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Abstract: This article presents an augmented Artificial Intelligence (AI) algorithmic trading approach that combines 
Thick Data Heuristic (TDH), with Deep Reinforcement Learning (DRL), to successfully learn trading execution 
timing policies. Combining the augmented AI human trader’s intuition and heuristics with DRL techniques to provide 
more focused drivers for trading order execution timing is explored in this study. In this research, the goal is to solve 
the sequential decision-making problem of AI for profitable day and swing trading order timing executions. Enabling 
trading bots with cognitive intelligence and common-sense heuristics will offer traders including automatic traders an 
insight to understand the day-to-day swing trading timeframes indicators and arrive at mature trading decision-making. 
This article examines the performance of bots with Nasdaq and NYSE stocks that have a strong catalyst (info. which 
increases directional momentum) to find that they outperform benchmark algorithmic trading approaches. The research 
illustrates to the reader how to combine TDH and Deep Q-networks (DQN) into a TDH-DQN augmented AI trading 
bot. The bot learns through test data to predict the optimal timing of order executions autonomously on idealized trading 
time series data.
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Abbreviations
AC                Actor-Critic
ACER Actor-Critic with Experience Replay
ATR Average True Range
ANN Artificial Neural Network
APR Accumulated Percent Returns
API Application Programming Interface
AI                 Artificial Intelligence
A2C Advantage Actor-Critic
A3C Asynchronous Advantage Actor-Critic
Bot               Robot
CPR Compound Percent Returns (same as APR)
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CNN Convolutional Neural Networks
DRL Deep Reinforcement Learning
DL                Deep Learning
DQN Deep Q-Network
DDPG Deep Deterministic Policy Gradient
EMA Exponential Moving Average
GDQN Gated Deep Q-learning trading strategy
GDPG Gated Deterministic Policy Gradient trading strategy
HFT High-Frequency Trading
IB                 Interactive Brokers
JEPA Joint Embedded Predictive Architecture
LOB Limit Order Book
MACD Moving average convergence divergence
ML               Machine Learning
MSE Mean Squared Error
Nasdaq National Association of Securities Dealers Automated Quotations
NYSE New York Stock Exchange
NLP Natural Language Processing
PER Prioritized Experience Replay
PnL Profit and Loss
PPO Proximal Policy Optimization
RL                Reinforcement Learning
Relu Rectified linear unit function
TDQN Trading Deep Q-Network algorithm
TD3 Twin-Delayed DDPG
TD                Temporal Difference
TDH Thick Data Heuristics
TRPO Trust region policy optimization
TWS Trader Workstation
LSTM Long Short-term memory
QL                Q-Learning

List of symbols
Learning rate          α
Set of weights          θ
Discount Factor          γ
Epsilon greedy policy         ϵ
Q-Function                          Q
State                         S
States                        s ∈ S
Action                         A
Actions                         a ∈ A
Reward                        R
Rewards                         r ∈ R
Optimal strategy or policy  π
Time window size          τ
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1. Introduction
In this article, the TDH is a combination of human and bot-shared data management and decision-making, as 

shown in Table 1. Combining DRL with TDH, and intuition, a research question to answer in this study is whether 
DRL intraday stock trading bots and swing trading bots can be employed successfully to execute profitable trades in 
the NASDAQ and NYSE stock markets, on a single stock. Also, to explore how adding TDH (like common sense 
reasoning, risk management, stock selection, multi-timeframe analysis, training/testing data selection, timeframe 
selection, hyperparameter tuning, and model creation), affects the performance of the trading bots. The TDH helps add 
subject matter experts’ experience into the decision-making process.

