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Abstract: The high volume of COVID-19 Chest X-rays and less number of radiologists to interpret those is a challenge 
for the highly populous developing nations. Moreover, correct grading of the COVID-19 stage by interpreting the Chest 
X-rays manually is time-taking and could be biased. It often delays the treatment. Given the scenario, the purpose of 
this study is to develop a deep learning classifier for multiple classifications (e.g., mild, moderate, and severe grade of 
involvement) of COVID-19 Chest X-rays for faster and accurate diagnosis. To accomplish the goal, the raw images 
are denoised with a Gaussian filter during pre-processing followed by the Regions of Interest, and Edge Features are 
identified using Canny’s edge detector algorithm. Standardized Edge Features become the training inputs to a Dynamic 
Radial Basis Function Network classifier, developed from scratch. Results show that the developed classifier is 88% 
precise and 86% accurate in classifying the grade of illness with a much faster processing speed. The contribution lies in 
the dynamic allocation of the (i) number of Input and Hidden nodes as per the shape and size of the image, (ii) Learning 
rate, (iii) Centroid, (iv) Spread, and (v) Weight values during squared error minimization; (vi) image size reduction (37% 
on average) by standardization, instead of dimensionality reduction to prevent data loss; and (vii) reducing the time 
complexity of the classifier by 26% on average. Such a classifier could be a reliable assistive tool to human doctors in 
screening and grading COVID-19 patients and in turn, would help faster management of the patients as per the stages of 
COVID-19.
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DRBFN		  Dynamic Radial Basis Function Net 
EF			   Edge Features
ED			  Euclidean Distance 
FP			   False Positive 
FN			  False Negative 
FFNN		  Feed Forward Neural Net 
GF			  Gaussian Filter 
HL			  Hidden Layer 
IL			   Input Layer 
KMC		  K-Means Clustering 
m			   Mild 
M			   Moderate 
MRI		  Magnetic Resonance Imaging 
OL			  Output Layer 
Q1			   Quartile 1 
Q2			   Quartile 2 
Q3			   Quartile 3 
RBF		  Radial Basis Function 
ROI		  Regions of Interest 
S			   Severe 
SE			   Squared Error 
TO			  Target Output 
USG		  Ultrasonography 
VC			  Visual Cortex

1. Introduction
Biological vision (BV) is one of the most important sensory systems in humans and is still evolving continuously. 

Photons dissipated by any structure are captured by our Retina as pixels. The signal thus generated in the Retina then 
travels to the Occipital or Visual cortex (VC) via Optic nerves of each eye and the pixels having high values play a 
critical role in capturing the first visual impression of any object. Pixels on or near the edges of an object possess high 
values, which are therefore commonly (i) captured, (ii) registered or stored, (iii) retrieved, and (iv) processed in VC. 
The V1 cells in the vision path play a key role in that edge detection, orientation, and assessment of axial rotation of 
any image of interest to the brain [1]. Computer vision (CV) attempts to mimic BV for image processing by computer 
algorithms. Hence, edge detection to identify salient Edge Features (EF) of any image is the key to its successful 
implementation [2]. 

Feature selection is an important domain of image processing and various machine learning and deep learning 
techniques and algorithms have been used so far for text document clustering [3], Aquila optimizer that studies the 
feature behavior of Aquila when catching its prey [4], novel multilevel thresholding of COVID-19 CT images using the 
Arithmetic Optimization Algorithm (AOA) [5], machine learning classifiers [6], and so forth. 

Medical imaging has been popular for screening, diagnosis, and prognostic purposes for decades [7-8]. X-ray 
radiographs are still the modality of choice due to their easy availability and low cost to the patients, especially in the 
developing nations, where other modalities such as Computerized Tomography (CT), Ultrasonography (USG), and 
Magnetic Resonance Imaging (MRI) facilities are not so easily available and are costlier than that of X-rays. COVID-19 
virus predominantly affects the respiratory system. Hence, a Chest X-ray (CXR) remains crucial to the diagnosis of 
severity. 

