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Abstract: Within the framework of the kinetic theory, the interaction of systems of quasiparticles and the exchange of 
quasiparticles of different types between layers of a plane-parallel solid structure are taken into account. The reasons 
influencing the propagation of differential fluxes of quasiparticles near each boundary of the structure are indicated. 
These include not only the appearance of a force field, in particular, electric е∇φ(х) and thermal ∇Т(х), fields near 
the boundary in equilibrium and its modification when equilibrium is disturbed, but also a change in the coordinate 
and angular dependence of the relaxation length of fluxes le(x, k, Ω) in the same region. Some modification of the 
distribution of characteristic thermodynamic quantities in the inhomogeneous region of the layer in comparison with 
the homogeneous layer also affects the propagation of fluxes. The necessity of a self-consistent solution of the kinetic 
boundary value problem of the joint propagation of differential fluxes of quasiparticles-a system of equations and 
integral boundary conditions-is substantiated. Near the boundary and in another inhomogeneous region of the layer 
thickness, as well as in the thin layer as a whole, in quasiparticles systems, it is proposed to use a specific coordinate 
distribution of the flux density of thermodynamic quantities over the structure thickness, which is mutually self-
consistent with the propagation of the corresponding quasiparticles fluxes. The main conclusion of this work: when 
developing modern multilayer solid-state structures, especially with thin layers, it is necessary to use the kinetic theory, 
which adequately takes into account the physical picture that occurs not only in homogeneous and inhomogeneous 
regions of the thickness of each layer, but also at all boundaries of the structure. 
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1. Introduction
Modern solid-state structures, in particular solar cells [1], photodetectors [2], light-emitting diodes [3], lasers [4] 

and many other electronic devices [5], usually consist of several solid-state layers of different atomic composition or 
phase structures and doping. Such layers have different physical properties. An optimized structure for any purpose is 
characterized by a set of material properties of its layers, their location in the structure and thickness. Each layer has its 
own specific thickness, mutually consistent with other layers, in its structure, possibly micron, submicron, nano-scale, 
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or even atomic.
Structures are usually created in a monolithic “multi-layer” and are generally heterogeneous environments. Thus, 

modern structures can contain different solid-state materials with their own specific electrical, optical, thermal, etc. 
properties. The boundaries between layers (solid materials) also have their own specific properties. These boundaries 
can have a significant effect on the properties of the solid layers that make up the structure and on the physical 
characteristics of the structure as a whole, especially if the structure contains thin layers. The efficiency of functioning 
and the cost of the structure and the electronic device as a whole depend on the successful choice of the initial solid-
state materials, the technological perfection of the layers grown in the structure and the boundaries between them (and 
contacts), as well as on the correct choice of the optimal dimensions of the layer thickness.

Any solid layer is a complex quantum mechanical object that contains a huge variety of particles of different types. 
An even more complex multiparticle object is an inhomogeneous (multilayer) monolithic structure. When studying 
certain properties of a layer or structure (for example, electrical ones), one “main” system is usually distinguished, (in 
particular, an electron-hole one), which is also many-particle. To simplify, from a many-particle theoretical description, 
one passes to a one-particle physical and mathematical theory (for example, [6]) with a qualitative account of statistics. 
Along with the electron-hole system, it is similarly justified to distinguish some other systems of quasiparticles of solid 
materials [7-10]: phonon, photon, and others, whose role in the phenomenon under study is important. They also use 
their own one-particle theoretical description and statistics.

The functioning of many electronic devices, including solar cells, light-emitting diodes, lasers, thermos-elements 
and others, is based on the interaction of systems of charge carriers, photons, phonons, and quasiparticles of other types, 
which occurs in the layers of a solid-state structure. Thus, in a solar cell, photons that have entered (possibly scattered) 
into the layers of the structure become excess internal radiation, which excites the electron and/or hole systems in the 
layers, as well as (directly and indirectly) systems of phonons of acoustic and optical branches and, possibly, other 
systems. In the layers, there is a decrease in these fluxes of photons and the energy transferred by them, which leads to 
the appearance of excess (no equilibrium) fluxes of charge carriers and fluxes of quasiparticles of other types. In this 
case, as a result of a decrease in a specially “technologically” created internal electric potential, which is located in 
one or some layer(s) of the structure (or at the boundary), an “external” electric potential appears at the contacts of the 
cell structure. If the contacts are connected, for example, through a payload, then a current appears in the circuit. The 
magnitude of this current depends on many factors, including the mode of operation of the solar cell (“short circuit”, 
under some load or “no-load” [5, 7])

In reality, technological methods create a certain inhomogeneous region in the structure, for example, a p-n-junction 
in a layer, or a heterojunction, or simply a contact of solid-state layers, or a combination of them. And the propagation 
of internal elementary multidirectional (differential) equilibrium fluxes of charge carriers [11], phonons, photons 
and quasiparticles of other types [12] is created due to changes in the conditions of their propagation in and near an 
inhomogeneous region, for example, near a contact (boundary) or p-n-junction, internal force fields. These fields, in 
particular electric [10] and thermal [12], act not only on equilibrium, but also on no equilibrium (in particular, excess) 
quasiparticles. The appearance of excess fluxes of charge carriers and quasiparticles of other types (directed towards and 
away from the local inhomogeneous region) changes the magnitude of the internal fields. In this case, a certain potential 
difference arises at the contacts of the structure.

In the layers of the LED structure, excited by an external electric potential difference at its contacts, the system of 
injected electrons emits photons (as well as phonons and possibly other types of quasiparticles), some of which go out 
[5]. In this case, the energy from the system of electrons is transferred to streams of photons and of quasiparticles of 
other types. Obviously, the more excitation is transmitted for the intended purpose of the structure, the more efficiently 
it functions. Due to the difference in the physical properties of various solid-state materials from which it is possible to 
make (of different thicknesses) layers of a structure for one purpose or another, the fractions of the useful redistribution 
of primary excitation in them can differ significantly (as well as the cost of the structure as a whole).

Of course, in order to construct an optimized structure for all layers of which it will consist (in atomic composition 
or phase structure, in the degree of their alloying, i.e. in the physical properties of solid-state materials in general, 
as well as in the thickness of each layer and properties boundaries), it is necessary to understand well, or at least 
adequately, the whole physical picture taking place in the structure, including around it and on its boundaries. It is 
difficult to achieve sufficiently deep optimization within the framework of the drift-diffusion theory [5, 7], especially if 
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the structure contains thin layers and many boundaries. 
Although in this case for a specific structure it is possible to adjust the parameters (diffusion coefficient, mobility, 

diffusion length, surface recombination rate, the thickness of the “space charge region”, “height of the potential 
barrier, etc.) to the experimentally obtained characteristics of this structure, it is rather difficult to explain the reasons 
for choosing this particular set of parameters. This means that the above description is not entirely adequate, it is only 
approximate, and largely based on previously experimentally determined (within the framework of the same theory) 
data.

Previously, within the framework of the kinetic theory, it was shown that many of these parameters depend not 
only on the properties of a particular layer of a solid-state structure, but also on the presence of adjacent layers of the 
structure, directly on the properties of its boundaries and on the thickness of the structure layer. These factors are not 
taken into account in the drift-diffusion theory. It was also pointed out that the properties of a layer in a structure, 
especially a thin one, may differ in many respects from the properties of an individual layer of the same atomic 
composition, structure and size. This is due to the difference in the structure and state of the layer boundaries in these 
cases and the absence of exchange of charge carriers and other quasiparticles in the case of studying the properties of 
an individual layer. As a result, the experimental data on the properties of an individual layer may differ markedly from 
the properties of the layer in the structure. As shown above, it is often necessary to take into account the interaction of 
quasiparticles of different types in the layers of the structure, at least within the framework of the kinetic theory.

The interaction of systems of quasiparticles inherent in a solid medium is carried out by the propagation and 
scattering of fluxes of different kinds of quasiparticles. The interaction of charge carriers and other quasiparticles in the 
uniform thickness of each layer and at its boundaries usually differs significantly, both within one system and between 
systems of quasiparticles of different types [13-15]. The exchange of quasiparticles between the layers of the structure, 
carried out by multidirectional elementary (differential) fluxes of quasiparticles across the boundary in both directions 
from it, provides the mutual influence of the layers on their physical properties near the boundary and in equilibrium, 
and when it is violated. Note that the depth of the region of the layer at which the influence of the boundary is still 
significant in various systems of quasiparticles can differ markedly. It depends on both internal and external physical 
conditions. Obviously, the properties of the boundary itself, due to its composition, configuration, and state, affect the 
exchange of quasiparticles between the layers and, in general, the physical picture that occurs near the boundary. This 
must be taken into account in the R & D of solid structures, especially multilayer and, moreover, containing thin layers.

The previously developed kinetic theory [13-17], which takes into account the joint propagation of differential 
fluxes of quasiparticles of different types (the most significant under specific conditions) in all layers of the structure, 
along with the corresponding computer simulation, in principle, allows you to optimize the design of an effective 
plane-parallel structure, taking into account the properties of the selected specific initial materials and the resulting 
properties of the boundaries between them. However, for a more realistic description of the physical picture occurring 
near the boundaries of each solid layer of the structure, it is also necessary to take into account some circumstances 
of a statistical and spatial (geometric) nature. A deeper description of the joint propagation of differential fluxes of 
quasiparticles of different types requires a larger number of parameters and characteristics for each layer of the structure 
and boundaries. Due to the significant difference in the physical nature of quasiparticles of different types, this is 
obvious.

