation density of the crystal was evaluated using the following formula:

2

1
D

γ =

2.3.3 Absorption coefficient

Perovskites are direct band gap semiconductors. the energy band gap is calculated from an estimate of the 
trace(αhv)2 with respect to hv.

2( ) ( )hv B hv Egα = −

1 1ln
t T

α  =  
 

α: Absorption coefficient,
h: Planck constant,
Eg: Forbidden band energy,
t: Thickness of the layers,
B: Constant.

3. Results and discussions
To confirm the production of perovskite materials, XRD measurements (λ = 1.54 Å) were performed on MA(1-x) 

FAxPbI3 mixes. The methylammonium cation is suitable for lead halide perovskite because its ionic radius is 1.8 Å. 
The formamidinium ion has a slightly larger ionic radius than the methylammonium group (RA = 0.18 nm for MA+ and 
0.19-0.22 nm for FA+, respectively).

As depicted in Figure 2 the prominent characteristic peaks of MAPbI3 at 2θ angles of 14.16° (110), 28.57° (220), 
and 31.54° (310) serve to confirm the complete formation of MAPbI3 within the perovskite film [25]. Figure 2 displays 
XRD spectra for MAPbI3, FAPbI3 films, and MA(1-x)FAxPbI3 mixtures. In both MAPbI3 and FAPbI3 spectra, the 2θ value 
of 12.80 corresponds to residual MAPbI2 that remains unreacted. Notably, the peaks attributed to FTO are observed at 
approximately 26.54°, 37.83°, and 51.55° [26].

Characteristic peaks within the MAPbI3 spectrum are identified at 2θ values of 14.24° and 28.57°, corresponding 
to the planar orientations of (110) and (220), representing parallel planes within the perovskite structure. These peaks 
indicate a preferential growth of this layer in the tetragonal direction. Similarly, average peaks are detected at 2θ 
positions of 31.54°, 40.74°, and 43.74°, corresponding to planar orientations (314), (214) in the orthorhombic phase, and 
(330) in the tetragonal phase. The 2θ values for the peaks identified in the mixture diagrams exhibit gradual variations. 

(3)

(4)

(5)

(6)
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Indeed, the incorporation of MA and FA cations into the same lattice results in a gradual shift of the diffraction angle [27]. 
Consequently, the peaks at 14.16, 28.59, 31.54, 40.74, and 43.74 gradually shift towards lower diffraction angles as the 
FA content increases. This shift is attributed to the larger size of the MA/FA mono-cation mixture and the expansion of 
the network caused by it.

The XRD spectrum of FAPbI3 reveals the presence of the desired alpha phase (α) as well as the black gamma phase 
(δ), which is orthorhombic. Its spectrum exhibits peaks similar to those in the spectra of the mixtures. The intensities 
are located at positions 10.14 and 14.06, corresponding to the planes (001) δ - FAPbI3 (unstable) and (001) α - FAPbI3 
(pure, stable) [28]. Additionally, there are mean peaks at 28.17, 31.95, 40.28, and 42.78, corresponding to the planar 
orientations (002), (012), (022), and (033).

The diffraction spectra indicate that the blending of FAPbI3 and MAPbI3 affects the quality of the perovskites [29]. 
In the diffraction spectrum of the film mixture, there is a very small amount of PbI2 residue. Notably, the MA0.7FA0.3PbI3 
mixture demonstrates nearly complete conversion, with clearly discernible peaks matching the reference peaks and 
an almost negligible presence of residues. In contrast, the MA0.3FA0.7PbI3 mixture exhibits fewer peaks than the other 
spectra, with a prominent peak at 12.6, representing PbI2 residues.

Table 1. values of the parameters of the angle 2θ, FWHM, d inter-planar-spacing; D grain size, γ Dislocation density and ε strain for peaks (110) and (220)

Material h, k, l 2θ
(degree)