In a CXR image, lungs and their accessory organs are found to be grossly overlapped on each other because of 
their normal anatomical position, spread, and axial twists, especially the mediastinum region [9]. When pathological, 
their alignment, texture, color, and shape are altered, which can be identified by several edge detection algorithms 
and the deformed regions may be the Regions of Interest (ROI) to the human doctors. The Edge Features (EF), which 
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are nothing but the higher pixel values on and near the edges of an ROI, therefore, store the significant information to 
classify the image into normal or abnormal with the severity grade based on the extent of deformities, represented by 
changes in the pixel values.

In CV research, classifiers are gaining lots of popularity due to the ongoing COVID-19 pandemic [10]. Several 
studies are reported using hard classifiers, such as Support Vector Machines, Random Forest, Logistic regressions, 
Multiple linear regressions, Neural networks with both adaptive and deep learning techniques, and so forth in classifying 
normal and abnormal images [10]. Detail review of the current state of the art literature has been conducted in this 
study, which finds most of the classifiers show good performance. However, due to the space constraint, the studies have 
not been described in detail here. Interested readers may go through the comprehensive works of [11-13], and others.

The research question that this work has attempted to address is to develop a deep learning-based dynamic Radial 
Basis Function Net (DRBFN) image classifier, which is acceptably precise, accurate, lossless, and fast in processing 
the image. Current research on COVID-19 image processing is dependent upon the applications of Convolutional 
Neural Network (CNN) and its various extensions. Using DRBFN, grading COVID-19 CXRs, and in turn, validating 
the diagnostic accuracy and precision is hence a novel approach adopted in this study. It is worth mentioning that 
no comparison has been made between existing deep learning-based classifiers and the developed classifier as its 
performances vary across different image data. Hence, such a comparison would be scientifically illogical. 

The structure of the remaining part of the paper is as follows. Section 2 describes the Material and method; Results 
are shown and discussed in Section 3 and 4, respectively, and Section 5 concludes the paper.

2. Material and methods
The purpose of the study is to develop an automatic, fast, and accurate COVID-19 CXR analyzer, which would be 

helpful to the human doctors to grade the stage of the illness and consider the treatment protocol accordingly to save 
lives. To accomplish the task, the following methods have been adopted to train the computer concerning the human 
BV: 

2.1. Acquisition of COVID CXRs 
2.2. Denoising of the acquired CXRs as the pre-processing step 
2.3. ROI detection and Edge feature (EF) extractions as pixel values and its’ standardization, and 
2.4. Construction of the DRBFN classifier and its training, testing, validation, and computational time complexity 

estimation.
System information: All coding for the experiment has been conducted on Python 3.8.3 with Spyder editor 

version 5.0.0, preloaded with skimage, NumPy, OpenCV, and pandas for image processing and matplotlib, seaborn for 
visualization. All computations are run on Windows 10 Pro 64 bits OS x 64-based Processor Intel (R) Core TM @ 2.80 
GHz. 

2.1 CXR acquisition

COVID CXR images (N = 100), in which, forty-three are pre-diagnosed as ‘mild’ (‘m’ class label), thirty-four as 
‘moderate’ (‘M’ class label), and twenty-three as ‘severe’ (‘S’ class label) are obtained. A group of radiologists did the 
clinical grading and assigned class labels for each image. Appropriate ethical measures have been taken to preserve 
patients’ privacy. Seventy percent CXRs are used for network training to find the best parameters while the remaining 
thirty percent of data are used for testing the performance of the network. 

For validation, another set of CXRs (N = 50) have been collected. These are also pre-diagnosed by the radiologists 
as ‘m’ (17), ‘M’ (15), and ‘S’ (18), respectively. 

In the next step, raw CXRs are denoised or filtered.

2.2 Filtering

Any image is normally noisy and the noise affects its quality. Hence, as an image pre-processing method, all CXR 
images have been denoised using the Gaussian Filtering (GF) technique having the kernel size of 5 × 5, using equations 