For simplicity, here we mainly consider a system of charge carriers in isotropic adjacent solid layers of uniform 
in thickness. A detailed study of the physical picture of the propagation of differential fluxes of charge carriers near the 
boundary and across it in the framework of the kinetic theory will allow deeper optimization of the design of a plane-
parallel solid structure. Earlier, in the kinetic theory of contact phenomena, the configuration and state of the boundary 
were either not taken into account at all, or taken into account very approximately [5, 7]. 

In the case of weak interaction of systems, the properties of a plane boundary on a kinetic scale can be largely 
characterized by the scattering probabilities of differential fluxes of charge carriers P(k, k*), where k is the wave vector 
of the differential flux incident on the boundary, and k* is a certain wave vector of the flux scattered by the boundary 
[13]. Obviously, the incident flux is directed “to the boundary”, and the scattered one-“from the boundary”, either in 
the considered layer or in the adjacent one. Similarly, on the same boundary, the fluxes are scattered in the neighboring 
(adjacent) layer, which has its own properties. If the interaction of systems of quasiparticles at the boundary is strong, 
then to describe the scattering processes it is necessary at least to introduce a matrix composed of Pij(ki, kj) [13], where 
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the wave vectors ki and kj can belong to quasiparticles of different types.
The division of differential fluxes in all considered systems into fluxes “to the boundary” and “from the boundary”, 

for example, q+(x, k, Ω) and q-(x, k, Ω), is of fundamental importance. Since the boundary probabilities P(k, k*) differ 
from the “volume” scattering probabilities in the homogeneous layer thickness, symmetric in the isotropic medium, 
this circumstance should on a miscellaneous effect the character of the spatial distribution of differential fluxes directed 
“towards the boundary” and “away from the boundary”, at least near the border [3], as well as on the interrelated 
consequences of this.

Within the framework of the kinetic theory, the exchange of charge carriers and quasiparticles of other types, which 
have different energies εi associated with the wave vector ki, is carried out by their differential fluxes incident on the 
boundary at different angles. The integral (total) fractions of flows reflected from the boundary, “lost” at the boundary, 
and passed through the boundary depend not only on the kinetic properties of the layer thickness (where fluxes are 
mainly formed), but also on the nana-scale configuration and state of the boundary. Obviously, the configuration and 
state of the boundary are determined both by the atomic properties of the materials of neighboring layers and the mutual 
orientation of the crystal axes, and in many respects by the technology of growing the structure, including the possible 
intermediate processing of the boundary.

In an inhomogeneous medium of a structure, multidirectional differential fluxes of charge carriers (and 
quasiparticles of other types) in equilibrium integrally form a macroscopic distribution of statistically interrelated 
electric-еφ(х) and chemical potential ξ(х) (contained in the distribution function), as well as other thermodynamic 
quantities the thickness of the structure, including near the boundaries of each layer. We recall that there is no coordinate 
dependence of the distribution function of quasiparticles in ki or energy εi(ki) in the thickness of a homogeneous layer [8].

However, it should be taken into account that in different systems of quasiparticles, the layer thickness can be 
considered uniform at different distances from the boundary, and these distances depend on the physical conditions. 
And in a layer thin for a certain system of quasiparticles, even with homogeneous doping, its homogeneity may not 
be at all. If the interaction of systems in such a layer is strong, then this should also affect the distribution of fluxes 
of quasiparticles of other types, and with this, the distribution of thermodynamic quantities. Obviously, in complete 
equilibrium, the integral fluxes of charge, spin, mass and other quantities, as well as the integral fluxes of energy, 
entropy and other thermodynamic quantities over systems, should be zero (although the differential-elementary fluxes 
of the corresponding quantities are almost never equal to zero under normal conditions). This circumstance determines 
the system of functional equations, the joint solution of which determines the distribution of еφ(х), ξ(х) and other 
thermodynamic quantities in different systems over the thickness of the structure.

The coordinate dependence of the distribution function in quasiparticle systems appears in the thickness of an 
inhomogeneous layer due to different conditions for the propagation of fluxes through the layer thickness, associated 
with a change in the nature of scattering and propagation of fluxes. For the same reasons, this dependence also appears 
near the boundary, only the nature of the propagation of fluxes and their scattering (taking into account their exchange at 
the boundary) differs from a homogeneous and/or inhomogeneous layer thickness. Integral balancing of the distribution 
differential fluxes of quasiparticles qi

+(x, ki, Ω) and qi
-(x, ki, Ω), energy and entropy fluxes carried by them, in the entire 

plane-parallel layer of the finite thickness (over any of its sections Qj
+(х) = Qj

-(х)), leads to the fact that the equilibrium 
distribution function of charge carriers fo(x, k, Ω), as well as the interdependent differential fluxes q+(x, k, Ω) and q-(x, 
k, Ω), depending on the coordinate and direction of propagation. And since the relaxation length of fluxes, comparable 
to the mean free path of charge carriers le, depends through the collision integral [8] on fo(x, k, Ω) (and the distribution 
of differential fluxes in other systems of quasiparticles), it also has a coordinate and angular dependence le(x, k, Ω) in 
an inhomogeneous region, and in particular in the immediate vicinity of the boundary. All this leads to the fact that the 
symmetry in the wave vector k of the equilibrium distribution function inherent in the thickness of an isotropic solid 
layer is lost near the boundary. A similar situation occurs near the boundary for the relaxation lengths of fluxes of other 
kinds of quasiparticles. It is clear that the corresponding relaxation lengths in systems depend to one degree or another 
on the degree of interaction between the systems, both in the thickness of each layer and at its boundaries, under the 
physical conditions under consideration.

If the equilibrium is violated, then the given distribution of differential fluxes are modified to some extent and 
resultants integral (macroscopic) fluxes of a different character appear in the systems Qj(х) = Qj

+(х) - Qj
-(х) ≠ 0: fluxes 

of charge, energy, entropy and other thermodynamic quantities. It is clear that due to the difference in the parameters 
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and characteristics of different systems, the integral fluxes of the corresponding quantities in them do not have to 
coincide. When one system of quasiparticles is considered, for example, an electronic system, under conditions of weak 
excitation, it is usually assumed that the temperature does not change over the thickness, i.e. its distribution is supported 
by equilibrium fluxes in the considered system and fluxes in other (practically equilibrium) systems of quasiparticles of 
the given layer. Obviously, the conditions of weak excitation, in this case, must be fulfilled both in the thickness of each 
layer and at its boundaries. It is also obvious that the coordinate distribution of “thermostatic” properties over different 
systems of quasiparticles of the structure, as well as the degree of “adiabaticity” of the layer boundaries, are largely 
related to the properties of the materials used in solid layers. External physical conditions exert their “thermostatic” and 
surface “adiabatic” influence both in the conditional equilibrium (according to Groot) case, and in the case of violation 
of equilibrium.

2. “Homogenous” solid-state layer: a layer within the structure and the stand-
alone one

The presence of boundaries (or surfaces in a separate layer of homogeneous composition) “makes” the layer 
an inhomogeneous medium, since the scattering characteristics of quasiparticles at the boundaries of the layer and 
in its thickness are usually noticeably different. In addition, the boundary, in particular a flat one, violates the spatial 
symmetry of the properties (characteristics and parameters) of the layer thickness. Along with other factors, this also 
has a peculiar effect on the coordinate and angular dependence of the relaxation length of charge carrier fluxes at the 
boundary. This “spatial” circumstance must be taken into account in the mathematical formulation of the boundary-
value kinetic problem of the propagation of fluxes in a solid layer, especially near its boundaries and for a thin layer 
as a whole. This circumstance also concerns other systems of quasiparticles, the propagation of which is described by 
a kinetic equation, in particular, in one or another approximation of the relaxation time. Note that in the presence of a 
noticeable interaction of systems as a result of scattering at the boundary, the rate of generation and transfer (removal) 
by differential fluxes of the total energy, entropy and other thermodynamic quantities over the systems may differ from 
the “volumetric” ones inherent in the layer thickness.

A structure that has several layers of physically finite thickness with different properties is a more complex 
inhomogeneous solid-state medium since it also has boundaries with a varied configuration and energy state. Note 
that the properties of the layer boundary in the structure and the boundary surface of an individual layer of similar 
composition can differ markedly. This is due to the difference in the final stages of the technology for growing these 
layers. This circumstance may be the reason for some difference in the characteristics of an individual solid layer and a 
layer of similar composition in the structure, along with the presence of exchange of quasiparticles in the second case.

The exchange of charge carriers and other quasiparticles between layers with different physical properties leads 
to the fact that the character and role of processes at the layer boundary in the structure and a separate layer of similar 
atomic composition and configuration turns out to be different. This affects not only the magnitude of the force fields at 
the boundary acting on the quasiparticles, but also the dependence of the relaxation length of the quasiparticles over the 
layer thickness. This difference is also influenced by the state and configuration of the boundaries of an individual layer 
and a layer in the structure grown on the previous layer, the second boundary of which is formed during the growth 
of the next layer of the structure (especially in the case of a thin layer). The indicated boundaries in these considered 
cases have a slightly different composition and configuration, and therefore they are characterized by correspondingly 
different probabilities of scattering of fluxes of quasiparticles, which affects the propagation of fluxes of charge carriers 
and quasiparticles of other types.

