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Abstract: In spacecraft, the analysis and optimization of space radiators are very important for improving the 
performance of thermal control system. In this paper, a physical and mathematical model for heat transfer optimization 
of series-wound space radiators is set up. With the model, a system with five space radiators is optimized to obtain the 
optimal distributions of total thermal conductance that lead to the maximum heat transfer rate for fixed inlet temperature 
of the fluid and the minimum inlet temperature of the fluid for fixed heat transfer rate, respectively. The influences of 
the operation parameters on the optimization results are discussed. When the inlet temperature or the heat transfer rate 
is fixed, it is shown that the value of total thermal conductance has little effect on the optimal distribution. When the 
total thermal conductance is fixed, the results show that neither the inlet temperature of the fluid nor the heat transfer 
rate is an important factor that affects the optimization results. Furthermore, the applicability of the entropy generation 
minimization and the entransy theory to the analysis of the system is also discussed. Both the theoretical analysis and 
the numerical results show that the entransy theory is always applicable to the optimization problems, while the entropy 
generation minimization is not.
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1. Introduction
Space radiators are very important in the thermal control system of spacecraft because the waste heat in spacecraft 

is finally transported into space through the space radiators. Accordingly, the analysis and design of space radiators are 
of great significance to the improvement of the performance of thermal control system and have attracted much attention 
from researchers [1-6]. 

In engineering, when space radiators are analyzed or optimized, there are different design objectives. In some 
application cases, the focus is the material that gives high thermal emittance [7, 8]. For instance, Kussmaul et al. 
[7] successfully used the discharge chamber of a 30 cm ion source to texture potential space radiator materials to 
obtain values of thermal emittance greater than 0.85 at 700 and 900 K. In some cases, the design objective is to 
improve the heat transfer performance. For instance, Kumar et al. [1] considered a space radiator with uniform area 
fins standing vertically on a nonisothermal parent surface to enhance heat transfer. Arslanturk [3] used the Adomian 
decomposition method to evaluate the efficiency of a radiating rectangular fin with variable thermal conductivity and 
calculated the optimum dimensions of space radiators which maximized the heat transfer rate per unit radiator mass 
with the corresponding correlation equations. Cheng et al. [9-11] tried to improve the ability of radiative heat transfer 
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by improving the homogenization of temperature field. Sometimes, the objective is to minimize the system mass. 
For instance, Xu and Chen [12] set up a physical and mathematical model, including the model of a space radiator, 
and obtained the design parameters that lead to the minimization of the system mass of heat exchanger networks in 
spacecraft. For a manned spacecraft, Zhou et al. [13] also set up a mathematical model for the mass of space radiators 
and minimized the mass of the active thermal control system with the conditional extremum optimization method.

In this paper, we focus on the heat transfer performance and optimize the distribution of total thermal conductance 
for series-wound space radiators. A physical and mathematical model for the optimization problems is obtained, 
and the optimal distributions that give the maximum heat transfer rate for fixed inlet temperature of the fluid or the 
minimum inlet temperature of the fluid for fixed heat transfer rate of the system are calculated, respectively. The entropy 
generation minimization [14] and the entransy theory [5, 15] are also applied to the analysis. The expressions of the 
concepts of entropy generation rate, entransy dissipation rate, and entransy-dissipation-based thermal resistance are 
derived, and the applicability of the concepts to the optimization problems is also discussed.

2. Series-wound space radiators and optimization problems
In engineering, space radiators may be arranged at different locations of spacecraft to release heat into space. In 

thermal control system of spacecraft, they can be connected by fluid pipes in different ways, such as series, parallel, 
or hybrid, depending on the practical application conditions. As below, we analyze a group of series-wound space 
radiators connected by one main pipe, in which the inlet temperature and heat capacity flow rate of the fluid are Tin and 
C, respectively. Assume that there are n space radiators, and the ith space radiator can be shown in Figure 1, in which 
the red arrow represents the fluid flowing in the pipe, and the direction of the arrow represents the direction of the flow. 
For the ith space radiator, i is the serial number of the space radiator, the inlet temperature of the fluid is Tin-i, and the 
thermal conductance between the fluid and the space radiator is Ui. The heat flow rate Qi is transported from the fluid 
into the space radiator, and finally released into the space. Therefore, the total heat transfer rate of the system, Q, can be 
expressed as

1
n

iiQ Q== ∑ (1)