Artificial Intelligence Evolution 84 | Subhagata Chattopadhyay

1 and 2 [14]. The advantage of such type of filter is that it can preserve the originality of the image by maintaining the 
edges, which are useful to derive the significant features of the image and are fundamental aspects of this work [14]. 
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In the case of 2D Gaussian, it is the product of two 1D Gaussians, one of each dimension, and is represented as 
follows, 
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Where ‘x’ and ‘y’ represent horizontal and vertical axes, ‘σ’ is the standard deviation of the Gaussian distribution. 
Values obtained from this distribution are used to build a convolutional matrix that in turn is applied to the original 
image. Each pixel’s new value is then set to a weighted average of that pixel’s neighborhood. The original pixels receive 
high weights (i.e., the high Gaussian value) and the neighborhood pixels receive lower values (i.e., smaller weights) as 
their distances from the original pixels increase. This operation, that’s why results in blurring of the image with ‘edge 
preservation’ in a much better way [15], and therefore has been used in this work. After denoising, the images, their 
Edge Features (EFs) are extracted. However, blurring of images can also be prevented and the original sharpness of 
the image can be preserved by ‘mask adjusting’ the GF, which in turn, fine-tunes the appropriate edge-angle data and 
preserves the sharpness of the image [16].

2.3 Edge Feature (EF) extraction

It is an important step towards medical image processing as the anatomical structures in a medical image are 
grossly overlapped on each other and need to be demarcated to identify the underlying pathology, where the EFs are 
distorted or missing [17]. In this work, Edge Features (EF) have been extracted for getting the Regions of Interest (ROI) 
using Canny’s EF extraction technique [18]. The reason for using the EF method is because human vision depends on 
‘edges’ by activating its V1 cells of the visual path [19] for registering, retrieval, and analysis. To mimic Biological 
vision, Computer vision, therefore, attempts to detect the pixels of the edges, especially the high-value pixels, which are 
the ‘pixels of interest’ within the ROIs of any image. 

Once the EF pixel values are obtained, these are then standardized (stdz) by subtracting the median (Q2) of each 
‘x’ pixel found in each variable and then divided by the inter-quartile range (Q3-Q1) of ‘x’ using equation 3. In this 
equation, ‘xi’ is nothing by the value of ith pixel of the corresponding EFs variables (refer to Figure 2).
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2.4 Construction of a Dynamic Radial Basis Function Network (DRBFN)

A Radial Basis Function Network (RBFN), originally proposed by [20] consists of three layers-Input (IL), Hidden 
(HL), and Output (OL). Hidden and Output layers are connected by randomly assigned weight vectors (see Figure 1). 
The input layer possesses one neuron for each categorical variable and thus the number of IL nodes varies according to 
the shape of the image as soon as it is fed into the network, which means that the number of IL nodes is dynamically 
assigned according to the shape of the input image and hence the developed RBFN is called as DRBFN. Nodes of IL 
take standardized EF pixel values as the inputs to it. The transfer functions of the IL nodes are linear. Hence, the same 
value is transferred to the HL nodes. The activation of each IL node occurs only when the standardized EF pixels values 
are non-zero.
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Figure 1. Architecture of the DRBFN and classification method

HL has a variable number of neurons. The optimal number could be determined by the training process for each 
training image (see Figure 3). Each HL node consists of a ‘Radial Basis Function (RBF)’, which is centered on a point 
(μ) with dimensions similar to the number of the predictor variables. The spread or radius (σ) of the RBF function 
may be different for each dimension. The centers (i.e., the mean or µ) and spreads (i.e., the standard deviation or σ) 
are determined by the training process (see Figure 3). These two parameters are pivotal to store the EF pixels of ‘m’, 
‘M’, and ‘S’ images while training the classifier. While any ‘xi’ input vector from the IL is fed into the hidden neuron, 
it computes the Euclidean distance (ED) of ‘xi’ (‘I’ vary from 1 to ‘N’) from the neuron’s center point (µ) and then 
applies the RBF kernel function to this distance using the spread values (σ). The resulting value is passed to the OL, 
where summation takes place. K-Means Clustering (KMC)-based semi-supervised training algorithm has been used to 
identify the cluster centroids, which represent the center points (µ) of Hidden neurons from which EDs between each 
of ‘xi’ and ‘µ’ are computed [21]. Using the information of each ‘µ’, corresponding ‘σ’ values are computed and stored 
after the completion of the training. It is important to mention here that, the training process involves parametric study 
to determine the following parameters as the training progresses; however, all parameters need to be initialized as stated 
below, 