Table 1. TDH agent responsibilities for the augmented AI trading bots

Thick data heuristic Agent

Multi-timeframe technical analysis bot

Patterns bot

Volume bot

Price action bot

Price levels bot

Tape-reading bot

Fibonacci extension and retraction levels human

Volume profile human

Market structure human

News human

Sentiment human

Relative performance bot

Candlestick analysis human

Fundamentals human

Momentum bot

Message boards and chat-rooms human

Twitter human

Asian and European markets human

Index and commodity futures human

Hyperparameter tuning human

Market-wide high-volume rate scanner analysis bot

Volatility bot

Top volume rate market-wide scanner bot

Risk management bot

The research goals for this research are to explore the performance of algorithmic trading bots, to see how the bots 
perform for day trading using intraday price movement and swing trading with weekly price bars going back ten years. 
In this research, we use Q-Learning (QL), where the goal is to find the optimal Q-value function for the output state 
(buy-sell-hold) with an Artificial Neural Network (ANN) in the stock market environment with iterative updates based 
on the Bellman equation.

Thick data combines qualitative and quantitative data. Fiaidhi proposes thick data is a concept that employs 
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heuristics and qualitative data (like observations, feelings, reactions, and conversation outcomes) to provide more in-
depth insights and reveals hidden patterns that can be missed with quantitative techniques. She argues it has a significant 
impact on Data Analytics and Pattern Recognition in modern conversational and explainable AI. Fiaidhi goes on to 
argue thick data analytics aims at discovering the added-value heuristics to answer focused questions that can be missed 
by quantitative analytic techniques including ML and DL [1]. Therefore, we decided to research and compare the effects 
of adding TDH to stock trading.

This research is the first to combine the qualitative and quantitative elements of TDH concepts in the area of 
Fintech or stock market trading research we are aware of. To enhance the current research attempts, we extend existing 
research by:

1. Combining TDH with DRL to compare the performance of different RL algorithms.
2. Comparing the performance of different DRL algorithms over different timeframes.
3. Determining optimal TDH-DQN trading bot parameters and settings through iterative training and testing on an 

idealized dataset and different market environments.
The organization of this manuscript is as follows. Section 2 highlights some of the previous work and background 

related to the sequential decision-making problem of AI for profitable day and swing trading order timing executions. 
Our methodology and the steps of organizing and building the framework are explained in Section 3. Section 4 
illustrates the shortcoming, and benefits of the different algorithms, through examples from real word results. Section 5 
has the conclusion and future research work.

2. Background and related works
Thick Data combines Qualitative and Quantitative Data. When companies want to build stronger ties with 

investors, they need stories. Stories contain emotions, something that no scrubbed and normalized dataset can ever 
deliver. Numbers alone do not respond to the emotions of everyday life: trust, vulnerability, fear, greed, lust, security, 
love, and intimacy. It’s hard to algorithmically represent the strength of an individual’s service/product affiliation and 
how the meaning of the affiliation changes over time. Thick Data approaches reach deep into market participants’ hearts. 
Ultimately, the relationship between a market participant and an instrument/brand is emotional, not rational.

The authors need to differentiate between qualitative and quantitative analytics before going further as the 
differentiation is not always obvious. For example, during Text Analytics, measuring the frequency of certain words 
would be considered quantitative analytics, whereas exploring the contextual meaning of a conversation would be 
considered qualitative analytics. In other words, qualitative analytics includes the analysis of context, human behavior, 
emotions, and other factors that are hard to digitize without losing any meaning. Qualitative analytics is a great approach 
to bridge the gap between insights provided by quantitative research and providing an in-depth understanding of the 
underlying reasons and motivations for a given phenomenon situation. Qualitative analytics is not an added patching 
analytics because it will not simply add more data points to adjust inaccurate prediction algorithm outputs. No output 
will be able to predict human behavior until inputs are as complex, unexpected, and sometimes as contradictory as 
humans themselves. This is where the notion of Thick Data came to the surface.

Thick data takes individual market participants’ temperatures more precisely and offers depth analytics to the 
market participant’s data story. Thick data differs from big data by its qualitative approach, obtaining ethnographic 
data that allow contexts and emotions of the analyzed subjects to be revealed, while big data requires an algorithmic 
process usually carried out by statesmen and data scientists. The problem is that while big data is big, it can also be 
thin in producing effective analytics. For big data to be analyzable, it must normalize, standardize, and define certain 
parameters and assumptions to sort, organize, and disseminate information. While big data relies on ML, thick data 
relies on the social context of connections between data points. This research allowed Wang [2], to enrich big data with 
insights into what drives people, not just as market participants, but as human beings.