Qi

QiUi

Figure 1. Sketch of the ith space radiator

In the system, the total thermal conductance of the space radiators should be limited with the consideration of the 
launch cost, so we can assume that 
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(2)
1

n
iiU U const== =∑

where U is the total thermal conductance. Accordingly, the distribution of total thermal conductance should be optimized 
to improve the heat transfer performance of the system. When the inlet temperature, Tin, is fixed, the best heat transfer 
performance can mean the maximum total heat transfer rate and the optimization problem can be expressed as

(3)
1

max ,

s.t. .n
ii

Q

U U=




= ∑

When the total heat transfer rate, Q, is fixed, the best heat transfer performance can correspond to the minimum 
inlet temperature of the fluid, and the corresponding optimization problem can be expressed as

(4)
in

1

min ,

s.t. .n
ii

T

U U=




= ∑

As below, a physical and mathematical model is introduced for the system to analyze the two optimization 
problems expressed by Eqs. (3) and (4).

3. Physical and mathematical model and optimization method
In Figure 1, it can be seen that the heat transfer system is coupled with the radiative heat transfer process and 

the heat transfer process between the fluid and the space radiators. To simplify the problem, the heat transfer process 
between the fluid and the ith space radiator can be treated as that between a hot stream and a cold plate. Therefore, we 
have [16]

(5)( )in- 1 exp i
i i i

U
Q C T T

C
  = - - -  

  

where Ti is the heat transfer temperature of the space radiator near the fluid. Considering that there are i - 1 space 
radiators before the ith space radiator, we can obtain that

(6)( ) 1
in in- 1

i
i jjC T T Q-

=- = ∑

Therefore,

(7)
1
1

in- in

i
jj

i
Q

T T
C

-
== -

∑

Accordingly, Eq. (5) can be rewritten as



Advanced Energy Conversion Materials 198 | XueTao Cheng

(8)
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On the surface of the space radiator, the temperature would not be uniformly Ti due to the conductive heat transfer 
process in the space radiator and the radiative heat transfer process between the surface and the space. Therefore, when 
we calculate the heat transfer rate of radiative heat transfer, the space radiator can be treated as a fin in convective heat 
transfer. Then, we have

(9)( )4 4
Si i i i iQ f A T Tσε = -  

where fi is the fin efficiency, σ is the Stefan-Boltzmann constant, εi is the emissivity, Ai is the heat transfer area, and TS is 
the background temperature of the space. 

Combing Eqs. (8) and (9) gives

(10)( )
1
14 4

S in 1 exp
i

jj i
i i i i i

Q U
f A T T C T T

C C
σε

-
=

 
    - = - - - -         
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Eq. (10) can be rewritten as

(11)4 1 0i
i i

i i

b
T T

a a
+ - =

where
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With the equations above, the physical and mathematical model for the coupled heat transfer process is obtained. 
First, we can analyze the optimization problem in Eq. (3) with the model. In this case, we assume that the heat 
capacity flow rate, the fin efficiency, the emissivity, the heat transfer area for radiative heat transfer and the background 
temperature of the space are all given for the ith space radiator. For every distribution of total thermal conductance, ai 
is obviously fixed. Meanwhile, for the first space radiator, b1 is also fixed because the inlet temperature of the fluid is 
given. Accordingly, solving Eq. (11) gives T1. With Eq. (8) or (9), the heat transfer rate of the first space radiator, Q1, 
can be obtained. Then, it can be seen with Eq. (13) that b2 is also fixed, and T2 and Q2 can be further calculated. In this 
way, the values of bi, Ti and Qi can all be obtained.
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To find the value of Ti, we should solve Eq. (11), which is a quartic equation about Ti. As below, we solve it 
numerically. According to Eq. (11), we can have a function,

(14)( ) 4 1 i
i i i

i i

b
F T T T

a a
= + -

If we draw the curve of the function, F(Ti), we can find that the solution of Eq. (11) is the value of the abscissa of 
the intersection of the curve and the horizontal axis. In our calculation, an initial value of Ti, Ti-0, can be first given, and 
the point (Ti-0, F(Ti-0)) can be obtained. Considering that there is

(15)3d 14
d i

i i

F T
T a

= +

we can obtain the slope of the tangent of the curve at the point (Ti-0, F(Ti-0)),

(16)3
0 0

14i i
i

k T
a- -= +

Therefore, the equation of the tangent can be expressed as

(17)( ) ( )0 0 0i i iy F T k x T- - -- = -

where x is the abscissa, and y is the ordinate. The abscissa of the intersection of the tangent and the x-axis is