If the role of boundaries in the investigated processes of interaction of differential fluxes of charge carriers (and 
quasiparticles of different types in general) is essential, then it is necessary to determine as accurately as possible the 
dependence le(х, k) near the layer boundaries (as well as lj(х, kj) for quasiparticles of other species), especially in each 
thin layer of the structure. As noted above, the relaxation lengths of differential fluxes directed towards and away 
from the boundary differ near the boundary. This is directly related to the presence of a boundary that geometrically 
violates the symmetry of the properties of the medium of the solid-state layer (especially towards it) and, in the general 
case, is the spatial section of the εie(k) dependences, and possibly the crystal symmetry of the solid-state layer with 
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the corresponding consequences of this. All these factors interconnectedly affect the distribution of differential fluxes 
of quasiparticles, the magnitudes of the force fields [6] and the distribution of thermodynamic (statistical) quantities, 
primarily those that characterize the equilibrium, and through them non-equilibrium, quasiparticle distribution functions.

3. Mutual influence of force fields and the relaxation length of the fluxes nearby 
the boundary

The scattering of charge carriers, like other quasiparticles, at the boundary is “rigidly” fixed by its plane, in contrast 
to volume scattering. On boundary, it occurs inevitably, in particular, because of change of physical properties before 
and after boundary. For differential fluxes of charge carriers formed in the immediate vicinity of the boundary (within 
the region of a solid medium with a thickness le(k)) and directed towards it, the average distance between the acts of 
successive electron collisions obviously decreases in comparison with the bulk one. The closer and “more normal” the 
flux propagates to the boundary, the stronger the difference between le(x, k) and its volumetric value.

(a)

(b)

le(x, k, Ω)

le(x, k, Ω)

le(x, k, Ω)

le(k)

x

x

Figure 1. Explicit influence of the layer boundary on the mean free path of charge carriers and the associated relaxation length of fluxes with an 
isotropic distribution of properties (a) and with an anisotropic (conditional) distribution of properties (b) in a uniform thickness of a solid layer

If in the thickness of a plane-parallel solid layer with an isotropic distribution of characteristics, the relaxation 
length of the charge carrier flux together with the mean free path does not depend on the direction and coordinate, then 
their angular and coordinate dependences take place near the boundary. It is clear that the relaxation length of the fluxes 
of charge carriers directed from the boundary in the region of the layer located near the boundary should also depend 
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on the properties of the boundary. Due to the presence of a relationship (through the boundary conditions [3]) of fluxes 
directed to the boundary, q-(x, k, Ω) and all fluxes of charge carriers scattered into the same layer “from the boundary” 
q+(x, k, Ω), the configuration and state of the border implicitly influences the latter.

In the case of an anisotropic distribution of properties in a uniform thickness of a solid layer (Figure 1 (b)), the 
distribution of differential fluxes along the coordinate is obviously also dependent on the direction of the crystal axes 
with respect to the boundary normal. At the same time, the distribution of thermodynamic quantities over the thickness 
of a layer with an anisotropic distribution of characteristics and parameters (properties) near the boundary also depends 
on the direction of the crystal axes with respect to the boundary normal. Perhaps this, in some way, along with the 
properties of the atoms of neighboring layers, affects the formation of the boundary or surface of the solid layer.

In adjacent layers of the structure, not only the kinetic characteristics and parameters can differ, but the symmetry 
of the distribution of properties. This factor also affects the formation of force fields at the boundary and the distribution 
of thermodynamic quantities in this region of the structure. The dependence of the configuration and state of the surface 
of crystalline silicon (Si), as well as the distribution of the electric potential eφ(x) near the surface, on the direction of 
the crystal axes with respect to the normal, have been repeatedly confirmed experimentally [19].

Along with this, the probability of scattering of differential fluxes at the boundary, which differs from the “bulk” 
one, as well as the exchange of charge carriers and other quasiparticles through the boundary, affect the distribution of 
force fields near the boundary, the relaxation length, the distribution of thermodynamic quantities and the distribution 
interdependent with them differential fluxes. As a result of integral functional relationships, which depend on the 
coordinate in an inhomogeneous medium of a solid layer and the structure as a whole, this, to some extent, affects the 
associated coordinate dependences of the distribution function of quasiparticles of all other types over the thickness 
of each plane-parallel layer of the structure. Due to these factors, the relaxation length of differential fluxes of charge 
carriers (and quasiparticles of other types) must be determined in a self-consistent way, together with the formation of 
electric and other force fields at the boundary [17, 20], taking into account the exchange of quasiparticles, both in the 
case of equilibrium and violation.

Obviously, for phonon fluxes, the internal force field near the boundary is the temperature gradient. This gradient 
in the indicated region can play a noticeable role, perhaps even the main one, as a local thermostat, which can affect 
the propagation of quasiparticles of different types, in particular, the propagation of charge carriers. Of course, the case 
of weak interaction of quasiparticles of different types in the thickness and at the boundaries of the structure is simpler 
than the case of their strong interaction either at the boundary and/or in the thickness of one, some or all layers of the 
structure.

For fluxes of charge carriers directed from the boundary, the influence of the boundary is less than for fluxes 
tending “to the boundary”. In particular, this is noticeable even from schematic Figure 1. It can be seen that the 
isotropic distribution le(k), and with it, the differential fluxes of charge carriers, as well as the uniform distribution 
of characteristics, including thermodynamic ones, inherent in the layer thickness, at the boundary is lost. Here, the 
relaxation length of the fluxes le(x, k, Ω) depends not only on the coordinate, but also on the direction (even with a 
very weak influence of the near-boundary force fields). Obviously, the angular indicatrix of the curve le(x, k, Ω) largely 
depends on the scattering probability P(k, k*) and the “sphericity” of the le(x, k, Ω) dependence is lost here (even in the 
presence of an isotropic dependence in the scattering of the charge carrier fluxes).

It is clear that the presence of the dependence le(x, k, Ω) at a boundary that is different from the “bulk” one 
should also affect the distribution of fluxes q+(x, k, Ω) and q-(x, k, Ω) in this region and balance, and its violation. The 
distribution of these fluxes, in turn, integrally forms force fields in inhomogeneous regions of the structure, including 
at the boundaries. The role of these fields in different circumstances can be significant or insignificant. In equilibrium, 
these fluxes form internal fields, which are modified in one way or another if the equilibrium is disturbed. Thus, 
differential fluxes of charge carriers (together with fluxes of other quasiparticles) form the resulting distribution of the 
electric field over the thickness of the structure, differential fluxes of phonons (together with fluxes of quasiparticles 
of other types) create a temperature gradient distribution (directed inward from the surface), etc. If the values of these 
fields are significant, then they can to some extent influence jointly the propagation of quasiparticles of all types 
under consideration. Excitation of systems of quasiparticles near the boundary generally changes the exchange of 
quasiparticles between layers. The influence of such excitation on the dependence li(x, ki, Ω) turns out to be different for 
the corresponding fluxes of quasiparticles of different types and not the same for differential and integral fluxes directed 



Advanced Energy Conversion MaterialsVolume 2 Issue 2|2021| 67

to and from the boundary.
Note that differential phonon fluxes are scattered at the surface much stronger than in the bulk since they cannot 

propagate through the surface. Therefore, when the layer is heated in one way or another, the temperature gradient at 
the surface is directed deep into the layer, i.e. the temperature on the surface turns out to be higher than the temperature 
in the thickness of the layer, although it usually heats up there. This leads to the fact that at high temperatures melting 
begins precisely from the surface (due to the strong scattering of phonon fluxes on the surface and a large local release 
of energy by them with its weak removal by fluxes of quasiparticles of various types). If there is a thin oxide film on 
the solid layer, the melting point of which is higher than the melting point of the base material, then obviously the layer 
will begin to melt under this oxide film. It is this melting of layers of solid materials that are often observed in practice. 
This example shows the viability of the considered aspects of the kinetic theory, and also represents the scope of its 
application in technology.

4. Interaction of the systems of quasiparticles
Solid-state materials and structures based on them, including those in the form of plane-parallel layers, have been 

studied by various experimental and theoretical methods for a long time. This various long-term practice has shown 
that the theoretical description of a solid-state medium in equilibrium in the form of a set of non-interacting systems 
of quasiparticles of different physical nature, each of which is similar in properties to a specific “ideal gas”, is not 
always satisfactory. These systems of quasiparticles (of different physical nature with very different characteristics 
and parameters) nevertheless interact with each other, and not equally in the bulk of the solid-state medium and at its 
boundaries, even in the case of the presence of homogeneity of quantum and kinetic properties in the bulk. With various 
disturbances in equilibrium, these systems interact in very different ways. Therefore, the mathematical description of 
the stationary propagation of differential fluxes of quasiparticles through the thickness of each layer of a solid structure 
within the framework of the kinetic theory, both in equilibrium and in case of its various violations, should be described 
adequately by a given boundary value problem, namely a system of interrelated kinetic equations and boundary 
conditions [17-18, 21]. In particular, it concerns the functioning of cascade solar cells at high insolation. 

For an adequate theoretical description of the solid-state structure as a whole, it is necessary to correctly “stitch” 
the solution of the system of equations for all layers of the structure. In this case, the features of the propagation of 
quasiparticles of different types in the layers of the structure will be correctly taken into account if the distribution of 
thermodynamic values in the corresponding systems is determined mutually consistently.