Latzko et al. [3] proposed that thickening the data is supplementing the data with richly textured information, or 
in other words, adding layers of thickness to it. One could see thick data as onion structured. It is “coated” with several 
layers of rich metadata - in the literal sense of data on data. For example, if the ground were made of superposed layers 
of matter, each layer has its individuality, but it interacts with surrounding layers, forming an organic whole. Instead 



Artificial Intelligence EvolutionVolume 3 Issue 2|2022| 111

of points, thick data are whole little structured worlds. Added at different times through the research process, multiple 
layers, of description, historical and social context, and cultural meaning contribute to data thickness, but each layer is 
itself “thick” in that it is textured in complex ways and does not easily lend itself to separation into discrete, computable 
elements. Hence, the notion of stickiness and the comparison with spaghetti.

Day trading is based on buying and then selling catalyst stocks within a single day, and sometimes within 
minutes or seconds. A catalyst stock has recent news information about it which increases its directional momentum. 
The goal with day trading is to trade catalyst stocks that same day and not to keep any position overnight. Keeping 
stocks overnight is swing trading, which is a completely different style of trading, with its strategies, stock selection 
criteria, tools, and timeframes. One of the key differences between day trading and swing trading is the approach to 
stock picking. It’s important to not swing trade and day trade the same stocks as they have different selection criteria. 
Swing traders usually look for stocks in solid companies that they know won’t lose their whole value overnight. For 
day trading, however, bots can trade anything, including companies that are going bankrupt soon, because you don’t 
care what happens after the market closes. Many of the companies that are commonly day traded are too risky to hold 
overnight because they can gap in price against your position unexpectedly [4].

In day trading, our bots are competing with some of the sharpest minds in the world. The market is a massive 
crowd of traders and bots, with each bot trying to take money from the others by outsmarting them. It’s a challenging 
and intellectually intense task for human traders to manage. For this reason, we explore augmented AI trading bots to 
allow humans to do what they do best which is namely, attaching context and meaning to the data qualitatively while 
allowing the bot to analyze the quantitative aspects of the data quicker than a human ever could.

Table 1 shows the TDH used for the analysis. It can be noted due to the complexity of software systems 
development, not all the TDH were fully automated with software code. As indicated in Table 1, some of the TDH is 
performed by an experienced human trader/developer, and some are performed by the algorithmic trading bot. Finally, 
we analyze the bot’s ability to learn in a case study during Part 3 of the research.

Trading bots that rely solely on DRL, lack transparency, and an expert trader’s subjective intuition and capacity 
for consciousness. The DRL algorithmic stock trading bots provided the required TDH which showed profitable 
results for both short-term day trading and longer-term swing trading. The bots should all be considered unique to their 
environment and time with day trading and swing trading bots using different ingredients for their TDH. Even between 
different day trading bots, the decisions will be the same, but the parameters vary between the different bots depending 
on which stock they are trading. TDH should be created and tuned by an experienced augmented AI human. This is 
the case until AI software systems can more closely replicate human capacity for consciousness, intuition, memory, 
and decision-making heuristics. Our research reported some gains in expected returns and presented an alternative to 
traditional fund and wealth management.

RL is ideal for trading due to its sequential decision-making nature. Adding the trading expert heuristics to ML 
paves the way for designing new Robo-advisors, trading agents, or trading bots capable of replacing human traders. In 
this article, we refer to Robo-advisors, bots, and agents interchangeably. Bots have many obstacles in place to achieve 
true AI where they can entirely replace a skilled human trader. The bots would have to have the following computer 
process in place, mental states, intentions, interpretations, emotional states, semantic skills, consciousness, self-
awareness, or flexible intelligence. Although digital bots lack these skills, they can do more and more things better than 
humans, by processing increasing amounts of data and improving their performance by analyzing their output as input 
for the next operations.