(18)( )0
1 0

0

i
i i

i

F T
x T

k
-

- -
-

= -

Then, let Ti-1 = xi-1, and a new point, (Ti-1, F(Ti-1)), can be obtained. Repeating the processes from Eq. (16) to Eq. 
(18) gives the abscissa of the intersection of the x-axis and the new tangent at point (Ti-1, F(Ti-1)). In this way, Ti-m can 
be obtained after m iterations, and can be treated as the solution of Eq. (11) when there is

(19)( )i mF T δ- <

where δ is a very small quantity and can be set to be 1 × 10-6 in our calculation.
Furthermore, in the constraint equation, Eq. (2), it can be seen that there are n variables that are not independent of 

each other. Let
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In this way, the original n variables are replaced by n - 1 independent variables that are all in the range of [0, 1]. 
Accordingly, the optimization problem shown in Eq. (3) can be solved by the following steps:

(1) Give a value of p1, and calculate U1 with Eq. (20).
(2) Calculate a1 and b1 with Eqs. (12) and (13).
(3) Solve Eq. (11) and obtain T1.
(4) Calculate Q1 with Eq. (8) or (9).
(5) Repeat the processes from (1) to (4), and calculate the corresponding parameters from the second space radiator 

to the last one. For instance, give a value of p2 for the second space radiator, and calculate U2; Then, calculate a2 and b2 
with U2 and Q1; Solve Eq. (11) and obtain T2, and then calculate Q2. The heat transfer rates of the other space radiators 
can also be obtained in this way.

(6) Calculate the total heat transfer rate, Q, with Eq. (1).
(7) For different groups of the values of the n - 1 independent parameters, pi, in the range of [0, 1], different 

distributions of total thermal conductance and the corresponding total heat transfer rates can all be calculated. Compare 
all the total heat transfer rates, and obtain the maximum one and the corresponding distribution of total thermal 
conductance.

Second, the optimization problem shown in Eq. (4) can also be analyzed. The optimization steps are shown below:
(1) Give an initial value of Tin, and turn the problem to an optimization problem expressed by Eq. (3).
(2) Calculate the maximum total heat transfer rate, Qmax, and obtain the corresponding optimal distribution of total 

thermal conductance. Let Tin increase by a small value when there is

(21)given maxQ Q c- >

where Qgiven is the given total heat transfer rate, and c is a small value that can be set to be 1 × 10-2 in our calculation. 
When there is

(22)given maxQ Q c- < -

let Tin decrease by a small value. Then, repeat the calculation of the maximum total heat transfer rate.
(3) When there is
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(23)given maxQ Q c- <

the corresponding Tin and optimal distribution of total thermal conductance can be treated as the optimization results.
With the physical and mathematical model and the optimization method above, some numerical cases can be 

presented and discussed below.

4. Numerical cases and discussions
First, we present a numerical case with the optimization problem shown in Eq. (3). Assume that n = 5, Tin = 280 K, 

U = 20 W/K, C = 2 W/K, εi = 0.9, Ai = 2 m2,  fi = 0.8 and TS = 4 K. In this case, the variations of the total heat transfer 
rate with different values of pi are shown in Figure 2. The numerical results show that the maximum total heat transfer 
rate, 301.39 W, can be obtained when p1 = 0.2526, p2 = 0.2916, p3 = 0.3654 and p4 = 0.5212. Correspondingly, the 
optimal distribution of total thermal conductance is U1 = 5.05 W/K, U2 = 4.36 W/K, U3 = 3.87 W/K, U4 = 3.50 W/K and 
U5 = 3.22 W/K. It can be seen that the optimal thermal conductances decrease from the first space radiator to the last 
one. In the system, the inlet temperature of the fluid decreases with increasing serial number of the space radiator, so we 
can see that Tin-1 > Tin-2 > Tin-3 > Tin-4 > Tin-5. Therefore, distributing more thermal conductance to the space radiators 
with higher inlet temperatures of the fluid is beneficial to the increase of Q.