FWHM
(m) d (nm) D (nm) γ 10-3

(nm-2) ε 10-3

MAPbI3

110 14.24 0.30 6.21 26.51 1.42 10.55

220 28.58 0.18 3.12 44.55 0.50 3.15

Medium 4.67 35.53 0.96 6.85

MA0.7FA0.3PbI3

110 14.11 0.32 6.27 25.02 1.60 11.29

220 28.36 0.27 3.14 30.35 1.08 4.66

Medium 4.71 27.68 1.34 7.97

MA0.5 FA0.5PbI3

110 14.13 0.28 6.26 28.80 1.21 9.78

220 28.32 0.22 3.15 37.75 0.70 3.75

Medium 4.70 33.27 0.95 6.77

MA0.3FA0.7PbI3

110 14.06 0.36 6.29 22.42 1.99 12.63

220 28.27 0.28 3.15 29.26 1.17 4.85

Medium 4.72 25.84 1.58 8.75

FAPbI3

001 14.05 0.29 6.30 27.13 1.36 10.44

002 28.22 0.20 3.16 40.55 0.61 3.51

Medium 4.73 33.84 0.98 6.97

The data in Table 1 allow us to plot the curves of the FWHM, the grain size (D), the interplanar spacing (d), the 
dislocation density, and the deformation, as illustrated in Figure 3 and Figure 4.
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Figure 2. XRD patterns of MA(1-x)FAxPbI3 perovskite films

Figure 3. (a) FWHM of (110) and (220) peaks of MA(1-x)FAxPbI3 perovskite films (b) Grain size and d-interplanar spacing peaks (110) and (220) of 
MA(1-x)FAxPbI3 perovskite films

The FWHM represents the (110) and (220) peaks of the mixed MA/FA perovskite. The structural parameters were 
calculated using the Williamson-Hall (WH) plot method and are presented in Table 2 based on XRD analysis data. The ‘d’ 
value remains nearly constant for all perovskites. On the other hand, the grain size values evolve in a sawtooth pattern 
as the percentage of FA increases.
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Figure 4. γ-Dislocation density and ε-Deformation characteristics of peaks (110) and (220) for MA(1-x)FAxPbI3 perovskites

The curves of the dislocation density (γ) and the deformations (ε) share similar patterns and become more 
significant as the FA content increases. XRD analysis revealed that residues and degraded γ-phases of FAPbI3 can be 
controlled by the MA/FA mixing with an appropriate amount of MA.

The SEM images displayed in Figure 5(a-e) exhibit a good morphology of perovskite films. They are observed to 
have excellent adhesion to the substrate, are relatively rough, and are free of pinholes. Surface roughness correlates with 
the amount of FA, and it is worth noting that the surface of the MA0.3FA0.7PbI3 film is rougher with more pores than the 
other films. The presence of multiple pores and surface roughness allows the films to trap light [30].

Figure 5. SEM images of MA(1-x)FAxPbI3 perovskites films
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3.1 Optical properties 

Figure 6 displays the absorbance, transmission, and energy curves. The analysis of the optical properties of 
perovskite thin films covered the wavelength range from 400 nm to 800 nm.

Figure 6. (a) absorption spectra of MA(1-x)FAxPbI3 perovskites and (b) Transmission spectra of MA(1-x)FAxPbI3 perovskites

Furthermore, within the 450-550 nm range, a significant increase in the absorption of the samples containing both 
FA and MA was observed. This increase is attributed to the abundance of electronic transitions at the vibrational or 
rotational energy levels, resulting in strong absorption in the visible spectrum. Mixed films exhibited higher absorbance 
compared to MAPbI3 and FAPbI3. Additionally, the incorporation of both perovskites shifted the absorption edges 
upward, with a maximum value of 2.9 observed for the roughest film, MA0.3FA0.7PbI3, followed by MA0.7FA0.3PbI3, 
which was the darkest sample. The enhanced absorption in these samples can be attributed to the increased crystallinity 
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and surface roughness of the films [31]. This is confirmed by XRD and SEM analyses. The film’s rigidity optimizes the 
trapping of incident light.

According to Figure 7, the perovskite energy curves display optical band gaps that narrow as the FA content 
increases and vary in relation to the grain size. The sequence of band gap variations in descending order reflects a 
modification of the initial MAPbI3 network parameters [32].

Transmission curves have also been plotted, with the highest value observed for MAPbI3 at around 17%, and the 
lowest transmission occurring in the MA0.3FA0.7PbI3 film, which reaches a minimum of 0%.

Figure 7. Band gap of MA(1-x)FAxPbI3 perovskites

The photoluminescence spectrum allows us to determine the band gaps of the perovskite films, which can be 
compared with the band gaps obtained from the energy spectra.