Augmented intelligence is a subsection of ML developed to enhance human intelligence rather than operate 
independently of or outright replace it. It’s designed to do so by improving human decision-making and the actions 
taken in response to improved decisions. For this semi-autonomous augmented AI research, we are utilizing an 
augmented trader system where the human trader manually selects the best high-volume stock for the bot to trade. The 
human trader is looking for stocks with a catalyst that other traders, bots, and competing market participants will be 
watching. Stocks with lots of interest in the pre-market session with higher highs and lows and flowing price action with 
tight bid/ask spreads and price bars that interconnect without any large gaps.

Robo-advisors and trading bots utilize large historical datasets including, time-series, Limit Order Book (LOB), 
volume, fundamental, news sentiment analysis, market research, insider information, Machine Learning (ML), technical 
analysis, and simulated risk management. However, these ML trading techniques alone have limitations. Algorithmic 
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trading bots must be highly efficient at data management. They must first observe the market to discover profitable entry 
and exit trading strategies. Next, they must design or modify an existing trading strategy and finally implement the 
strategy in code.

After an event occurs in an episode, the bot must perform data processing and data science. These include 
collecting, validating, modifying, organizing, indexing, classifying, filtering, updating, sorting, storing, networking, 
distributing, accessing, retrieving, and transmitting. Finally, the bot must take actions such as monitoring, modeling, 
analyzing, planning, forecasting, decision-making, and learning. It’s a lot of computation and data processing for the 
most intelligent human or bot to handle. Nowadays to compete with the fastest bots operating at the sub-second level, 
most of the decision-making must be automated on smaller timeframes.

The auction market or stock market is an ideal environment to test 15 RL algorithms to determine which ones 
perform the best in multiple environments. A near-unlimited supply of time-series datasets is reality available, so 
researchers can gain a good understanding of how the different AI algorithms perform over different timeframes. There 
is no need for data curation, cleaning, or modification. Basically, every timeframe is available from microseconds to 
decades of perfectly organized time-series data. The primary limitation of stock market research is that the environment 
is very limited in that the only primary inputs easily available are price, volume, and news. All technical indicators are 
derivatives of price or volume.

Big Data analytics combined with High-Frequency Trading (HFT) has made it possible to apply ML and DL 
methods to financial markets. High-frequency smart agents utilize low latency, high-speed network connections to the 
financial markets data servers, and accurate real-time market data to make trades in timescales of seconds down to 
microseconds. Liquidity for algorithmic trading bots is defined as the quantity of assets available for trade. Automated 
trading bot policies around pricing and risk management depend on their objectives and preferences, the policies of 
competing market participants, the overall market environment, and trade flow from investors. Trading agents should 
have policies to vary reward formulations and adjust these policies to market conditions and different competitors.

There are different categories of trading styles based on time-frame holding time. Figure 1 shows the Latency vs 
Position holding time for HFT, day and swing trading, and long-term investing. Machine learning is driving algorithmic 
trading, which is faster than traditional long-term investing strategies and more deliberate than HFT in stock markets [5].

Trained trading models that perform well out of sample are the core requirement for effective DRL trading bots. 
DRL gives computers the ability to learn from their experiences and improve their performance as they gain more 
experience. The trading bots create models to uncover the relationships between the price inputs and the trading 
decisions outputs when given historical price data as input. Next, the bots forecast outcomes out of the sample on the 
test data. If the results are satisfactory the bots can be deployed into the markets with the trained models to execute live 
trades. This feature makes DRL particularly attractive as an underlying approach to building algorithmic trading bots.

Figure 1. Latency vs position holding time for day, and swing trading
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An autonomous entity is the ultimate achievement of AI. The flow of Reinforcement Learning (RL) in stock 
trading works as follows: The environment or stock market communicates the reward and state, (current price) to the 
agent. The agent decides based on the policy and new reward. The agent then takes action to Bid and Ask for quotes on 
the environment. The object or close price moves from one state to another.