                               

Figure 2. Variations of Q with pi

When the total thermal conductance, U, changes, the variations of the maximum Q and the corresponding optimal 
distributions of U can be calculated and shown in Figure 3. The results show that the optimal Ui increases approximately 
linearly with increasing U, which means that the increase of U has little effect on the distribution ratio of the optimal Ui 
for each space radiator. Meanwhile, it can also be seen that the maximum Q increases with increasing U. However, the 
increase rate of the maximum Q is decreasing. So, there should be a threshold value for U. When U is larger than the 
threshold value, the influence of U on increasing the maximum Q may become very small. In the present case, 28 W/K 
can be taken as the threshold value because the increased amount of the maximum Q is less than 1 W when U increases 
from 28 W/K to 32 W/K.
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Figure 3. Variations of the maximum Q and the corresponding optimal Ui with U

Furthermore, the influences of the inlet temperature of the fluid, Tin, on the maximum heat transfer rate and 
the corresponding optimal distribution of total thermal conductance are also analyzed. We only change Tin, and the 
other parameters are the same as those of the case shown in Figure 1. Then, the variations of the maximum Q and the 
corresponding optimal Ui with Tin can be obtained and shown in Figure 4. It can be seen that the maximum Q increases 
approximately linearly when Tin increases from 260 K to 310 K, and there is no threshold value. Meanwhile, the optimal 
U1 slightly increases from 4.99 W/K to 5.13 W/K, while the optimal U2 also slightly increases from 4.35 W/K to 4.38 
W/K. Correspondingly, the optimal thermal conductances of the third, fourth and fifth space radiators slightly decrease. 
When Tin increases, increasing thermal conductances of the space radiators with smaller serial numbers is beneficial to 
the increase of Q. As the change amount of the optimal distribution of U is very small, it is clear that Tin is not the main 
factor that affects the optimal distribution of U.

                              

Figure 4. Variations of the maximum Q and the corresponding optimal Ui with Tin

Second, we analyze some cases with the problem shown in Eq. (4). It can be seen that Eq. (4) is a reverse problem 
of the optimization problem shown in Eq. (3). If we assume that Q = 301.39 W and the other parameters are the same 
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as those of the case in Figure 2, we can obtain that the minimum inlet temperature of the fluid, Tin, is just 280 K and 
the optimal distribution of U is the same as that shown in Figure 2. As below, we assume that n = 5, Q = 320 W, U = 20 
W/K, C = 2 W/K, εi = 0.9, Ai = 2 m2, fi = 0.8 and TS = 4 K. In this case, our numerical results show that the minimum 
inlet temperature of the fluid, 290.24 K, can be obtained when p1 = 0.2540, p2 = 0.2928, p3 = 0.3664 and p4 = 0.5216. 
Correspondingly, the optimal distribution of total thermal conductance is U1 = 5.08 W/K, U2 = 4.37 W/K, U3 = 3.86 W/K, 
U4 = 3.49 W/K and U5 = 3.20 W/K. Here, it can also be seen that the optimal thermal conductances decrease from the 
first space radiator to the last one for the same reason as that in the case shown in Figure 2.

                              

Figure 5. Variations of the minimum Tin and the corresponding optimal Ui with U

                              

Figure 6. Variations of the minimum Tin and the corresponding optimal Ui with Q

When U is a variable, we can also calculate the variations of the minimum Tin and the corresponding optimal 
distributions of U. Assume that Q = 320 W, and the results are shown in Figure 5. It can be seen that the optimal Ui 
increases approximately linearly with increasing U. Therefore, in this case, the increase of U does not have a significant 
effect on the distribution ratio of the optimal Ui. The results also show that the minimum Tin decreases monotonously 
with increasing U, and there is also a threshold value for U. When U is larger than the threshold value, the influence of 
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U on decreasing the minimum Tin may become very small. In this case, 28 W/K can also be taken as the threshold value 
because the decreased amount of the minimum Tin is less than 1 K when U increases from 28 W/K to 32 W/K.

When Q is a variable, we can assume that U = 20 W/K and obtain the variations of the minimum Tin and 
the corresponding optimal Ui. The results are shown in Figure 6. It can be seen that the minimum Tin increases 
approximately linearly with increasing Q, and there is no threshold value, either. As Tin increases, the optimal values of 
U1 and U2 increase slightly, while the optimal values of U3, U4 and U5 decrease by a small amount. Overall, we can see 
that Q is not an important factor that can affect the optimal distribution of U, either.