Table 2. The band gap calculated from the PL and UV-Visible and shift stokes of MA(1-x)FAxPbI3 Perovskites

MAPbI3 MA0.7FA0.3PbI3 MA0.5FA0.5PbI3 MA0.3FA0.7PbI3 FAPbI3

(ahν)2 1.68 1.56 1.62 1.51 1.64

PL 1.63 1.58 1.61 1.59 1.61

Shift stokes 0.05 0.02 0.01 0.07 0.03

Figure 8(a, b) displays the photoluminescence (PL) emission spectra of the perovskite samples. Among them, 
the FAPbI3 film exhibits the highest photoluminescence, followed by the MA0.3/FA0.7 mixture, both of which show 
significant PL emissions. Subsequently, there are lower PL emissions observed in the MA0.5/FA0.5 film, followed by 

Energy (eV)

(a
hν

)2  (a
.u

.)

1.4
0

5

10

15

20

25

30

1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

MAPbI3: Eg = 1.68 eV
MA0.7FA0.3PbI3: Eg = 1.51 eV
MA0.5FA0.5PbI3: Eg = 1.62 eV
MA0.3FA0.7PbI3: Eg = 1.56 eV
FAPbI3: Eg = 1.64 eV



Advanced Energy Conversion Materials 156 | Idrissa Diomandé, et al.

MA0.7FA0.3PbI3 has the lowest PL emission and corresponds to the darkest sample.
The weak emission from MAPbI3 can be attributed to the reduced density of surface trap states, resulting in a 

decrease in non-radiative pathways [33]. Consequently, recombination occurs during the radiative stage [34]. The 
photoluminescence spectra of the MA/FA mixtures are consistent with the XRD and SEM results.

Figure 8. Photoluminescence of MA(1-x)FAxPbI3 perovskites (a) and band gap values calculated by PL peak emission of MA(1-x)FAxPbI3 perovskites
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Table 2 summarizes the optical band gap (Eg) values of MA(1-x)FAxPbI3, extracted from UV and PL measurements. 
The absorption edge decreases slightly from 1.68 to 1.51 eV as the FA content is increased. The band gaps of the PL in 
the perovskite films range between 1.63 and 1.58 eV.

The electrical resistivity of the samples was measured with an uncertainty error of 0.02 using the four-point probe 
method based on the Hall effect [35-37]. To determine the resistivity of the perovskites, deposits were spin-coated onto 
simple glass substrates without FTO, resulting in thicknesses of approximately 500 nm. The electrical resistivity (ρ) is 
calculated using the equation: ρ = Rs × t, where ‘t’ represents the thickness and ‘Rs’ is the resistivity of the thin film. ‘Rs’ 
is determined as the surface resistance of the film, given by Rs = 4.5324 × (V/ I), with 4.532 as the correction factor. We 
conclude that mixing MA with FA did not have any influence on the conductivity or resistivity.

Table 3. Resistivities and conductivities values of MA(1-x)FAxPbI3 perovskites

Sample U/I
(106 V/A)

Rs
(Ω/sq)

ρ resistivity
(Ω·cm)

Conductivity
(10-5 1/Ω·cm)

MAPbI3 1.00 4.55 227.89 438.81

MA0.7FA0.3PbI3 0.99 4.52 226.08 442.33

MA0.5FA0.5PbI3 0.99 4.50 225.12 444.20

MA0.3FA0.7PbI3 0.99 4.49 224.75 445.01

FAPbI3 0.99 4.48 224.35 445.72

The measurement of perovskite resistance is conducted with an intensity on the order of nanovolts. For high-
intensity values, the passage of current through the films leads to a modification of their structure. Additionally, with 
prolonged exposure to the electrodes, the films heat up, which can affect the measurements. We obtained resistivity 
values for the thin films on the order of 200 Ω·cm, and they vary slightly. The smallest value is observed for FAPbI3. 
The high resistivity values are attributed to the organic nature of the studied perovskites. The resistivity and the mobility 
of charge carriers in the perovskite layers are determined, as shown in Table 3.

The measurement of the films’ resistivity yields values that are very close to each other, as do the conductivity 
values. To clearly observe the shift in resistivity, their values have been scaled down by a factor of 224. Similarly, for 
conductivity, their values have been scaled down by a factor of 438. The obtained curves show that the resistivity values 
decrease slightly as the FA content increases.

