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Abstract: Hybrid organometallic perovskites such as FAPbI3 (formamidinium lead iodide) and FASnI3 (formamidinium 
tin iodide) are recognized as promising materials for the next generation of high-efficiency solar cells. FAPbI3 is 
particularly valued for its stability and excellent optoelectronic properties. However, the toxicity of lead and the 
resulting environmental concerns drive the search for alternatives like FASnI3, where tin, a less toxic and more 
abundant element, replaces lead, which is the objective of this study. The lead-free structure simulated using SCAPS-1D 
software is as follows: FTO/TiO2/FASnI3/Spiro-OMeTAD/Ag. We opted for TiO2 as the ETL due to its wide bandgap 
(~3.2 eV for the anatase phase), which effectively blocks holes and prevents their recombination with electrons, thus 
promoting better charge separation. Moreover, the favorable energy level alignment of TiO2 with the perovskites 
facilitates the transfer of electrons to the silver (Ag) electrode. For the HTL, we chose Spiro-OMeTAD, whose valence 
band level is well aligned with that of the perovskites, making it easier to extract holes to the upper silver electrode.  
Using the SCAPS-1D simulator, we then compared the electrical and optical properties of the devices, focusing on key  
parameters such as short-circuit current density (Jsc), open-circuit voltage (Voc), fill factor (FF), and power conversion  
efficiency (PCE). The best results obtained after optimizing the aforementioned parameters are Jsc of 30.65 mA/cm2 
, Voc of 0.8469 V, FF of 86.63%, and PCE of 22.49%. The research presented here shows that optimizing several 
parameters can achieve a power conversion efficiency (PCE) of 22.49%. Additionally, the structure studied in this 
article could be a good candidate for future research on lead-free perovskite solar cells.

Keywords: lead-free perovskite solar cell, SCAPS-1D, thickness, defect density, power conversion efficiency, FASnI3, 
FAPbI3

Abbreviation
PCE   Power Conversion Efficiency
Jsc    Short-Circuit Current Density
Un    Electron recombination rate
Up    Hole recombination rate
Gn    Electron generation rate
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Gp    Hole generation rate
Jn    Electron current density
Jp    Hole current density
q    Elementary charge (charge of an electron or hole)
p(x)   Hole concentration as a function of position (x)
n(x)   Electron concentration as a function of position (x)
μn    Electron mobility
μp    Hole mobility
E(x)   Electric field as a function of position (x)
Dn    Electron diffusion coefficient
Dp    Hole diffusion coefficient
ε    Permittivity of the material
pnt(x)   Trapped hole concentration as a function of position (x)
TEC   Trapped electron concentration
N (x)D
+    Concentration of ionized donor atoms as a function of position (x)

NA
−     Concentration of ionized acceptor atoms

Spiro-OMeTAD  2, 2', 7, 7'-Tetrakis(N,N-di-p-methoxyphenylamine)-9, 9'-spirobifluorene
TiO2   Titanium Dioxide
ETL   Electron Transport Layer
HTL   Hole Transport Layer
FTO   Fluorine-doped Tin Oxide
Ag    Silver
FF    Fill Factor
Voc   Open Circuit Voltage

1. Introduction
Solar energy is now asserting itself as a fundamental pillar of the energy transition on a global scale, while 

photovoltaic technologies have undergone a meteoric evolution over the decades [1]. Silicon-based solar cells, which 
have long reigned supreme in the market, have set high standards for performance and reliability [2]. Nevertheless, 
their manufacturing cost, combined with a certain structural rigidity, reveals certain constraints. To overcome these 
limitations, thin-film cells such as those incorporating copper, indium, gallium and selenium (CIGS) [3], have emerged 
as an alternative of choice. They are characterised by their flexibility and lightness, although these advantages 
sometimes come at the expense of energy efficiency and longevity [4]. In this context, perovskites represent the latest 
major breakthrough in the field of photovoltaics. These innovative materials promise high performance. Compared to 
methylammonium-based perovskites (MAPbI3), FAPbI3 stands out with a narrower bandgap (~1.48 eV) [5], allowing 
for enhanced absorption of solar light within the visible spectrum [6]. Solar cells made from FAPbI3 exhibit superior 
durability compared to those based on MAPbI3, which degrade more quickly under harsh environmental conditions. 
The incorporation of the formamidinium cation (FA) significantly enhances their resistance to moisture and heat. 
Additionally, FASnI3 is characterized by a bandgap of approximately 1.3 eV [7], lower than that of FAPbI3, enabling 
more efficient absorption in the longer wavelengths of the visible spectrum [8]. Due to its outstanding optical properties 
and reinforced stability, FAPbI3 [9] is emerging as a leading material for the next generation of perovskite solar cells, 
with continually improving efficiencies [10].