• The number of nodes in the IL is initialized as 100, which will change according to the Image shape, dynamically
• Number of neurons in the HL (initialized with the same number as in the Input nodes)
• Coordinates of the center (µ, initialized with 0.5) of each HL RBF 
• Radius (σ) of each RBF function in each dimension (initialized with 1.0)
• Weights (w) are applied to the RBF outputs as they are passed to the summation layer (initialized with any 

random float value between 0 and 1)
• Learning rate (α) is initialized with 0.05, which is required for Squared Error (SE) correction, iteratively during 
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training.
Figure 1 shows the structure of a DRBFN, developed in this work. Here, ‘v’ stands for ‘variables’ that vary from 1 

to ‘n’. The number of Input nodes equals the number of ‘v’ (dynamically assigned according to the shape of the image); 
‘xi’ (‘i’ varies from 1 to ‘N’) values come under each ‘v’, which is nothing by the standardized values of the EFs, fed 
to the HL nodes (h), the number of which varies from 1 to ‘m’ and the objective is to have N > m [22], which could be 
achieved with the training; ‘w’ is the connector weight vectors [0, 1] between the Hidden and Output nodes’; summation 
(‘y’) takes place in the Output node, as mentioned above. A linear transfer function is chosen in the Input and Output 
nodes, while Hidden nodes have Gaussian transfer functions (equation 4). 
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As mentioned Input nodes are activated only when pixel values of xi ≠ 0. Therefore, it also reduces the input pixel 
data size as ‘0’s are discarded. Size reduction helps to gain the processing speed of the classifier. 

Seventy percent of the standardized pixels values of EF has been used to train the classifier with COVID-19 
affected CXR images and tested with the remaining set of thirty percent CXRs after 10-fold cross-validation. Squared 
Error (SE) is computed for the output of each training image using equation 5. In this equation, TO stands for Target 
Output, which is already predicted by the radiologists, while CO refers to Calculated Output, which are the outputs 
given by the classifier. It is worth noting here that the classification is done by a Feed-Forward Neural Network (FFNN) 
and SE correction (minimization) is done with a Back Propagation Net (BPN) with learning rate (α).

(5)2( )SE TO CO= −

The minimum target SE value is set as 25% (i.e., 75% accuracy) as doctors’ average clinical accuracy is about 71% 
in reality [23]. Unless the target SE is achieved, training continues by updating the ‘number of hidden nodes’, ‘α’, ‘µ’, ‘σ’, 
and ‘w’ values, respectively, based on these values, the DRBFN classifier is reconstructed for testing (with remaining 
thirty percent of the input data) and validation (a new set of fifty CXRs of COVID-19 affected patients). Accuracy and 
Precision, using equations 6 and 7, respectively are computed for fifty images, which have already been pre-diagnosed 
by the radiologists. 

(6)TP TNAccuracy
TP TN FP FN

+
=

+ + +
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TP FP
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+

In these equations, TP, FP, TN, FN refers to True Positive, False Positive, True Negative, and False Negative, 
respectively. These are computed based on the radiologists’ diagnoses of the CXRs as mild ‘m’, moderate ‘M’, and 
severe ‘S’.

Computational Time Complexity (Big(O)) has been calculated to process each of fifty CXR images using equation 8. 

(8)( ) (2 )Big O N=

Where ‘N’ denotes the number of stdz pixels. Average Big(O) has been plotted against the processing of each CXR 
image for visualization (see Table 2).

In the next section (Section III), the results of the experiments are shown and in turn, explained in Section IV.
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3. Results 
In this section, results are shown. Explanations of the results are made in Section IV. Figure 2 shows how (i) 

anatomical ROIs of a CXR is defined and (ii) EFs pixels are standardized for processing through IL nodes, which are 
activated with non-zero pixels values as these are pixels of interest of ‘m’, ‘M’, and ‘S’ grades of COVID-19 CXR 
images. 
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Figure 2. CXR anatomy, Canny EFs (ROIs), and Standardized EFs of ‘m-M-S’ images

Next, the results of the parametric study for one CXR image are shown in Figure 3. Similarly, for the remaining 
CXRs, parametric studies are conducted to find optimum (i) α, (ii) training iterations, (iii) number of HL nodes 
(mean(hn)), (iv) µ values, (v) σ values, (vi) ‘w’ values, all mapped against SE values using backpropagation. With these 
optimum values, DRBFN is reconstructed for testing with the remaining thirty percent CXRs and validation using a new 
set of fifty CXRs. 
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Figure 3. Results of the parametric study