Near the boundaries of a layer of finite physical thickness, and even more so in a thin layer, the propagation 
of differential fluxes of quasiparticles directed “towards the boundary” and “from the boundary”, and/or in its 
inhomogeneous region, in each of the systems must be described by separate kinetic equations. The boundary conditions 
should correctly describe the relationship between differential fluxes of quasiparticles of different physical nature, 
including the possible exchange of quasiparticles between adjacent layers. When drawing up a system of equations and 
boundary conditions, it is necessary to take into account the extent to which energy and other thermodynamic quantities 
are exchanged between coexisting systems.

Thermodynamic quantities, which are integrally (statistically) interdependent with the distribution of differential 
fluxes of quasiparticles in a solid medium, are most adequately determined for the “ideal gas” system. Therefore, for 
each pair of kinetic equations that describe the propagation of fluxes of quasiparticles in all systems taken into account, 
it is desirable to correctly reduce to the corresponding description of the system of a specific “ideal gas”. In this case, all 
the coefficients of a pair of kinetic equations in some approximation of the relaxation time, (for example, for a system of 
charge carriers: electric field [13], effective relaxation length of differential fluxes), as well as the distribution over the 
layer thickness of thermodynamic quantities in the corresponding system of quasiparticles), it is necessary to determine 
self-consistently (at least for the most significant systems of quasiparticles) both in equilibrium and in its violation. 
This especially concerns the propagation of differential fluxes near the boundaries of layers and in a thin layer of the 
structure as a whole, where the exchange of fluxes between its adjacent layers can play a very noticeable role. Along 
with correctly specified boundary conditions for differential fluxes at the boundaries of a layer of finite thickness [2], 
this affects the degree of reliability of the description of the physical picture both in the thickness of the considered 
layer and near its boundaries, including taking into account the presence of neighboring layers and exchange of fluxes of 
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quasiparticles with different for all systems with kinetic characteristics.
If several interacting systems of quasiparticles of different kinds and types (as optical and acoustic phonons with 

specific properties) are considered simultaneously in a solid layer of the physically finite thickness (in a generally 
inhomogeneous medium), then the differential fluxes in each of them depend at least (within the framework of the ideal 
gas) on the wave vectors of all n given systems, i.e., qi(X, K) where (X, K) = (x1, k1, x2, k2, ... xi, ki, ... xn, kn,) (i = 1, 2, ..., 
n, and taking into account the difference in the behavior of qi

+ and qi
- in each system, the number of kinetic equations is 

equal to 2n). The distribution functions of quasiparticles of all these systems in the general case also depend on (X, K). 
All systems of quasiparticles are responsible for the distribution of thermodynamic quantities over the layer thickness (in 
accordance with their role and distribution over the corresponding wave vectors ki). In this case, the simplest, physically 
understandable, interpretation of the results, as in the case of a simple dependence of the distributions qi (x, ki), turns out 
to be lost.

Nevertheless, if we do not take into account the effects of recycling in quasiparticle systems, using some iterative 
statistical averaging of the kinetic equations for the dependences qi

+(x, k1, k2, k3, … kn) and qi
-(x, k1, k2, k3, … kn) the 

physical picture can be reduced to “simple” and understandable distributions of the fluxes qi
+(x, ki) and qi

-(x, ki). Without 
recycling [22], the fluxes in the collision integral are scattered locally, that is, they depend on one coordinate x. After 
such averaging, the interaction of different systems of quasiparticles will in some way be mutually coordinated and 
taken into account, and the systems can formally be considered mutually independent. It is in such systems that the 
distribution of thermodynamic quantities is most adequately determined. It is clear that under different conditions, due 
to the difference in the physical properties of these systems, the coordinate distribution of thermodynamic quantities 
will not coincide in all of them (for example, as the specific temperature of “hot” electrons). 

5. Justification of the need for studying joint propagation of quasiparticles in 
solids

Even without solving the kinetic boundary value problem, using the general form of the collision integral [8], 
it is easy to find the relationship between the equilibrium distribution function of electrons fо(k) in the thickness of a 
homogeneous solid layer with the transition probability W(k, k') from a state with a wave vector k to a state k' and the 
probability W(k', k) of the reverse transition from k' to k-state:

{ } 1
( ) 1 ( , )(1 ( )) / ( , ) ( )k' kо о'оf k f k fW k k' ' W k' k 'k

-
 = + - ∑ ∑ (1)

The elementary formulated events A(k → k') and A'(k' → k) are quite complex, and even mysterious, in terms 
of their implementation in specific conditions. The mysteriousness of these transition probabilities is due to the lack 
of instructions in the kinetic theory to specify the various mechanisms of the transition (and their role) from the k' 
state to the k state and back. It is clear that the transitions k' → k (as some event A') and k → k' can be carried out 
in various physical ways [8]. As shown above, these transitions are associated with the propagation and scattering of 
fluxes not only of a system of electrons, but also of systems of quasiparticles of other types, if they actively interact 
with it [17-18]. In this case, a redistribution of differential fluxes of energy, entropy and integral fluxes thermodynamic 
quantities between the systems occurs. It is clear else that some transition mechanisms are more probable, and some less 
probable; moreover, this difference is not the same for a homogeneous layer and near the layer boundary or in its other 
inhomogeneous region.

This remark concerns not only transitions within any one system of quasiparticles, but also transitions due to the 
presence of systems of quasiparticles of other types. If not all, then at least the most significant interacting systems are 
necessary for the correct description of the propagation of the total fluxes of energy, entropy and other thermodynamic 
quantities that take place in the solid medium of the layer under consideration. When one more system of quasiparticles 
of a certain kind (or type) is added to the kinetic description of the propagation of fluxes, the probabilities of transitions, 
for example, from k' to the k-state and back should be self-consistently redefined.
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If the redistribution of thermodynamic quantities over the systems is not taken into account, then the losses of 
energy and other quantities in the analyzed one system of quasiparticles drop out of consideration and are lost without 
a trace. In reality, the systems interact over the entire thickness of the layer and its can, at least partially (if there are 
fluxes out of the layer and the structure), return these losses to each other. Precisely because of the complete account of 
the mutual influence of different systems of quasiparticles on each other, each solid-state system exists in a (conditional) 
equilibrium state. Note that the external physical medium acts directly on some systems of quasiparticles of the solid 
layer and the structure as completely stronger, on others weaker. But due to the presence of interaction between systems, 
it indirectly affects other systems of quasiparticles. If the state of the external physical medium due to some external 
circumstances changes rather slowly in comparison with the processes of formation of thermodynamic quantities in 
all systems of quasiparticles of a solid matter, then the thermodynamic quantities will adequately describe the physical 
picture in a solid matter. The thermodynamic influence of all systems of solid-state layers on the external medium (usual 
locally) is similarly diverse and specific. The functioning of the powerful solid-state laser is a convincing example, 
proving this statement.

The considered losses in one of the systems of a thick layer are mainly redistributed over different systems 
of quasiparticles, and only some of them, which occurred mainly near the boundary, leave the layer. In a layer that 
is thin for the propagation of quasiparticle fluxes of some (or all) systems, the situation can change significantly. 
The propagation of quasiparticles in a thin layer acquires the features of ballistic motion. In this case, the usual 
thermodynamic characteristics of such systems of quasiparticles are not quite adequate. In this case, the characteristics 
of the integral fluxes of quasiparticles change little over the thickness of the layer, and the redistribution of losses is 
largely due to the mechanisms of scattering of differential fluxes at the boundaries of the layer, as well as the intensity 
of exchange of fluxes of quasiparticles.

In approximately the same way, the external medium (a general thermostat for the structure) acts with its specific 
fluxes, corresponding to external conditions, on systems of quasiparticles of solid-state layers of the structure through its 
surface. Moreover, for some external fluxes, in particular for photon fluxes (for example, from the infrared region of the 
spectrum), the solid-state layers of the structure can be thin. However, the fluxes of atoms of the external medium under 
normal conditions practically do not enter the solid-state matter, although they exchange their energy, mainly with the 
phonon system, as a result of their reflection from the hesitate boundary. 

The equilibrium in the considered system as a whole corresponds to the given physical conditions and is associated 
with the conditional equilibrium of all other systems of the solid-state layer. Here it should be taken into account that 
the distance from the boundary, at which its significant influence ends and the homogeneous layer thickness can indeed 
be considered uniform, for various systems of quasiparticles can differ markedly. Under various physical circumstances, 
this difference in the indicated distances (the dimensions of a region near the boundary that is inhomogeneous for a 
certain system) is not necessarily preserved, i.e. they can change in each system depending on external and internal 
conditions. These circumstances significantly complicate the physical picture that occurs in a solid-state structure. 
Moreover, this, in turn, complicates the physical interpretation of various experimental data.

In a homogeneous medium, the equilibrium in systems is everywhere the same in its volume, although it 
depends on the physical properties of the medium, distributed uniformly. In an inhomogeneous medium, including a 
homogeneous layer of physically finite thickness, the equilibrium in systems depends not only on the properties of the 
medium, but also on the nature of the inhomogeneity in the layer. And the nature of the inhomogeneity of the properties 
of the medium can be very diverse. Therefore, in the latter case, the equilibrium, in contrast to the usual equilibrium 
in a homogeneous medium, turns out to be conditional. It essentially depends on the conditions for the propagation of 
quasiparticle fluxes in an inhomogeneous region of the medium, in particular, the medium of a solid layer. In principle, 
ordinary equilibrium in a homogeneous solid medium can be regarded as a special case of “conditional equilibrium” 
when there is no inhomogeneity in the medium. Thus it is not necessary to forget that the property of homogeneity 
depends on the viewed gauge.