Perovskite solar cells (PSC) have created extraordinary joy in the scientific community due to their high efficiency, 
which increased from 3.8% to 25.7%, in a relatively short period between 2009 and 2021 [11]. Thanks to these very 
interesting properties, these characteristics make it an essential link for improving the performance of thin-film solar 
cells. The general formula of perovskite material is ABX3, where A is a monovalent organic, inorganic or mixed cation, 
B is the divalent metal cation and X is a halogen [12]. However, the presence of lead (Pb) in this material constitutes a 
major obstacle. Researchers are studying different materials to replace lead. Among these, we can cite Sn, Sb, Bi, Ag 
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and Cu, which have the same composition as Pb and an oxidation state +2 [13]. Research focuses on Sn-based PSCs 
due to their narrow bandgap (1.2-1.4 eV) [14] which covers a wider range of solar spectrum. However, they are not 
stable due to the rapid oxidation of the Sn cation, from Sn2+ to Sn4+ in the presence of air [15]. The researchers increased 
the stability by adding SnF2 [16], which reduced the Sn4+ caused by oxidation. Furthermore, it is revealed that Sn4+ is 
reduced to Sn2+ by mixing Sn powder in SnI2 [17]. In this paper, a numerical simulation of the PSC structure was carried 
out to compare the performance of FAPbI3 and FASnI3 perovskites using a solar cell capacitance simulator (SCAPS-1D). 
Cell performance is optimized by analyzing the effect of absorber thickness, electron transport layer (ETL) and hole 
transport layer (HTL), as well as their donor densities and respective acceptors of the ETL, HTL layers and the active 
layer and finally the density of defects in the absorbent layer. After optimization of the parameters we obtained for the 
perovskite with Pb (FAPbI3): PCE = 26.65%, Voc = 1.7945 V, Jsc = 26.838236 mA/cm2 and FF = 22.12% and that 
without Pb (FASnI3): PCE = 22.49%, Voc = 0.8469 V, Jsc = 30.65 mA/cm2 and FF = 86.63%. The J-V current-voltage 
characteristic curve and the quantum efficiency (QE) curve will be optimized.

2. Methodology
The digital simulation of solar cells is essential, not only for the interpretation of measurements on more complex 

structures but also for choosing and optimizing the latter. Simulation programs require solving basic semiconductor 
equations such as Poisson’s equation and electronic continuity equations [18-19]. these equations are solved numerically 
as shown below.

Here are the continuity equations for electrons and holes:
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The Poisson equation is written as follows:
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Where Gn, Gp, Un, Up, Jn and Jp μn, μp, Dn and Dp are respectively the rates of photogenerated electron-hole pairs, 
the recombination rates of electrons and holes, the current densities of electrons and holes, the mobilities of electrons 
and holes, as well as the diffusion constants of electrons and holes. Free electrons and holes are represented by p and 
n respectively, q is the electronic charge, and v is the electrostatic potential. In this article, the structures of perovskite 
solar cells (PSC) used are FTO/TiO2 /FASnI3 /Spiro-OMeTAD/Ag and FTO/TiO2 /FAPbI3 /Spiro-OMeTAD/Ag. Here, 
FTO is used as forward transparent conduction oxide (TCO), FAPbI3 and FASnI3 are used as absorbers for leaded 
and lead-free perovskites respectively, TiO2 is used as ETL, Spiro-OMeTAD is used as HTL and Ag is used as a back 
contact. Figure 1a shows the basic structure of the device, while Figure 1b depicts the energy bands for all layers of the 



Advanced Energy Conversion MaterialsVolume 5 Issue 2|2024| 311

PSC. Light incident on the ETL side of the structure is absorbed by the lead-free perovskite material, and from there 
electrons and holes flow from the absorber to ETL and HTL, respectively. We then compared these results.The various 
simulation parameters for the FASnI3 and  FAPbI3 cells are shown in Table 1.
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Figure 1. The basic structure of the perovskite (a) and the energy bands for all layers of the PS