5. Entropy generation analysis and entransy analysis
As below, the system is analyzed with the entropy generation minimization and the entransy theory, and the 

applicabilities of both theories are also discussed.
When the concept of entropy generation is used to analyze the system, there is [17]

(24)f gd δ δS S S= +

where dS is the entropy change with time, δSf is the entropy flow rate and δSg is the entropy generation rate. For steady 
systems, dS equals zero. Therefore,

(25)g g f f-out f-inδ δS S S S S= = - = -∫ ∫

where Sf-in and Sf-out are the entropy flow rates into and out of the system, respectively. 
For the system of the series-wound space radiators, the entropy generation rate is composed of three parts,

g g-1 g-2 g-3S S S S= + + (26)

where Sg-1 is the entropy generation rate due to the convective heat transfer between the fluid and the space radiators, 
Sg-2 is that due to the conductive heat transfer in the space radiators, and Sg-3 is that due to the radiative heat transfer 
between the surface of the radiators and the space. For the ith space radiator, using Eq. (25) gives the expressions of the 
corresponding three parts of the entropy generation rate,

(27)
1-

out-
g-1- 1-

in-
d ln

i

i
i iA i

TqS A C
T T

= +∫

(28)
1-

g-2- 1-d d
i i

i i iA A
q qS A A
T T

= -∫ ∫

(29)g-3-
S

d
i

i
i iA

Q qS A
T T

= - ∫

where Tout-i and Tin-i are the outlet and inlet temperatures of the fluid, A1-i is the area of the boundary through which the 
heat from the fluid flows into the space radiator, and q is the heat flux. Therefore, we have
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(30)out-
g- g-1- g-2- g-3-

S in-
lni i

i i i i
i

Q T
S S S S C

T T
= + + = +

Then, the total entropy generation rate of the system can be obtained, 

(31)1 out- out
g g-1 1

S in- S in
ln ln

n
in ni i

ii i
i

Q T TQS S C C
T T T T
=

= == = + = +
∑∑ ∑

where Tout is the temperature of the fluid at the outlet of the last space radiator.
As there is

(32)( )in outQ C T T= -

we have

(33)g
S in

ln 1Q QS C
T CT

 
= + - 

 

When Tin is given, there is

(34)
g

S in S S outin
in

d 1 1 1 1 1 1 1
d 1

S
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Q QQ T CT T T TT
CT C

 
= + × - = - = - 

 - -

Considering that there must be Tout > TS, we can see that Eq. (34) should be positive. Therefore, Sg increases 
monotonously with increasing Tin. Obviously, the entropy generation minimization cannot give the optimal distribution 
of U for the optimization problem shown in Eq. (3).

On the other hand, when Q is given, we can obtain that

(35)( )
g

2 2
in in in in outin in in

in

d 1 1 0
d 1

S Q CQ CQ QC
QT C T CT Q T TT CT QT

CT

  = - - = = = >    -  - -

In this case, Sg decreases monotonously with decreasing Tin. Therefore, the entropy generation minimization can 
give the optimal distribution of U for the optimization problem shown in Eq. (4).

When the entransy theory [5, 15, 18-35] is used to analyze the system, the entransy balance of the system gives [15, 
18]

(36)dis f-in f-outG G G= -

where Gdis is the entransy dissipation rate of the system, Gf-in and Gf-out are the entransy flow rates into and out of 
the system, respectively. For the system of the series-wound space radiators, there are also three parts of entransy 
dissipation,
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(37)dis dis-1 dis-2 dis-3G G G G= + +

where Gdis-1 is the entransy dissipation rate of the convective heat transfer between the fluid and the space radiators, 
Gdis-2 is that due to the conductive heat transfer in the space radiators, and Gdis-3 is that of the radiative heat transfer 
between the surface of the radiators and the space. With the definition of entransy flow rate for coupled heat transfer 
processes [5], using Eq. (36) leads to the expressions of the corresponding three parts of the entransy dissipation rate for 
the ith space radiator,

(38)
1-

2 2
dis-1- in- 1- out-

1 1d
2 2i

i i i iA
G CT qT A CT= - -∫

(39)
1-

dis-2- 1-d d
i i

i i iA A
G qT A qT A= -∫ ∫

(40)dis-3- Sd
i

i i iA
G qT A Q T= -∫

Accordingly, there is

(41)( )2 2
dis- dis-1- dis-2- dis-3- in- out- S

1
2i i i i i i iG G G G C T T Q T= + + = - -

Then, with the consideration that Tout-i equals the inlet temperature of the next space radiator, the entransy 
dissipation rate of the system can be obtained,