Near the boundary, due to its specific properties and possible exchange processes of quasiparticles, as well as due 
to more frequent than in the layer thickness, scattering acts concentrated (localized) at the boundary, the nature of the 
“stationarity” of random physical quantities changes and their belonging to the form that is present in the thickness 
of the layer can be lost. This region is “transitional”, in it the probabilities of various processes and the nature of the 
exchange, quasi-momenta and quantities associated with the propagation of quasiparticle fluxes change significantly. 
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The averaging of the values “overtime” and “overstates” near the boundary and in the thickness of the layer may not 
coincide. The degree of loss of the ergodicity property in some or all of the quasiparticle systems can be noticeable here.

Comparing expression (1) with the usual Fermi-Dirac function, which describes the distribution of electrons in a 
homogeneous medium in equilibrium, we obtain

(2)0

0 0

( )
exp ( , )(1 ( )) / ( , ) ( )о о
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f k k
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Here εе(k) is the dispersion law of electrons, ξо is the chemical potential in equilibrium, and koTo is the thermal 
energy of electrons. For an adequate understanding of the mechanisms of formation of thermodynamic quantities in 
the left and right sides of expressions (1) and (2), the transition probabilities W(k, k') and W(k', k) must explicitly 
contain terms describing the ways of changing wave vectors and in other systems of quasiparticles. If in expression 
(2) we use the “principle of detailed balance” without disclosing the essence of the probabilities W, then its left side is 
identically equal to the right side. Obviously, this solution to the functional equation (1) or (2) is not the only possible 
one. Therefore, this principle should be regarded as the most probable for a state of equilibrium. This principle can also 
be preserved near the border, although the value of the “most probable” of its fulfillment here is most likely already 
different, i.e. its reliability decreases, including due to the influence of the neighboring medium-a solid layer.

In an inhomogeneous region of a plane-parallel layer, in particular, in the immediate vicinity of the boundary, both 
transition probabilities W (associated with fluxes through the scattering cross-section) depend on the coordinate in a 
complex manner, since the conditions for propagation and scattering of differential and integral fluxes of electrons (as 
well as other quasiparticles) vary in thickness layer. Therefore, the exponent in the left and right sides of expression (2) (in 
the function  fо(k)) should also depend on the coordinate.

Note that the inhomogeneity of a plane-parallel layer over its thickness can have a different character. For example, 
the atomic composition or the degree of alloying, the concentration of defects, etc., or both together can vary in 
thickness. It follows that, in the general case, the coordinate dependence of the exponent is due to the character of the 
dependences Wij(x, ..., ki, ... kj, ...), inherent in the considered an inhomogeneous solid layer (or, as a special case, its 
homogeneous thickness).

Thermodynamic quantities in each system of a physically different nature are expressed in the most adequate 
way if the system can be correctly defined as a kind of “ideal gas”. Thus, the coordinate dependence of the equilibrium 
distribution function of electrons in a plane-parallel solid layer  fо(х, k) with allowance for the scattering of differential 
fluxes of quasiparticles on each other, in general, is also due to the same dependences Wеj(x, ..., ke, … kj, ...) and Wjе(x, ..., 
ke, … kj, …), averaged over all other kj. Consequently, in the general case, the distribution function of electrons in an 
inhomogeneous solid layer in equilibrium can depend on the coordinate manifoldly:
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In this case, the right part of the kinetic equation in balance has a bulkier (difficult) view. If the atomic composition 
does not change over the layer thickness, then it is usually assumed that the dispersion law εе(k) does not depend on the 
coordinate and the temperature of the electron system is also constant.

In expression (2) we can determine the sums with probabilities W through the differential fluxes of not only charge 
carriers, but also quasiparticles of other types propagating and scattering in the medium of a solid-state layer [23-24], 
which play an appreciable role in the given physical conditions. If to take the logarithm of this expression, then the 
dependence of the combination of distributions of thermodynamic quantities on the distribution of differential fluxes 
of quasiparticles of different types will become apparent. Although the coordinate dependence of the combination of 
distributions of thermodynamic quantities on the probabilities W is logarithmic, i.e. weak, nevertheless, it is still there.

You can simply take into account in the above way the influence of the interaction of a system of charge carriers 
with systems of other quasiparticles and find the distribution of thermodynamic quantities from simpler statistical 
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(integral) functional expressions that formally correspond to a specific system of particles of an “ideal gas”. Recall 
that when determining thermodynamic quantities in an inhomogeneous region of a layer, including at the boundary, 
it is necessary to take into account the propagation and dispersion of differential fluxes of two classes, namely, those 
directed to and from the boundary, separately. However, directly at the border, the circumstances of the formation of 
thermodynamic quantities turn out to be more complicated. 

In the case of studying the equilibrium state of the phonons system in an inhomogeneous solid-state medium, the 
distribution function in the exponential contains only one thermodynamic quantity, namely, temperature [21, 25]. The 
presence at the boundary, by analogy with [13], of a force field for phonons-a temperature gradient (possibly weak), 
means the presence of a coordinate dependence of the temperature in the considered region. Due to the interaction 
between systems, this circumstance affects not only the distribution of phonon fluxes in an inhomogeneous region 
(including at the boundary), but also, to some extent, the distribution of fluxes and thermodynamic quantities in other 
systems of quasiparticles. Although the collision integral for quasiparticles-bosons, which are phonons of all branches 
and types (as well as photons of different polarizations), is somewhat different from the “fermionic” one, nevertheless, 
it is easy to obtain for these quasiparticles the relationship between their distribution and the scattering probabilities (of 
these quasiparticles) W(k, k') and W(k', k) [24]. A form of this expression will be in many respects similar to expression 
(1-2).

6. Influence of the boundary on the thermodynamic values distribution
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Figure 2. Scattering of integral (a) and differential (b) fluxes of charge carriers at the interface between solid layers with different quantum and kinetic 
characteristics
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Let us consider the general physical picture occurring at the interface between media and charge carriers. The 
(integral) fluxes of charge carriers Q1

+(a) and Q2
-(a), consisting of different sets of differential fluxes q1

+(а, k, Ω) or q2
-(а, 

k, Ω). In the general case, some part of R, of all carrier fluxes incident from one of the sides, is reflected, part of T passes 
through it, and some part of S is lost on it. In this case, it is obvious that the condition R + T + S = 1 must be satisfied on 
each side of the border. Integral fluxes directed to the left of the border, Q1

-(а) = R1
+Q1

+(а) + T2
-Q2

-(а), and directed to the 
right of it, Q2

+(а) = R2
-Q2

-(а) + T1
+Q1

+(а), are formed taking into account the possible propagation of differential fluxes 
from an adjacent (adjacent) layer (see Figure 2a).

Note that in neighboring layers the quantum and kinetic characteristics, through which the corresponding 
differential fluxes are determined (see below), can differ significantly. Therefore, the resulting integral flux Q(а) = Q+(а) 
- Q-(а) in the layer to the left of the boundary and the right of it has a different total composition of differential fluxes. 
In this case, in the indicated aggregates, the exchange of charge carriers across the boundary, which has their own 
velocity distributions, is correctly taken into account.

In accordance with the formation of integral fluxes, it is possible to describe in detail the probabilistic “fate” of 
each differential flux q1

+(a, k, Ω) and q2
-(a, k, Ω) falling on the boundary after scattering. To do this, you need to know 

the probabilities of scattering (forward and backward) of all differential fluxes incident on the boundary. By collecting 
all the contributions from each flux scattered by the boundary to a certain, arbitrarily selected, differential flux in the 
layer under consideration (see Figure 2b), It is not difficult to obtain the boundary condition for the corresponding 
kinetic equation. A similar physical picture, but with specific scattering probabilities and, accordingly, coefficients, takes 
place at the boundary and for fluxes of other kinds of quasiparticles.

In the thickness of the plane-parallel layer, the integral fluxes of charge carriers are equal

(4)
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where V +
B is the region of the Wigner-Seitz cell (the first Brillouin zone in symmetric form) with a positive projection of 

the wave vector k, and V -
B is the region of the cell with a negative projection k for the layer under consideration, the solid 

angle Ω = Ω (θ, φ) indicates the direction of propagation of this differential flow, dΩ = sinθdθdφ, (hereinafter |cosθ| = μ). 
The sets of differential fluxes (two “classes”) corresponding to this separation of the integral fluxes of charge carriers in 
the thickness of the layer are equal to

_3 3( , , ) 2 ( ) ( , , ) / (2 )  and ( , , ) 2 ( ) ( , , ) / (2 ) .q x k v k f x k q x k v k f x kπ π+ + - -+ Ω = Ω Ω = Ω (5)

These fluxes propagate in an isotropic medium in the direction of the vector k, which belongs to the right Ω+ or 
left Ω-part of the Wigner-Seitz cell inherent in the crystalline layer under consideration. Since the belonging of the 
differential flow to the direction of propagation in Ω+ or Ω- is directly in the designation of the corresponding flux, then 
in its argument the superscript at Ω will not be used to simplify the notation. The velocity of a quasiparticle in the fluxes 
is determined by the corresponding dispersion law ε(k), namely v(k) = ħ-1grad ε(k) [4]. In an isotropic medium, the 
direction of the vector v(k) coincides with the direction of k, as well as the differential flux itself.