Table 1. simulation parameters

parameters Spiro: Ome-TAD 
[13, 25, 27]

FASnI3

[13, 28]
FAPbI3

[21-26]
TiO2

[20, 27, 29]
FTO 

[12, 27]

Thickness (µm) 0.2 1 0.8 0.01 0.5

Bandgap (eV) 3 1.41 1.5 3.2 3.5

Electron affinity (eV) 2.2 3.52 4 4.2 4

Dielectric permittivity 3 8.2 6.6 9 9

CB effective density of states (1/cm-3) 2.2 × 1018 1018 1.2 × 1019 2.1 × 1018 2.2 × 1018

VB effective density of states (1/cm-3) 1.8 × 1019 1018 2.9 × 1018 1019 1.8 × 1019

Electron thermal velocity (cm/s) 107 107 107 107 107

Hole thermal velocity (cm/s) 107 107 107 107 107

Electron mobility (cm2 /V.s) 2.1 × 10-3 22 2.7 20 20

Hole mobility (cm2/V.s) 2.16 × 10-3 22 2.8 10 10

Donor density ND (1/cm3) 0 0 0 1021 2 × 1019

Acceptor density NA (1/cm3) 1021 1021 1017 0 0

Defect parameters

Defect type Neutral Neutral Neutral Neutal 

Capture cross section electrons (cm2) 10-15 2 × 10-15 2 × 10-15 10-15

Capture cross section holes (cm2) 10-15 2 × 10-15 2 × 10-15 10-15

Energetic distribution Single Gaussian Gaussian Single 

Energy level with respect to eV 0.1 0.5 0.6 0.6

Characteristic energy (eV) - 0.1 0.1 -

Total defect density Nt (cm-3) 1015 10-14 10-14 1014

Metal work function (eV) 5.125
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3. Results and discussions
3.1 Effect of the thickness of the FASnI3 and FAPbI3 absorbers

To analyze the effect of the absorber on the PSC performance, we varied the thickness of the absorber from 100 nm 
to 1,000 nm. It can be noted that the short-circuit current Jsc and power conversion efficiency PCE in Figures 2a and 2c 
respectively have the same form of evolution. The Jsc increases from 14.05 mA/cm2 to 29.98 mA/cm2 for FASnI3 and 
12.26 mA/cm2 to 27.62 mA/cm2 for FAPbI3. This increase in Jsc and PCE is due to better absorption of photons, which 
increases the carrier generation rate. We note a decrease in the open circuit voltage Voc (Figure 2b) from 2.7 V to 1.47 
V then an increase in the filling factor FF (Figure 2d) from 35.83% to 60.35% for FAPbI3. The decrease in Voc is due 
to the increase in series resistance with the increase in the thickness of the absorber. The characteristics of Voc and FF 
(Figures 2b and 2d respectively) remain constant for FASnI3 whatever the thickness value. The open circuit voltage (Voc) 
and the form factor (FF) remain constant despite the increase in the thickness of the FASnI3 absorption layer , which is 
probably explained by a saturation of the effects related to light absorption, combined with recombination mechanisms 
that remain unchanged. In other words, the thickness of the absorption layer is already sufficient to capture all available 
photons, and any further increase in this thickness does not bring any improvement in the performance of the device, 
according to the parameters analyzed.
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Figure 2. PSC performance as a function of absorber thickness (a) Jsc, (b) Voc, (c) PCE and (d) FF

3.2 Effect of the thickness of the ETL electron transport layers (TiO2) and the HTL hole transport 
layers (Spiro-OMeTAD)

TiO2 is used as ETL and Spiro-OMeTAD is used as HTL. Because of its exceptional electronic transmission 
capacity and long-term stability in PSCs, titanium dioxide (TiO2) is frequently used as an electron transport layer (ETL) 
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in perovskite solar cells (PSC) [30]. The thickness of the TiO2 electron transport layer (ETL) can be used to control 
light interference within the cell structure from an optical point of view [31]. We found that the thickness of the ETL 
and HTL layers have no effect on cell performance (Figures 3 and 4). The photogeneration of carriers in this layer is 
minimal because of their very high gap of 3.2 eV for TiO2 and 3 eV for  Spiro-OMeTAD compared to those of the 
absorbing layer which is 1.41 eV for FASnI3 and 1.5 eV for FAPbI3. These layers are used to make the junction with the 
absorber.