The RL cycle works in an interconnected manner. The agent is not told which actions to take, as with other 
forms of ML, but instead must discover which actions have given the maximum reward by trying the actions. This 
environment is not as complex as others because individual stock trading actions don’t affect the next situation and all 
subsequent rewards. An individual trader has minimal effect on the price.

Algorithmic trading primarily involves the automation of trading tasks. There are a lot of trading tasks that fall 
within this category such as risk management, technical analysis, and general hard-coded trading rules. Here the human 
programs the computer to take care of all the actions that don’t vary between trading. These are the decisions outside the 
domain of intuition, where the bot performs actions based on fixed sets of rules. Hard-coded systems fall apart when the 
market regime changes and the trend changes direction or rate of momentum. Strict algorithmic trading systems often 
experience sharp drawdowns during these periods, and it takes an experienced trader’s intuition to decide to scale back 
or reverse a strategy that has been working recently or over a larger timeframe.

Software systems that can imitate and model a human trader’s emotions aren’t currently available. Until researchers 
can model emotions in trading bots, it will always be challenging to completely model the intuition part of trading. This 
is especially true at the smaller day trading timeframes where decisions must be made lightning fast. 

When used in combination with DL, RL has yielded some of the most prominent successes in ML, such as self-
driving cars, and exceeding human performance at games [6, 7]. DRL systems can exceed human performance at many 
tasks but it’s not without fault. Modeling a trader’s decision-making heuristics and intuition with computer systems is 
a difficult task. Only a flexible learning system such as DRL can analyze time-series data for pattern recognition and 
generalization like consistently profitable human traders. Traders adapt and last for years in the market because they can 
adjust to cyclical bull and bear markets.

The DRL trading bots must also cope with the trader’s intuitive issue of deciding whether to try new actions that 
may not be immediately optimal but longer-term could deliver the maximum reward. Alternatively, the bot must decide 
if it should try new actions to find another optimal path to rewards. The bot must also determine which step in the path 
was critical to the optimal policy. Developing AI algorithmic stock trading bots is challenging and market intuition, 
thick data analysis, and a good knowledge of the different models available are essential items to consider when 
developing DRL algorithmic stock trading bots.

The interactive and online nature of DRL makes it particularly well-suited to the trading domain. DRL models 
goal-directed learning by an agent that interacts with a typically stochastic environment that the agent has incomplete 
information about. DRL aims to automate how the agent makes decisions to achieve a long-term objective by learning 
the value of states and actions from a reward signal. The goal is to derive a policy that encodes behavioral rules and 
maps states to actions.

DRL is considered most like human learning that results from taking actions in the real world and observing 
the consequences. It differs from supervised learning because it optimizes the agent’s behavior one trial-and-error 
experience at a time based on a scalar reward signal, rather than by generalizing from correctly labeled, representative 
samples of the target concept. Moreover, RL does not stop at making predictions. Instead, it takes an end-to-end 
perspective on goal-oriented decision-making by including actions and their consequences.

Cartea et al. [8] propose the stock market is a complex environment. Their actions are simple, with only 3 outputs, 
buy, sell, or wait, but the inputs are very complex. The primary issue is incomplete information about the environment. 
It’s impossible to know the motivations and current state of other traders. Just like human expert traders, the more 
information the bots have about the current state of the market the more successful they are. The design of trading bot 
algorithms requires sophisticated mathematical models, a solid analysis of auction data, and a deep understanding of 
how markets and exchanges function.

It is generally accepted that the markets are efficient but what are they exactly efficient at doing? The markets are 
auction facilitators, so they are efficient at seeking the balance between buyers and sellers. The markets are always 
seeking liquidity. If there are a bunch of orders waiting to be filled at certain price levels the market will find those 
orders and fill that liquidity. The combined strength of the buyers vs the sellers pushes the price to levels based on the 
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sentiment of the market participants.
Jammalamadaka et al. [9] argue that news articles serve the purpose of spreading information about the companies, 

and further influence people either consciously or unconsciously in their decision-making process while market making 
in the auction market. Positive news such as good earnings reports, improved corporate governance, new products, 
and acquisitions, as well as positive overall economic and political indicators, translate into buying motivations and 
increases in prices, while negative news will have the opposite effects.