(42)( ) ( )2 2 2 2
dis dis- in- out- S in out S1 1 1

1 1
2 2

n n n
i i i ii i iG G C T T T Q C T T QT= = == = - - = - -∑ ∑ ∑

Eq. (42) can be rewritten as

(43)

( )( )dis in out in out S

in S

in S

1
2

2

2

G C T T T T QT

QQ T QT
C

QQ T T
C
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 = - - 
 

 = - - 
 

The entransy-dissipation-based thermal resistance [15] can also be obtained,

(44)dis in S
2

1
2

G T T
R

Q CQ
-

= = -

When Tin is given, there is
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(45)dis
in S out S

d
0

d
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Obviously, Gdis increases monotonously with increasing Q. Meanwhile, Eq. (45) shows clearly that R always 
decreases with increasing Q. On the other hand, when Q is given, it is very easy to see with Eqs. (44) and (45) that 
both Gdis and R always decrease monotonously with decreasing Tin. Therefore, both the extremum entransy dissipation 
principle and the minimum entransy-dissipation-based thermal resistance principle are applicable for optimizing the 
problems shown in Eqs. (3) and (4).

In the cases calculated in Section 4, C = 2 W/K and TS = 4 K. Therefore, when Tin is given and assumed to be 280 
K, the variations of Sg, Gdis and R with Q can be calculated and shown in Figure 7. It can be seen that both Sg and Gdis 
increase with increasing Q, while R decreases monotonously. When Tin is a variable, the variations of the maximum Q 
and the corresponding Sg, Gdis and R can also be obtained and shown in Figure 8. With the increase of Tin, the results 
show that the maximum Q and the corresponding Sg and Gdis all increase, while R decreases.

                              

Figure 7. Variations of Sg, Gdis and R with Q for fixed Tin

                              

Figure 8. Variations of the maximum Q and the corresponding Sg, Gdis and R with Tin
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On the other hand, when Q is fixed and assumed to be 320 W, the variations of Sg, Gdis and R with Tin can be 
calculated and shown in Figure 9. It can be found that all three parameters decrease with decreasing Tin. When Q is a 
variable, the variations of the minimum Tin and the corresponding Sg, Gdis and R can also be calculated and shown in 
Figure 10. With the increase of Q, the minimum Tin and the corresponding Sg and Gdis all increase, while R decreases.

                              

Figure 9. Variations of Sg, Gdis and R with Tin for fixed Q

                              

Figure 10. Variations of the minimum Tin and the corresponding Sg, Gdis and R with Q

Obviously, the theoretical analysis can be verified by the numerical cases above. It can be concluded that the 
entropy generation minimization is not always applicable to the optimization problems discussed in this paper, but the 
entransy theory is. Similar conclusions have also been obtained when the entransy theory [5, 15, 21-23] was used to 
analyze or optimize some other systems [24-28], including heat-work conversion systems [24, 25] and heat transfer 
systems [28].
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6. Conclusions 
In this paper, series-wound space radiators are analyzed and optimized to improve the heat transfer performance. A 

physical and mathematical model for the heat transfer optimization is obtained. With the model, the distribution of total 
thermal conductance of the system is optimized to maximize the heat transfer rate for fixed inlet temperature of the fluid 
or minimize the inlet temperature of the fluid for fixed heat transfer rate. Some numerical cases with five space radiators 
are presented, and the corresponding optimal distributions of total thermal conductance are successfully obtained.

When the inlet temperature or the heat transfer rate is fixed, the influence of total thermal conductance on the 
optimal distribution is discussed. It is found that the value of total thermal conductance has little effect on the optimal 
distribution. Furthermore, there are threshold values for the total thermal conductance. When the total thermal 
conductance is larger than the threshold value, the influence of total thermal conductance on increasing the maximum 
heat transfer rate or decreasing the minimum inlet temperature may become very small. When the total thermal 
conductance is fixed, it is found that neither the inlet temperature of the fluid nor the heat transfer rate is the main factor 
that affects the optimal distribution of total thermal conductance.

The entropy generation minimization and the entransy theory are also used to analyze the system. The expressions 
of the entropy generation rate, the entransy dissipation rate, and the entransy-dissipation-based thermal resistance are 
derived. Both the theoretical analysis and the numerical results show clearly that the extremum entransy dissipation 
rate and the minimum entransy-dissipation-based thermal resistance always lead to optimal results, while the entropy 
generation minimization does not always. 
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