Optimum values of Iterations, learning rate (alpha), number of Hidden nodes (hn), Center point (miu), Spread (rho), 
and Weights achieved during the training of the DRBFN classifier. It can be noted that the least SE can be achieved with 
10,000 iterations, learning rate or α value of 0.93, a center point or μ value of 0.5, spread value (σ) of 2.42, number of 
hidden nodes of 275, and weight values around 0.9. With these parameters, the DRBFN is reconstructed for testing. 

Appendix-1a shows the precision and accuracy of the reconstructed classifier on fifty new COVID-19 affected 
CXR images. Here, the grades ‘Computed by the classifier’ are matched with that of the ‘Actual output given by 
the radiologists’ using equations 6 and 7. It is found that the classifier is 86% accurate and 88% precise in grading 
COVID-19 CXRs.

Big(O) has then been computed for each CXR processing during the above validation and the results can be seen in 
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Appendix-1b. 

4. Discussions
In COVID-19 infection, the respiratory system is predominantly affected. Diagnoses are made based on the grade 

of the involvement, which are reflected in the CXR image. The paper has addressed this issue by (i) pre-processing 
each image using GF to reduce noise within the image and preserving the edges, (ii) identifying the ROIs of the image 
using Canny edge detector, (iii) EFs, thus extracted from the ROIs, are standardized for RBFN training. Figure 2 shows 
the normal anatomical positions of the important structures, which are numbered accordingly in both the original and 
Edge-detected CXR images. The pixel values of the EFs [0, 255] are then standardized with equation 3 and it becomes 
[0, 1]. For the images, the median (Q2) equals ‘0’ and the inter-quartile distance (Q3-Q1) is ‘255’. Hence, the final 
standardized input values have become binary, which is fed into the RBFN classifier (refer to Figure 1). It is important 
to note that the number of ‘1’s is consistently increasing as the images are distorted due to the generation of more and 
more edges with the amount of distortion, i.e., pixels gain high values as the images lose their original texture (refer to 
Figure 2). 

The shape of the sample images, i.e., ‘m’ = mild (96 × 85); ‘M’ = Moderate (155 × 159), and ‘S’ = Severe COVID 
(196 × 258) are shown in Figure 2. Each column represents the ‘variables’, while the rows are the pixels values [0, 1] 
under each column. The number of input nodes is dynamically assigned as the number of columns. Image size is further 
reduced as pixel values, which are ‘0’s, are discarded automatically as input nodes are pre-conditioned not fire with 
pixel values equal to ‘0’. Thus, ‘pixels of interest’, i.e., pixels with values of ‘1’ after standardization can be preserved, 
and in turn, would be used for training the RBFN classifier. Similarly, EFs have been identified and standardized for all 
CXR images (m, M, and S), which have been fed into the network and its training is conducted to minimize the error 
in diagnosis (SE), generated through iterations. Before testing the performance of the RBFN classifier, a battery of 
parametric studies have been conducted during its training (using 70% of the input data) to identify the (i) the optimum 
number of neurons in the Hidden layer by applying ‘Data structure-preserving criterion technique’ proposed by [24], (ii) 
coordinates of the center (µ) and its spread (σ) in each hidden-layer RBF function by KMC [22], and (iii) weights (w) 
applied to the RBF outputs as they are passed through the summation or output layer using least square method [25]. 
Iteration range is kept from 100 to 10,000 while training the RBFN. Optimum values of the above parameters can be 
seen in Figure 3 and are used for reconstructing the RBFN into a DRBFN classifier for testing (with the remaining 30% 
of the input data) and validating its performance. In the DRBFN classifier, the training EF pixel data for ‘m’, ‘M’, and ‘S’ 
are stored, on which the EF pixel data for new images are mapped for diagnosis.