Upon years of observation of real-time and historical data, it can be observed that market events and conditions 
tend to repeat themselves. This is likely due to the long-term memory of the market participants. These observations of 
repeating patterns can be approached from the perspective of Heuristics held within the domain of study called symbolic 
AI. A heuristic technique or heuristic is any approach to problem-solving or self-discovery that employs a practical 
method that is not guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching an immediate, 
short-term goal or approximation [10]. The auction markets behave very much in this way at times with optimal, perfect, 
or rational conditions seemed to be non-existent. Value is measured by how much someone is willing to pay after you 
have already bought on the Ask or sold at the Bid.

The Role of the Day Trader as a market participant is important to consider when designing trading bots. 
Institutional traders are undoubtedly the determining forces in any significant price action. Accordingly, changes 
always take place when they perceive the current price to be too high or too low. To implement their plans, institutional 
traders inevitably need to enter the market temporarily at intraday levels. The role of a day trader is different. While an 
institutional trader follows a predetermined opinion and market direction, a day trader must first try to interpret it at the 
macro level. To determine the macro-level market structure the day trader must determine market direction, who is in 
control, and if there are any big buyers or sellers trying to disguise their intentions.

The next task of a day trader is to determine when exactly institutional traders become active at the micro-level. 
This is where a more detailed analysis at a smaller time level comes into play. These combine market and volume 
profiles, important chart points, and order flow. Only a combination of these components enables an algorithmic DRL 
day trading bot to execute a low-risk trade [11].

2.1 Related work

LeCun et al. [12] offer a good explanation of how DL works. LeCun proposes DL allows computational models 
that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. 
Deep learning discovers intricate structures in large data sets by using the backpropagation algorithm to indicate how 
a machine should change its internal parameters that are used to compute the representation in each layer from the 
representation in the previous layers. In this research, we are using time series closing price data as the input variable. 
We are employing DL to solve the Q-table for the heuristic process-oriented RL trading agents.

Sutton and Barto in their seminal work [13] established the basis for a whole new field called RL used extensively 
throughout this work. The DRL algorithms created by DeepMind researchers from 2013-2017 [7, 14-17] inspired and 
influenced this work. The algorithms were developed to achieve better than human performance in Atari video games 
with the Rainbow Algorithm [6]. Schaul et al. [15] researched the experience replay concept which was utilized for the 
construction of the TDH-DQN trading bots for Parts 2 and 3 analysis.

Realistic simulated environments, where AI agents can be trained to learn a large repertoire of cognitive skills, 
were explored through the work of Wang et al. [18]. Actor-Critic with Experience Replay (ACER)’s features include 
using retrace Q-value estimation, Truncating the importance weights with bias correction, and applying efficient Trust 
Region Policy Optimization (TRPO) [19]. Also, according to Bellemare et al. [20], Every time an agent acts upon the 
environment, an expensive simulation step is conducted. Thus, to reduce the cost of simulation, the need to reduce the 
number of simulation steps (i.e., closing stock prices at pre-defined time-series intervals like five-second, one-minute, 
or daily samples of the stock environment). This need for sample efficiency is even more compelling when agents are 
deployed in the real world such as AI day trading algorithmic trading bots. The idea of learnable models has recently 
enjoyed a renewal of interest by Ha et al. [21] and Moerland et al. [22] for a recent survey of model-based RL [23].