2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

0           20          40          60           80         100
ETL TiO2 thickness (nm)

V
oc

 (v
)

FASnI3
FAPbI3

FASnI3
FAPbI3

34

32

30

28

26

24

22

20
0           20          40          60           80         100

ETL TiO2 thickness (nm)

Js
c 

(m
A

/c
m

2 )

30

25

20

15

10

5

0
0           20          40          60           80         100

ETL TiO2 thickness (nm)

PC
E 

(%
)

FASnI3
FAPbI3

100

90

80

70

60

50

40

30

20

10
0           20          40          60           80         100

ETL TiO2 thickness (nm)

FF
 (%

)

FASnI3
FAPbI3

(b)(a)

(d)(c)

Figure 3. PSC performance as a function of ETL thickness (a)Voc, (b) Jsc, (c) PCE and (d) FF
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Figure 4. PSC performance as a function of HTL thickness (a) Jsc, (b) Voc, (c) PCE and (d) FF

3.3 Effect of NA acceptor density (cm-3) of the absorbent layer
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Figure 5. Effect of acceptor doping in absorber on device performance (a) FF, (b) Voc, (c) PCE & (d) Jsc

Figure 5 illustrates the evolution of photovoltaic (PV) characteristics as a function of the doping concentration 
in the absorbing layers, which varied from 1014 cm-3 to 1021 cm-3. It was observed that the FF, Jsc, and Voc remain 
unaffected by NA doping, leading to a rapid increase in the PCE of FASnI3 from 9.20% to 20.19%. This demonstrates 
that PCE improves when the absorbing layer is heavily doped (NA = 1021 cm-3), a result attributed to enhanced photon 
absorption. However, for doping levels exceeding 1017 cm-3, the PCE of FAPbI3 gradually decreases. In Figure 5b, 
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the sudden rise in open-circuit voltage (Voc) observed when the defect density reaches 1016 cm-3 is explained by a 
significant reduction in non-radiative recombinations and a marked improvement in the electronic properties of the 
absorbing layer. This development allows for better accumulation and more efficient collection of minority carriers, 
thereby contributing to an overall improvement in the system’s performance.

3.4 Effect of donor density ND (cm-3) ETL (TiO2)

To carry out the effect of the ETL layer we varied the donor density of 1014 cm-3 to 1021 cm-3. As a result, we note 
that the efficiency of the device reaches a maximum value of 26.65% and 22.49% for FAPbI3 and FASnI3 respectively 
at a doping density of 1014 cm-3, as shown in Figure 6a. In addition, VOC, JSC and FF vary very little as indicated in 
Figure 6 (b, c, d). Taking into account the manufacturing time, 1017 cm-3 was chosen for the ETL layer.

 
 

1013           1015           1017           1019            1021

ETL TiO2 ND (cm-3)

PC
E 

(%
)

5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0

1013           1015           1017           1019            1021

ETL TiO2 ND (cm-3)

V
oc

 (v
)

30
28
26
24
22
20
18
16
14
12
10

FASnI3
FAPbI3

FASnI3
FAPbI3

100
90
80
70
60
50
40
30
20
10
0

FF
 (%

)

40

35

30

25

20

15

10

5

0

Js
c 

(m
A

/c
m

2 )

FASnI3
FAPbI3

1013           1015           1017           1019            1021

ETL TiO2 ND (cm-3)
1013           1015           1017           1019            1021

ETL TiO2 ND (cm-3)

FASnI3
FAPbI3

(d)(c)

(b)(a)

Figure 6. Influence de la densité de donneur de la couche ETL sur les performances du dispositif (a) PCE, (b) Voc (c) FF & (d) Jsc

3.5 Effect of NA acceptor density (cm-3) HTL ( Spiro-OMeTAD)

The acceptor density of the HTL layer varies from 1014 cm-3 to 1021. We see a progressive increase in the PCE 
of both FASnI3 and FAPbI3 cells (Figure 7c). This is due to the increase in the conductivity of the solar cells and also 
the fact of reducing the series resistance. We conclude that the optimal value to obtain a maximum PCE of the HTL 
layer is 1021 cm-3. In Figure 7b the sudden increase in the open circuit voltage (Voc) observed at a defect density of 
1017 cm-3 in FASnI3 is attributed to a reduction in recombination losses, improvements in electronic properties, and an 
effect of recombination saturation. These combined factors enhance the efficient separation and collection of charge 
carriers, leading to an increase in Voc. The sudden decrease in the factor of form (FF) of FASnI3 shown in Figure 7d 
at a acceptor density of 1017 cm-3 is primarily attributed to an increase in non-radiative recombination, higher internal 
resistances, and charge carrier trapping. These combined factors result in a loss of efficiency in the collection of carriers, 
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thereby reducing the overall FF of the device.
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Figure 7. Influence of the acceptor density of the ETL layer on the performance of the device (a) Jsc, (b) FF (c) PCE & (d) Voc 