However, at the border located for example at x = a (see Figure 2b), in contrast to the thickness of a homogeneous 
solid layer, as shown above, there are some peculiarities in the definition of Q+(a) and Q-(a). In particular, the 
differential carrier fluxes q+(x, k, Ω) and q-(x, k, Ω) in adjacent layers are due to different dependencies of the velocities 
vi-1(ki-1) and vi(ki), as well as the effective masses of the carriers, charge in adjacent layers, in accordance with the 
dispersion laws εi-1(ki-1) and εi(ki) in these layers of the structure. This must be taken into account, since ħki-1 = pi-1 = 
mi-1vi-1 and ħki = pi = mivi. In addition, the V +

B-region is the Wigner-Seitz cell region for the adjacent layer (i - 1) with a 
positive projection of the wave vector k, and V -

Bi is the cell region with a negative projection k already for the considered 



Advanced Energy Conversion MaterialsVolume 2 Issue 2|2021| 73

layer i. Due to the possible difference in the symmetry of the crystal lattice of neighboring layers, these regions may not 
coincide in their structure. The question of the specific form of these parts of the cells and the structure of the energy 
zones in the border region should be solved within the framework of quantum mechanics.

The resulting integral flux of charge carriers in both cases, both at the boundary of the structure and in the thickness 
of any of its layers, is Q(x) = Q+(x) - Q-(x). If we do not consider the fluxes of quasiparticles (systems) of other types, 
with which fluxes of energy, entropy, etc. are also exchanged at the boundary. (i.e., when the fluxes of charge carriers 
are scattered, fluxes of phonons, photons, etc. are disturbed or excited), then the losses Sa

+Q1
+ and Sa

-Q2
- in the system of 

charge carriers are then simply lost. The more significant systems (fluxes) of quasiparticles are taken into account in the 
mathematical model of the propagation of quasiparticles both at the boundary and in the thickness of the solid layer, the 
more accurate and adequate the model will be. However, the mathematical complexity increases markedly. Obviously, 
there needs to be a certain balance between the adequacy of the theoretical description and the increase in mathematical 
complexity.

It is clear that differential fluxes of different types of quasiparticles actually fall on the boundary, also from both 
sides of it. If in Figure 2b to imagine the presence of incident and scattered fluxes of quasiparticles of other kinds than 
the drawn incident and scattered differential fluxes of charge carriers, then the formally schematic picture remains 
the same. However, physically it will become richer and more adequate, as well as mathematically more complex. 
In adjacent layers, all these differential fluxes also have different quantum and kinetic characteristics for each of the 
systems, in particular, the dispersion laws εi(ki) or ħωj(kj). Therefore, at the boundary, their integral fluxes, determined 
according to the rules similar to those for the integral fluxes of charge carriers, also have specific features.

Each flux incident on the boundary with a certain probability Pa is scattered on it and makes the corresponding 
contributions to each (any) scattered flux q(a, k, Ω) both inside the layer and in the general case outside of it. In this 
case, the losses of thermodynamic quantities associated with the losses of the integral fluxes Sai

+
 Q1i

+ and Sai
-Q2i

-, which 
occur at the boundary, are redistributed over all other systems of quasiparticles and their fluxes in both adjacent layers. 
This consideration is especially important if the losses in the integral fluxes at the boundary are large and the interaction 
of the systems is significant.

By virtue of the above, the integral boundary condition for the scattering of charge carrier fluxes on the left 
boundary of the considered plane-parallel solid-state layer (without taking into account the presence of other systems of 
quasiparticles) for the stationary kinetic equation can be written in the following form [13]:
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Here V +
Bi-1 is the area of the Wigner-Seitz cell (Brillouin zone) at the boundary for layer (i - 1) with a positive 

projection of the wave vector k, and V -
Bi is the area of the cell with negative projection k already for the considered 

layer i. The flux q+(a, k, Ω)-is the density of the differential flux of charge carriers with the modulus of the wave 
vector k, propagating from the boundary x = a in the direction near Ω = Ω(θ, φ), into the thickness of the layer under 
consideration, μ = |cosθ|, dΩ = sinθdθdφ. A similar condition can be written for the right boundary of the layer under 
consideration.

The first term in (6) describes the contribution to the flux q+
i (a, k, Ω) from the scattering of all fluxes incident on the 

left boundary of layer i under consideration outside of it. The second term gives the contribution from all flows falling 
on the same boundary from the inside. To simplify the notation, by virtue of integration, the wave vector k ≥ (k, Ω(θ, φ)) 
of the incident fluxes do not have here the indices belonging to the corresponding solid layer.

If we take into account the differential fluxes of quasiparticles of other types, which also actually fall on the 
boundary from two sides and scatter on it, then in expression (6) it is necessary to add (take into account) the pairs 
of integral terms of a similar type corresponding to the systems [2]. In the latter case, the boundary or surface is 
characterized by a set of scattering probabilities Pij of fluxes of quasiparticles of different types.

Similarly, there is an integral relationship between the fluxes q-(b, k, Ω) and q+(b, k, Ω) on the right boundary of 
the layer under consideration [13]. However, the integration, in this case, is carried out over the regions V +

Bi and V -
Bi+1. 

Integral boundary conditions of the form (6) connect at the boundary not only fluxes, for example, q-(b, k, Ω) and 
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q+(b, k, Ω) in a layer, with each other, but also agree on them with flows in neighboring layers having own physical 
characteristics. To obtain a general solution over the entire thickness of a plane-parallel solid structure, it is necessary 
to “stitch” the solutions of the kinetic equation (or a system of equations for the joint propagation of quasiparticles of 
different types) at all boundaries of the structure in accordance with the boundary conditions.

In the general case, it should be borne in mind that all differential fluxes qi
+(x, ki) and qi

-(x, ki) that appear in the 
theoretical description specifically carry with them across the boundary not only charge (if the quasiparticle has one), 
but also specific for systems of adjacent layers, energy, entropy, and other quantities. Due to this, due to a special-
“boundary”, method of formation of flows, for example, q+(а, k, Ω) and q-(а, k, Ω) in accordance with expression (6), 
at the considered boundary of the layer, (as well as at other boundaries of the structure), the usual thermodynamic 
quantities (characteristics), as for a homogeneous medium, are not entirely appropriate here. 

The very formation of thermodynamic quantities in this region occurs specifically, mainly due to “one-act” 
scattering of fluxes at the boundary, albeit probabilistic. Here, in the case of the exchange of fluxes of charge carriers, 
a kind of mixing of differential fluxes takes place (see Figure 2a.) With quantum characteristics different on both sides 
of the boundary, in particular, with different dispersion laws ε1(k) and ε2(k) and dependences of the velocities v1(k) and 
v2(k), as well as effective masses and specific coordinate-dependent regions of integration-peculiar parts of the Wigner-
Seitz cells. This mixing of fluxes distributed over k and carried by streams of energy, entropy, etc., also depends on the 
properties of the boundary itself. These properties can differ significantly from the “bulk” ones, which are provided by 
various scattering mechanisms and, in general, by “multi-act” distributed mixing in the thickness of the layer. In contrast 
to the propagation of differential flows in an inhomogeneous stratum of a solid layer, these statements are specific 
precisely for the propagation of flows across the boundary.

Solutions of the boundary-value kinetic problem in each layer of the structure-a system of equations for a pair 
of differential fluxes of quasiparticles of the most significant kinds qi

+(x, ki) and qi
-(x, ki), must be correctly “stitched” 

in accordance with the boundary conditions at each boundary of the structure. In this case, it turns out that various 
differential fluxes of quasiparticles and the energy, entropy, etc. carried by them from neighboring layers affect, in one 
way or another, the propagation of similar fluxes in each layer under consideration. They jointly form the distribution of 
thermodynamic quantities in systems of quasiparticles, in the general case: electric eφ(x)) and chemical ξ(х) potential, 
as well as temperature T(x), over the entire thickness of the structure. Therefore, in each layer of the structure, the self-
consistency of the solution of the kinetic boundary value problem in terms of the coefficients of the system of kinetic 
equations should also be ensured taking into account the boundary conditions and the influence of the propagation of 
fluxes of different systems of quasiparticles on the formation of distributions of thermodynamic quantities in these 
systems. In such a decision, the specific physical properties of all layers of the structure and their influence on each 
other both in equilibrium and when it is violated are adequately taken into account.

The indicated self-consistent solution will correctly describe the physical picture, including the change in 
thermodynamic quantities in all systems, over the thickness of the solid-state structure, both in equilibrium and when it 
is violated. It is clear that the heterogeneity of the structure, due to the difference in the properties of its layers and the 
presence of boundaries, has a peculiar effect on the formation of the distribution of thermodynamic quantities near each 
boundary of the structure and its surface. In this case, at each boundary and in the immediate vicinity of it, it is necessary 
to take into account the peculiarities of the formation of the thermodynamic quantities of all systems, i.e. introduce a 
more adequate specific description of quasiparticle systems. In an inhomogeneous region located in the thickness of the 
layer, for example, in the region of the p-n-junction, such a specific description can also be more adequate than the usual 
one.