Performance of the developed DRBFN classifier has been tested on fifty new COVID-19 affected CXR images 
by measuring the accuracy and precision using equations 6 and 7 and can be seen in Appendix-1a. In this table, the 
predicted classification of CXR images is validated with that of the radiologist’s diagnosis. There are three classes 
of COVID-19 affected CXR images-‘mild or m’, ‘Moderate or M’, and ‘Severe of S’ grades. Misclassifications are 
interpreted as class predicted for ‘m’ but the actual class is of higher grade, i.e., ‘M’ or ‘S’ is an ‘FN’ case and ‘FP’ 
otherwise. When classes (‘M’ or ‘S’) match for predicted and actual, it is the ‘TP’ case, while the ‘TN’ case is considered 
when classes match for ‘m’. The average accuracy and precision of the classifier are 86% and 88%, respectively, which 
is about 15% and 17% above expectation, which was originally 75%. It is worth mentioning that the DRBFN classifier 
can diagnose ‘mild’ cases with 88% accuracy, ‘Moderate’ cases with 86% accuracy, and ‘Severe’ cases with about 78% 
accuracy, i.e., all are well above the expected accuracy rate of 75% while developing the classifier.

Gaining classifier speed is another contribution of this study by reducing the image size and dynamically allocating 
the number of nodes in the Input and Hidden layer, ‘w’, σ , ‘µ’ with iterations while minimizing SE value with the help 
of optimum ‘α’. Appendix-1b shows that the Big(O) is reduced by 26% on average as the size of the images is reduced 
due to the standardization method by 37% to gain speed by the DRBFN classifier.

5. Conclusions and future research
The work proposes a dynamic, loss-less, and fast RBFN classifier using deep learning method for grading ‘mild’, 
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‘moderate’, and ‘severe’ COVID-19 infection in the lungs with 86% average accuracy and 88% precision, which are far 
better than that of the accuracy and precision of the human doctors, which is around 71% [23]. The contribution lies on (a) 
dynamic selection of Input nodes, Hidden nodes, ‘μ’, ‘σ’, and ‘w’ values while training, where ‘μ’ and ‘σ’ values store 
EF standardized pixel information for comparing each the new CXR image for diagnosis during validation; (b) EF size 
has been reduced by allowing pixels with ‘> 0’ values instead of reducing the number of variables i.e., the dimension 
to preserve the ‘pixels of interest’ for a given image; and it allows (c) higher speed (average 26% reduction in the time 
complexity) in classifying as the size of the input pixels is reduced by the average of 37% after the EF pixel values are 
standardized. 

The limitation of the study is that, in a multi-class problem, in reality, the boundaries between any two grades are 
not crisp and often there are overlapping. Hence, soft computing techniques such as fuzzy set and fuzzy logic-based 
hybrid classifier are more powerful and holistic in solving those class overlaps as the literal intermediary zones. The 
author is working on this issue as a future extension of this study.
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APPENDIX-1a

Table 1. Accuracy and precision of the DRBFN classifier

#CXR Calc_out Act_out TP FP TN FN

1 m S       X

2 M S       X

3 S S X      

4 M m   X    

5 M M X      

6 m m     X  

7 S M   X    

8 S S X      

9 M m   X    

10 S S X      

11 m S       X

12 m m     X  

13 M M X      

14 M M X      

15 S S X      

16 S S X      

17 m m     X  

18 m m     X  

19 m m     X  

20 M M X      

21 S S X      

22 S M   X    

23 M M X      

24 S S X      

25 m m   X  

26 M M X      

27 M M X      

28 S S X      

29 S S X      

30 S S X      

31 m m   X  

32 M M X      

33 M M X      

34 M M X      

35 M M X      

36 m m     X  

37 m m     X  

38 m m     X  

39 S S X      
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#CXR Calc_out Act_out TP FP TN FN

40 S S X      

41 S S X      

42 m m     X  

43 m m     X  

44 m m     X  

45 m m     X  

46 m m     X  

47 S S X      

48 S S X      

49 M M X      

50 M M X      

m 17 28 4 15 3

M 15 Accuracy: 86%

S 18 Precision: 88%
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APPENDIX-1b

Table 2. Reduction of Big(O) due to standardization of EF 

#CXR Shape (N) Shape (n) Size Stdz_EF_size Size reduction Big(O)_org_size Big(O)_stdz_size Big(O) % redn