Experience replay explored by Lin [24], has gained popularity in deep QL where it is often motivated as a 
technique for reducing sample correlation. Replay is a valuable tool for improving sample efficiency. The deterministic 
nature of the optimal policy limits its use in adversarial domains. Finding the greedy action with respect to the Q 
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function is costly for large action spaces [18].
Based on this hybrid framework, Mnih et al. [25] proposed an asynchronous variant of the A2C method which 

surpasses the origin Actor-Critic Agent (AC), in convergence time and performance. Lillicrap et al. [26] presented the 
DDPG algorithm for solving problems with continuous action spaces [27].

Other ML approaches to deploying stock market trading bots use Long Short Term Memory (LSTM) neural 
networks to feed multiple data into the neural network to come up with the next prediction in the time series [28]. This 
is practical for longer-term swing trading bots, where the neural network has plenty of time to run computations and 
execute trades at most once per day, but for a real-time intraday system that learns and reacts to the environment, this 
would be too slow to compute compared to RL. RL also doesn’t need as big of a dataset to make accurate predictions as 
strictly supervised or unsupervised learning or DL approaches.

Early DRL research by Mnih et al. [7] proposed a DQN model to learn long-term control policies with smattering 
prior knowledge. Research focuses on employing deep neural networks to learn the Q matrix. Hasselt et al. [16] 
proposed a Double DQN algorithm to reduce overestimation. Lillicrap et al. [26] presented an actor-critic, a model-
free algorithm named deep deterministic policy gradient, to learn policies. Mnih et al. [25] DQN exploited the replay 
algorithm and successfully integrated RL with deep neural networks. This reduced the computation complexity and 
improved the performance of RL agents because of the rich representations provided by deep neural networks. Mnih 
et al. [25] put up a parallel RL paradigm, which asynchronously executed multiple agents on multiple instances of the 
environment in parallel, to deal with the non-stationary problem. Besides, the algorithm was compatible with various RL 
algorithms, including on-policy ones such as AC methods, Sarsa, n-step methods, and off-policy ones like QL. Wang et 
al. [17] brought forward the Dueling Network, which is a DQN-based method that divides the original network into an 
output scalar V(s) and an output action to the dominant value and integrates two Q values after operation respectively. 
Table 1 shows 9 related DRL works along with the algorithms they used, dataset, period, and time series interval 
information. The TDH-DQN proposed method is shown at the bottom of Table 2 for comparison.

Soon after the DeepMind researchers Atari DRL papers were released, researchers applied the techniques to 
algorithmic trading. DRL models are widely used to learn a good single-stock trading strategy for a given stock based 
on its historical data. Deng et al. [29] proposed a model of Deep Direct RL and added fuzzy learning. Du et al. [30] 
proposed QL, to optimize policies. Wang et al. [31] proposed employing deep QL to build an end-to-end deep Q-trading 
system. Kang et al. [32] modified and adapted the Asynchronous Advantage Actor-Critic (A3C) by Mnih et al. [25], 
A3C RL algorithm and joined it with DL. 

Recently, Xiong et al. [33] employed the Deep Deterministic Policy Gradient (DDPG) technique to learn a dynamic 
stock trading strategy. Azhikodan et al. [34] proposed automating swing trading using deep RL. Li et al. [35] examined 
the performance of three variations of the Deep Q-network including typical DQN, Double DQN, and Dueling DQN in 
learning single stock trading strategies for ten US stocks. Jeong et al. [36] proposed a deep QL network to determine the 
number of shares used in prediction. Wu et al. [37] used a Gated Recurrent Unit (GRU) to extract temporal dependencies 
from raw financial data and technical indicators in combination with the DQN and Deterministic Policy Gradient (DPG) 
models to learn a trading strategy on single stocks. Lei et al. [38] proposed a time-driven feature-aware jointly deep RL 
model called TFJ and DRL. Yang et al. [39] proposed an ensemble strategy that employs deep reinforcement schemes 
to learn a stock trading strategy by maximizing investment return. Park et al. [40] proposed a novel portfolio trading 
strategy in which an intelligent agent is trained to identify an optimal trading action using deep Q-learning.