The energy flux density carried by charge carriers (see, for example, [26-27]) in the thickness of a plane-parallel 
solid-state layer, taking into account expressions (5), in the general case, can be written in the form

(7)2 2

( ) ( )1

( ) ( , ) ( ) ( , , ) ( , ) ( ) ( , , ) ) ( ) ( )
x xB BiV V

Q x x k x q x k k dkd x k x q x k k dkd Q x Q xε εε ε ξ µ ε ξ µ+ - + -

+ -

   
      

= - Ω Ω - - Ω Ω = -∫ ∫

It is necessary to use this expression directly at the boundary carefully, taking into account the difference in the 
properties of neighboring layers, as in the formation of the integral flux of entropy and other thermodynamic quantities. 
It is clear that the structure and state of the boundary affect not only the scattering probabilities of differential fluxes of 
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quasiparticles, but also the regions of integration. 
In equilibrium in an isotropic homogeneous mass, the coordinate dependence in expression (7) is completely 

absent. Far from the boundaries q+(х, k, Ω) = q-(х, k, Ω) = q(k, Ω) and the non-zero energy fluxes Qε
+ and Qε

- (and 
other quantities) balance each other everywhere, as well as the integral fluxes of quasiparticles themselves. But in an 
inhomogeneous region of the layer thickness or at the layer boundary (both an individual and a layer in the structure), in 
the general case, the dependences of the differential fluxes of charge carriers are not the same and q+(х, k, Ω) ≠ q-(х, k, Ω). 
Nevertheless, in equilibrium, the resulting energy flux should be zero, and the integral energy fluxes may depend on the 
coordinate Qε

+(х) = Qε
-(х).

This means that the exchange of energy in the inhomogeneous thickness of the layer, with other systems of 
quasiparticles, does not occur in the same way over the thickness of the layer. Due to this, at least some thermodynamic 
characteristics in the distribution function of carriers (and in their differential fluxes, the wave vector of which belongs 
to the cell region VB

+ or VB
-), in some way not in the same way depending on the coordinate. These circumstances 

lead to the fact that in other systems of quasiparticles the thermodynamic characteristics in an inhomogeneous region 
depend on the coordinate, possibly weakly. Compared to a separate layer, at the boundary of adjacent layers of a solid-
state structure, the situation is complicated by the exchange of fluxes of quasiparticles between the layers, although 
the general essence remains the same if we take into account the difference in quantum and kinetic characteristics in 
adjacent layers of the structure.

If we denote Q 
+
εkin and Q 

-
εkin corresponding to the kinetic energy flux densities in expression (7), then, taking 

into account (4), in the inhomogeneous region of the solid layer and near the boundary, among other things, we can 
determine the chemical potential of the integral fluxes of charge carriers Q+(х) and Q-(х):

( ) ( ( ) ( )) ( ) and ( ) ( ( ) ( )) ( ).kin kinx Q x Q x Q x x Q x Q x Q xε ε ε ε ε εξ ξ+ + + - - -+ -= - = - (8)

This definition of the chemical potentials of flows in equilibrium does not contradict its definition in a 
homogeneous mass. In this case ξ 

+(х) = ξ-(х) = ξ. Moreover, such a definition of a pair of chemical potentials of a pair of 
integral fluxes is also convenient to use when equilibrium is violated, when the dependences of differential fluxes in the 
general case differ not only in the dependences of differential fluxes, q+(х, k, Ω) ≠ q-(х, k, Ω), but also the dependences 
of their integral fluxes Q+(х) ≠ Q-(х). In the latter case, there are coordinate-dependent resulting integral fluxes of not 
only energy, but also entropy and other thermodynamic quantities (in different systems of quasiparticles, if there is a 
noticeable interaction).

It is clear that under some physical (external and/or internal) conditions for the functioning of a solid-state 
structure, it is possible that the coordinate dependence of some thermodynamic quantities (characteristics) in 
quasiparticle systems will turn out to be insignificant. In other operating conditions of the structure, as practice shows, 
this dependence must be taken into account. In both versions, assessing the situation requires an adequate understanding 
of the physical picture that occurs with the fluxes of quasiparticles in their different systems, not only at the boundaries 
of a solid structure, but also in the thickness of each of its layers. In the second case, it will be difficult to purposefully 
optimize the structure of one or another solid-state device, which consists of several solid-state layers with different 
characteristics, without taking into account the coordinate changes in thermodynamic quantities over the thickness of 
the structure. As a result, due to an incomplete understanding of the physical picture, the development or optimization of 
the device can be time-consuming and very expensive.

In an inhomogeneous region of the layer, as well as when the equilibrium is violated in different ways, a successful 
variant of a more adequate description (especially at the boundary) can be a similar operation along with the density 
of the integral fluxes of quasiparticles Qi

+(х) and Qi
-(х) of different systems, the use of the densities caused by integral 

energy fluxes Qεi
+(х) and Qεi

-(х), entropy QSi
+(х) and QSi

-(х) and other thermodynamic quantities. With the help of the 
latter, it is easy to determine the thermodynamic characteristics of directly integral fluxes of quasiparticles of the 
corresponding types, for example, phonons crossing the boundary from different sides. Of course, in this case, one 
should take into account the specificity in the distribution of the shares of ТjQj, RjQj and of the corresponding values on 
both sides of the border. With their help, it is not difficult to correctly determine the temperature of the integral flux 
directed to and from the boundary in each layer of the structure, if the distributions of differential fluxes qj

+(х, kj, Ω) and 
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qj
-(х, kj, Ω) over all layers of the structure are determined correctly.

The determination of the temperature of the (integral) particle flux was introduced in different works (see, for 
example, [9]). Similarly, one can determine the chemical potential of significant integral fluxes of quasiparticles of 
different types. However, the correct definition of a pair of thermodynamic values of fluxes in an inhomogeneous region 
corresponding to a pair of integral fluxes of quasiparticles Qi

+(х) and Qi
-(х) has not been introduced earlier. Such a 

theoretical description of the thermodynamic characteristics of a medium is also more appropriate when the proportion 
of ballistic propagation of quasiparticle fluxes of any or all types of quasiparticles in a solid layer noticeably prevails 
over “diffuse”-multi-act scattering during flow propagation. In this case, the integral fluxes of energy, entropy and other 
quantities carried by the corresponding fluxes of quasiparticles also turn out to be (at least partially) ballistic.

At the boundary, and even in an inhomogeneous region in the thickness of the layer, the indicated thermodynamic 
values of the density of the corresponding different integral fluxes of quasiparticles Qi

+(х) and Qi
-(х) in opposite 

directions along the normal to the boundary describe the physical picture more correctly than simply the usual 
coordinate distribution of thermodynamic quantities. Obviously, in a homogeneous region of the layer thickness, due 
to the symmetry of the isotropic medium (and the distribution of differential fluxes of quasiparticles) in equilibrium, 
the indicated thermodynamic values of the integral fluxes Qi

+(х) and Qi
-(х) in different systems are the same, and the 

integral fluxes of quasiparticles themselves balance each other. In this case, this description, like the usual distribution 
of thermodynamic quantities along the coordinate, in the thickness of the layer also turns out to be completely adequate 
(see expression (7)).

Note that energy and entropy are additive thermodynamic quantities. Therefore, the resulting fluxes of energy and 
entropy in the solid-state layer are the sum of the corresponding differential fluxes, which form integral fluxes over the 
systems of quasiparticles under consideration. In equilibrium, the resulting fluxes, in particular fluxes of energy density 
Qε(х) = Σ (Qεi

+(х) - Qεi
-(х)), should be absent. This condition is fully satisfied in the absence of resultant energy fluxes in 

all formally independent systems of quasiparticles of the solid layer.
Obviously, the temperature of the integral flux of quasiparticles (Qi

+(х) or Qi
-(х)) of different kinds can be 

determined through the ratio of the corresponding integral fluxes of energy to the integral flux of entropy. A pair of 
chemical potentials of integral fluxes of quasiparticles of different systems is determined (similarly to expression (8)) 
by the ratio of the corresponding integral flux of energy to this integral flux of quasiparticles in the same direction. In 
this case, the mathematical description of the picture occurring in a solid structure in the extended range of changes in 
external and/or internal physical conditions will be more adequate. Of course, differential fluxes of quasiparticles of 
different types, which form all integral fluxes, should be determined self-consistently, not only by the coefficients of 
the system of kinetic equations, but also by the coordinate distribution of thermodynamic quantities found taking into 
account the integral boundary conditions and the corresponding renormalization of the scattering probabilities when 
included in the theoretical description of new systems of quasiparticles as described above.

Mathematical expressions that jointly describe the indicated conditions for the equality of integral fluxes along 
the coordinate of a structure that is inhomogeneous as a whole can serve as functional expressions for the correctly 
self-consistent determination of the initial distribution of thermodynamic quantities over homogeneous regions in the 
layers of the structure in equilibrium in all systems of quasiparticles considered jointly. Due to this, any conditional 
equilibrium in the structure corresponding to stationary external conditions can be characterized by a certain conditional 
equilibrium of the considered integral fluxes of quasiparticles of different types and fluxes of their thermodynamic 
quantities. When the equilibrium is disturbed in one way or another, a similar role is played by functional expressions 
for the corresponding integral fluxes, the difference of which is equated to a fixed value, for example, the observed 
(density) flux for the difference in the integral fluxes of electrons Qе

+(х) - Qе
-(х) = Q*.