1 85 96 8160 5386 34% 0.135 0.09 0.333333333

2 223 219 48837 37116 24% 0.819 0.63 0.230769231

3 212 208 44096 19402 56% 0.3636 0.36 0.00990099

4 209 205 42845 27421 36% 0.495 0.45 0.090909091

5 123 119 14637 6001 59% 0.1404 0.108 0.230769231

6 145 141 20445 11654 43% 0.1962 0.18 0.082568807

7 156 152 23712 20867 12% 0.3888 0.36 0.074074074

8 234 230 53820 41441 23% 1.08 0.72 0.333333333

9 213 209 44517 22704 49% 0.612 0.36 0.411764706

10 209 205 42845 20994 51% 0.432 0.36 0.166666667

11 208 204 42432 14003 67% 0.351 0.27 0.230769231

12 238 234 55692 49009 12% 1.125 0.9 0.2

13 235 231 54285 42342 22% 0.8928 0.72 0.193548387

14 234 230 53820 35521 34% 0.6993 0.63 0.099099099

15 215 211 45365 24951 45% 0.855 0.45 0.473684211

16 219 215 47085 33430 29% 0.648 0.54 0.166666667

17 210 206 43260 26389 39% 0.81 0.45 0.444444444

18 221 217 47957 28774 40% 0.918 0.54 0.411764706

19 220 216 47520 23760 50% 0.54 0.45 0.166666667

20 230 226 51980 34307 34% 0.7182 0.63 0.122807018

21 240 236 56640 43613 23% 0.9477 0.81 0.145299145

22 258 254 65532 46528 29% 0.9639 0.81 0.159663866

23 78 74 5772 3867 33% 0.855 0.45 0.473684211

24 216 212 45792 25644 44% 0.792 0.45 0.431818182

25 86 82 7052 4654 34% 0.136935 0.0765 0.441340782

26 89 85 7565 4993 34% 0.083538 0.0702 0.159663866

27 98 94 9212 6817 26% 0.107856 0.0963 0.107142857

28 211 207 43677 22275 49% 0.5004 0.36 0.28057554

29 210 206 43260 21197 51% 0.6732 0.36 0.465240642

30 209 205 42845 21851 49% 0.6588 0.36 0.453551913

31 229 225 51525 34007 34% 0.8442 0.63 0.253731343

32 267 263 70221 54070 23% 1.1088 0.99 0.107142857

33 278 274 76172 41895 45% 0.79992 0.72 0.099909991

34 302 298 89996 35098 61% 0.693 0.63 0.090909091

35 311 307 95477 52512 45% 1.458 0.9 0.382716049

36 311 307 95477 60151 37% 1.8468 1.08 0.415204678

37 345 341 117645 85881 27% 2.7693 1.53 0.447513812

38 239 235 56165 39877 29% 1.116 0.72 0.35483871

39 125 121 15125 10436 31% 0.2214 0.18 0.18699187
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#CXR Shape (N) Shape (n) Size Stdz_EF_size Size reduction Big(O)_org_size Big(O)_stdz_size Big(O) % redn

40 234 230 53820 29601 45% 0.6966 0.54 0.224806202

41 278 274 76172 47988 37% 1.2069 0.81 0.32885906

42 302 298 89996 65697 27% 1.989 1.17 0.411764706

43 311 307 95477 67789 29% 1.8135 1.17 0.35483871

44 311 307 95477 65879 31% 61.7022 37.17 0.397590361

45 345 341 117645 83528 29% 2.7081 1.53 0.435028249

46 239 235 56165 37631 33% 0.693 0.63 0.090909091

47 125 121 15125 8470 44% 0.1386 0.099 0.285714286

48 234 230 53820 35521 34% 0.756 0.63 0.166666667

49 98 94 9212 6080 34% 0.136359 0.0981 0.28057554

50 145 141 20445 15129 26% 0.4023 0.27 0.32885906

Avg. 215.26 211.56 50236 32083.00 37% 2.0208 1.2908 26%

Shape (N): pixel size
Shape (n): variable size
Stdz_EF_size: standardized Edge Feature (EF) pixel size
Big(O)_org_size: Big(O) of the original size of the images
Big(O)_stdz_size: Big(O) of the standardized size of the images, based on EF
Big(O) % redn: % reduction of Big(O)
Avg.: average
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