3.6 Effect of defect density Nt (cm-3) of the absorbent layer

Defects are inevitable in the absorbent layers, and they exist in the volume and on the surface, point defects such as 
gaps, interstitial defects [32]. Defects can cause deep trapping sites in the absorbent layer of the device, increasing the 
recombination rate [33]. When the defect density is 1014 cm-3, the cell performance is improved and takes the maximum 
values. The effects of absorber doping defect density on device performance are shown in Figure 8. Figure 8a shows the 
effect on the JSC current density of the cells. Figure 8b shows the effect on the cell form factor FF. Figure 8c shows the 
effect on the PCE and figure 8d shows the effect of the absorber doping defect density on the short-circuit voltage VOC. 

In Figure 9, the material FASnI3 has a lower band gap than FAPbI3, allowing it to absorb photons with lower 
energy, corresponding to longer wavelengths (in the near-infrared), which are less efficiently absorbed by FAPbI3. This 
extended absorption capability of FASnI3, covering a broader portion of the solar spectrum, promotes an increased 
generation of charge carriers (electrons and holes). As a result, when the applied voltage increases, the current density 
(J) generated by FASnI3 exceeds that of FAPbI3, due to greater production of charge carriers resulting from this 
enhanced light absorption. In FAPbI3, non-radiative recombination of charge carriers is more significant, leading to a 
more rapid loss of current as the voltage increases. In contrast, FASnI3 may possess electronic properties that limit these 
recombinations at higher voltages.
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Figure 9. Characteristic curves of quantum efficiency versus wavelength(a), J-V characteristic curves of FASnI3 and FAPbI3 PSCs(b) 
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Table 2. Comparative parameters of FASnI3 and FAPbI3 perovskite solar cells

VOC (V) Jsc (mA/cm2) FF (%) PCE (%)

FASnI3 0.8469 30.65 86.63 22.49

FAPbI3 4.3481 27.09 22.59 26.61

Reference Type of Perovskite Interface Materials Efficiency (%)

[34] FAPbI3 TiO2/Spiro-OMeTAD 24.4

[35] FAPbI3 TiO2/HTM 23.0

[36] FAPbI3 TiO2/Spiro-OMeTAD 22.6

our work FAPbI3 TiO2/Spiro-OMeTAD 26.61

our work FAPbI3 TiO2/Spiro-OMeTAD 22.49

4. Conclusion
At the end of this article, we conclude that the one-dimensional solar cell simulation software SCAPS-1D used to 

design and simulate lead-free PSC using FASnI3 as absorbent material compared to PSC with lead FAPbI3 has proven 
to be very effective. The results obtained demonstrated that the thickness, donor and acceptor density of FASnI3 have 
an impact on the performance of the device. We obtained the following values   during the simulation: V oc = 0.8469 
V, Jsc = 30.65 mA/cm2, FF = 86.63% and PCE = 22.49%. The results of our simulations reveal that FAPbI3 stands out 
for its remarkable power conversion efficiency (PCE), thanks to its excellent optoelectronic properties and increased 
stability. However, the substitution of lead with tin in FASnI3 represents a promising alternative for the design of more 
environmentally friendly solar cells, although performance challenges with this material remain.

The optimization of several parameters, notably the thickness and doping of the electron transport layer (ETL) and 
hole transport layer (HTL), as well as the defect density in the absorber layer, allowed us to achieve a PCE of 22.49% 
for the FASnI3 structure, demonstrating that this lead-free technology could compete with the performance of lead-based 
perovskites (Table 2). These results open promising perspectives for future research, particularly in improving tin-based 
materials to enhance their stability and efficiency. This approach could provide a sustainable alternative to lead-based 
solar cells while maintaining high energy yields.
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