The external physical environment, with its various flows falling on the surface of the structure, in one way or 
another, has different effects on the systems of quasiparticles. For example, the exchange of energy flows through the 
surface can be carried out even without the exchange of quasiparticles, through fluxes of different physical nature. Not 
in all cases, it is possible to correctly abstract from the influence of the external environment, at least in the near-surface 
region of the structure. Therefore, the equilibrium in this region always turns out to be conditional, depending not only 
on the properties of the surface of the solid-state layer, but also on the characteristics of various flows of the external 
environment in the circumstances under consideration.

Directly at the inner boundary between the layers in a solid structure, the integral fluxes of thermodynamic 
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quantities in all systems of quasiparticles, in particular the energy fluxes Qεi
+(х) and Qεi

-(х), must be formed in accordance 
with the scheme shown in Figure 2a. In this case, one should take into account not only the properties of the boundary 
on its two sides, but also the difference in the quantum and kinetic properties of neighboring layers of solid materials, 
as well as the difference in thermodynamic characteristics in systems (flows) of quasiparticles. In addition, it should be 
understood that the losses in the integral fluxes Sa

+Qi1
+ and Sa

-Qi2
- in one system of quasiparticles are redistributed over 

differential and, accordingly, integral fluxes of quasiparticles of other types according to the properties of the considered 
boundary (see Figure 2b in a multi-system version). Obviously, in a homogeneous thickness of a solid layer (far from 
its boundaries) with the scattering of differential fluxes on an elementary area located in a certain section of the layer, 
a similar physical picture takes place in equilibrium. Only in the latter case are the quantum and kinetic properties on 
the right and left sides of the cross-section the same, as are the scattering probabilities of differential fluxes and the 
distribution of thermodynamic quantities.

Here it is pertinent to recall about the structure, different in systems of quasiparticles, specific for each layer, the 
dependence of the categories “thin layer” and “homogeneous layer thickness” on external conditions in equilibrium and, 
with its various ways of violation. Moreover, any violation of equilibrium in the structure, corresponding to stationary 
external conditions, can also be characterized by the distribution of the considered thermodynamic quantities of integral 
fluxes of quasiparticles of different types. To do this, their definition should also be based on solutions “stitched” over 
the layers of the structure in all systems of quasiparticles under consideration, which should be self-consistent in all 
coefficients of the system of kinetic equations of the boundary value problem in each layer of the structure. The correct 
solution to such problems is impossible without the qualified implementation of a rather complex mathematical model 
on a computer.

The difference in the physical conditions of propagation and interaction of fluxes of charge carriers and other 
systems of quasiparticles in an inhomogeneous region (including at the boundary or the p-n-junction) and in a uniform 
layer thickness is, in particular, the appearance of an “ideality factor” in the dependence of the current-voltage 
characteristics of the structure with a potential barrier. In the characteristic, it is a factor for the “usual” temperature 
of the p-n-structure. It is clear that this factor, an empirically determined coefficient, is a certain simplification of the 
description of the real physical picture that occurs in quasiparticle systems mainly in the p-n-junction region. This factor 
largely determines the slope of the volt-ampere (I-U) characteristic.

In a p-n-junction structure used as the base of a solar cell, the ideality factor largely determines the efficiency 
of photoelectric conversion, since it strongly affects the “fill factor” FF (fill factor) I-U-characteristics “in the light”. 
When a solar cell is illuminated with concentrated solar radiation, the role of the interaction of fluxes of quasiparticles 
of different kinds turns out to be even more significant. In the rational development and creation of a high-power solid-
state laser, it is also necessary to take into account the influence of fluxes of quasiparticles of different kinds on their 
propagation. The role of the interaction of different systems of quasiparticles of a solid structure with an N-or S-shaped 
current-voltage characteristic can also be significant.

The general physical picture of the propagation of fluxes of quasiparticles of different types over the thickness of a 
plane-parallel solid-state structure is outlined here in sufficient detail. Nevertheless, a detailed discussion of the complete 
mathematical model of the influence of differential fluxes of quasiparticles of different types on the propagation of each 
other near the boundary and in a homogeneous or inhomogeneous thickness of a separate layer and a layer in a solid 
structure, especially a thin one, requires special consideration. This requires fundamental research, a series of various 
technological, physical and computer experiments, as well as the scientific validity of confidence in the adequacy of the 
interpretation of various experimental data.

Only after that, with the accumulated baggage of new specialized knowledge in the field of kinetic theory and 
thermodynamics of an inhomogeneous solid-state medium, it is “economically” reasonable to start developing optimal 
multilayer structures of solid-state structures for various purposes, including cascade solar cells. In this case, the 
costly search for the optimal design of a structure for a specific purpose, consisting of a variety of solid materials, and, 
accordingly, technological modes and methods of its growth will be rationally purposeful and economically minimized 
in terms of various costs associated with research in general.

Considering the important scientific and great-applied technical significance, as well as the significant volume of 
these studies, it seems that at the initial stage it is rational to carry out them jointly by scientists from different countries: 
theorists, experimenters and technologists working in the field of solid-state physics, as well as highly qualified 
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programmers and engineers.

7. Conclusions
Within the framework of the kinetic theory in the relaxation time approximation, the physical picture of the 

propagation of differential and integral fluxes of charge carriers near the boundary of an isotropic layer of a plane-
parallel solid-state structure both in equilibrium and in its violation is considered. In this case, the possible exchange of 
quasiparticles of different types between the layers of the solid structure was taken into account. The reasons influencing 
the propagation of differential flow in this area are indicated. These include not only the appearance of an electric field 
Е(х) at the boundary in equilibrium and its modification when the equilibrium is disturbed, but also a change in the 
coordinate and angular dependence of the relaxation length of fluxes le(x, k, Ω) in the same region, as well as some 
modification distribution of other characteristic thermodynamic quantities.

The necessity of a self-consistent solution of the system of kinetic equations and determination of its coefficients, 
in particular Е(х) and le(x, k, Ω) for electrons, as well as the distributions of thermodynamic quantities, is substantiated 
in order to obtain greater reliability of the mathematical model of propagation of quasiparticle fluxes near the boundary 
and through it. The need for self-consistency of the solution of the kinetic equation has not previously been reliably 
argued, and even more so it has not been used in kinetic theory before. The ideology of self-consistency in the theory 
of atoms was substantiated and successfully applied earlier when solving the Schrödinger equation by the Hartree-Fock 
method.

It is proposed to use the coordinate distribution of the flux density of thermodynamic quantities over the 
thickness of the structure in the systems of quasiparticles taken into account, which is mutually self-consistent with 
the propagation of the corresponding fluxes of quasiparticles. In this case, each system of quasiparticles can still be 
considered ideal, although the interaction of systems and their mutual influence on the propagation of flows are taken 
into account. This allows us to introduce a correct definition of the temperature and chemical potential of the integral 
flux of quasiparticles in each of the systems under consideration, which more adequately describes the physical picture 
of the propagation of fluxes in an inhomogeneous multilayer solid structure, especially in a thin layer.

The scientific and practical significance of the results obtained lies in the fact that the microscopic “kinetic” picture 
of the propagation of differential and integral fluxes of charge carriers and quasiparticles of other types in a solid-state 
structure is disclosed in detail. Adequate understanding of the features of the propagation of fluxes of quasiparticles 
of different physical nature through the boundary and near it, as well as in a uniform thickness of a solid layer, makes 
it possible to correctly take into account the distribution of macroscopic thermodynamic quantities in systems of 
quasiparticles over all layers of the structure with different quantum and kinetic characteristics.

A more reliable mathematical model of the propagation of quasiparticles, taking into account the interaction of 
their different systems, will make it possible to more reliably optimize the structure of multilayer solid-state structures 
of electronic devices, such as solar cells, LEDs, lasers, etc., in order to increase their efficiency and/or reduce their cost. 
The prospects of the obtained scientific results will be revealed even more after the development of the corresponding 
package of applied programs.

By correctly solving the system of kinetic equations in a solid layer with specified characteristics and matching 
the solution for all layers of the structure, it is possible to adequately determine not only the values of the coefficients 
(parameters) of each layer within the framework of the diffusion-drift theory, but also their various dependencies.

The main conclusion of this work is as follows. A solid-state structure is an inhomogeneous medium with a 
specific distribution of physical properties over its thickness, including all of its boundaries. In equilibrium and when it 
is violated, the propagation of differential and integral fluxes of quasiparticles of different kinds in an inhomogeneous 
medium has its own peculiarities, as does the associated distribution over the thickness of fluxes of thermodynamic 
quantities in the corresponding systems of quasiparticles, especially near the boundaries of the structure. Therefore, 
when developing modern multilayer solid-state structures, especially with thin layers, it is necessary to use the kinetic or 
quantum theory, which adequately takes into account physical processes and statistical phenomena that occur not only 
in homogeneous and inhomogeneous regions of the thickness of each layer, but also at all boundaries of the structure.

Adequate consideration of the features of the propagation of differential and integral fluxes of charge carriers 
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and quasiparticles of other types, as well as fluxes of thermodynamic quantities associated with them, near and across 
the boundaries of the layers of a solid-state structure, including conventional ones, will make it possible to more 
purposefully select solid-state materials to create appropriate structures and carry out optimization of its design on the 
basis of a more complete and deeper mathematical model.
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