4. Degradation study 
SEM images are displayed in Figure 9. The degradation is evident with several pinholes and significant changes 

in surface morphology across the films. The image of the most degraded sample corresponds to pure and aged MAPbI3. 
After three weeks in a humid environment, the film morphology images reveal a reduction in degradation as the FA 
content increases in the mixture. This observation aligns with the results obtained from XRD and absorption spectra, 
affirming the stability of the mixed films in relation to the FAPbI3 content. Additionally, the mixing process stabilizes 
the black phase of FAPbI3, resulting in improved XRD spectra and the suppression of the phase-δ transition.

The MA0.3/FA0.7 mixture appears to play a significant role in slowing down the degradation of FAPbI3 thin films, 
as shown in Figure 10. Furthermore, the absorption and optical properties of the mixed films exhibit good agreement, 
contributing to the enhancement of performance and stability in MAPbI3 films.
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Figure 9. SEM images of three-week-aged MA(1-x)FAxPbI3 perovskite films

Figure 10. Resistivity and conductivity of MA(1-x)FAxPbI3 perovskites
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respectively.
The impact of aging on the characteristic peaks diminishes as the proportion of FA increases in the films. The 

spectra exhibit a noticeable reduction in degradation for both the MA0.3/FA0.7 mixture and FAPbI3. The incorporation of 
MA and FA into the perovskite structure proves to be an effective method for controlling degradation and preventing 
the undesired δ-phase formation in FAPbI3 by slowing down the dissociation of MAPbI3 and FAPbI3 into their PbI2 

precursors.
The XRD spectrum of the MA0.3/FA0.7 mixture shows a slight decrease in the characteristic peak intensities 

compared to the other films. These XRD results align with measurements of the absorption of the aged films, which 
demonstrate a significant reduction in absorption intensities. The mixtures exhibit significant absorption intensities in 
increasing order corresponding to the FA concentration in the mixtures.

Figure 11. XRD patterns of both fresh and aged MA(1-x)FAxPbI3 perovskites
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Figure 12 displays the absorption spectra of aged perovskite films exposed to open air in a humid and dark 
environment for three weeks. A reduction in absorption is observed in all samples. However, the MA0.3/FA0.7 mixture 
exhibits the highest absorption, followed by the MA0.5/FA0.5 mixture. FAPbI3 is in the third position, and the absorption 
curves of MAPbI3 and the MA0.7/FA0.3 mixture overlap with consistent values. Notably, strong absorptions are observed 
near 450 nm.

In mixed films, a higher FA content corresponds to a slower degradation rate. The decrease in absorption is visually 
confirmed by comparing photographs of fresh films to films aged in the open air in a dark and humid environment for 
three weeks. The colors transition from black-grey to green for the MA0.7/FA0.3 mixture, from black to green-grey for 
the MA0.3/FA0.7 mixture, and from dark brown to light brown for FAPbI3, indicating significant degradation compared 
to fresh films. Additionally, there is a change in the coloration of the MA0.5/FA0.5 mixture, shifting from gray to brown 
and back to gray, and of the MA0.3/FA0.7 mixture, changing from a lighter brown to a lighter shade. These films exhibit 
less degradation compared to MAPbI3 and the MA0.7/FA0.3 mixture, which are completely degraded under the same 
conditions. These absorption results from degraded samples align with the XRD results of the aged films. The FA 
content in the mixtures influences the degradation process [38-44].

Figure 12. Photographs of fresh and aged films, and absorption spectra after three weeks of MA(1-x)FAxPbI3 perovskites
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decrease as the FA content decreases. The band gaps obtained through photoluminescence analysis closely correspond 
to those obtained through absorption.

It is noteworthy that degradation leads to reduced absorption in the films and a lower density of trap states in the 
samples. Degradation causes the perovskites to decompose into their precursors, such as PbI2. However, the presence 
of FA slows down the degradation process in a humid environment by preventing the formation of PbI2 compounds, 
particularly those of the γ-FAPbI3 phase.

These results contribute to a fundamental understanding of the mechanisms underlying perovskite degradation and 
provide strategies for designing stable and high-performance perovskite-based devices. Our interest in FA stems from its 
demonstrated stability.

The optical properties are improved, and the mixed thin film exhibits greater stability compared to pure MAPbI3 
and FAPbI3 thin films. The characteristics of the films suggest that these mixtures are particularly well-suited for use in 
photovoltaic applications.
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