Hirchoua et al. [41] proposed a novel rule-based policy approach to train a deep RL agent for automated financial 
trading. Chakole et al. [42] used a QL algorithm to find the optimal trading strategy, in which the unsupervised learning 
method K-means and candlestick chart were, respectively, used to represent the state of the stock market. Carta et al. 
[43] proposed an ensemble of RL approaches that do not use annotations to learn, but rather learn how to maximize a 
return function over the training stage. Theate et al. [44] proposed a novel DRL trading policy to maximize the resulting 
Sharpe ratio performance indicator on a broad range of stock markets. For more general ML information, Kumbure 
et al. [45] reviews the literature and ML techniques and data for stock market forecasting. Millea [45] offers a critical 
survey of deep reinforcement for trading [46].
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Table 2. DRL related work summary for single stock trading
 

Article Algorithm Dataset Period Time-Series interval for RL

[44] TDQN 30 stocks 5 years Daily

[37] GDQN and GDPG 15 stocks 8 years Daily

[39] PPO, A2C, DDPG 30 stocks 7 years Daily

[38] TFJ, DRL S & P 500 1999-2018 Daily

[40] DQL US: ETF, KOR: IDX 2010-2017 -

[34] NN, RCNN Nasdaq: GE, Nasdaq: GOOGL - -

[36] DQL, DNN S & P 500, KOSPI,
Euro Stoxx 50, HSI 1987-2017 Daily

[47] DQN, A3C, SDAEs, LSTM US (AAPL, PG,
IBM, ES, IF, S & P 500) 2008-2018 Minute, Daily

[39] DRL, PPO US (S & P 500,
5 stocks, Gold, BTC) 1960-2019 -

Proposed multi-
timeframe method TDH, DQN

Nasdaq, NYSE
(7 stocks × 5 sec and

1 stock × 1 min,
10 stocks × weekly)

2012-2022
Part 1a: 5 sec,

Part 1b: 1 min data,
Part 2: Weekly

Taghian et al. [48] proposed a DRL model with feature extraction modules on the Dow Jones Index. Suhail et al. 
[49] proposed combining market sentiments and RL using Apple data from 2006-2016. They investigated adding the 
influence of market news on deciding stock prices. In our contribution to the overall research, we analyze the best DRL 
algorithms for multi-timeframe trading. We also add TDH to the DQN plus experience replay DRL algorithm initially 
developed by DeepMind [6-7, 14-15, 17] researchers to build multi-timeframe augmented AI trading bots. Our proposed 
TDH-DQN method is shown at the bottom of Table 1 for comparison to related works.

ML for trading is a large topic. Financial stock market trading is a vast area of research, but the related work 
research papers found to be most relevant were selected based on specific keywords related to technological advances 
and specifically ML and AI, and how they are affecting the financial sector.

In the article called, “RL for High-Frequency Market Making”, Lim et al. present an early practical application 
of RL to optimal market making in high-frequency trading. They show that a discrete QL algorithm can use RL to 
outperform the market-making of traditional frameworks [50].

Ganesh et al. [51] at JPMorgan explore, “RL for Market Making in a Multi-agent Dealer Market”. The researchers 
explored an RL-based market-making agent’s interactions with a multi-agent simulation environment. The agent used 
the competitor’s pricing policy, asymmetric price skewing, and maintaining a positive or negative inventory depending 
on the trend. Training agents in financial markets is difficult so they built A market-making simulator. Simulators 
provide more than just data for sample-intensive RL algorithms; they also provide a platform to conduct controlled 
experiments to test what is being “learned” by an agent, how a policy performs in different scenarios and the causality 
between changes in the environment and agent behavior. Simulators can also be used to train an agent in a diverse set of 
scenarios, leading to improved generalization and robustness to changes in the environment. The AI researchers showed 
that the RL agent can learn about its competitor’s pricing policy. It also learns to manage inventory by skewing prices 
and maintaining inventory depending on whether the market price trend is up or down [51].

The article by Briola et al. [52] introduces the first end-to-end agent of its kind. Their agent uses a Proximal Policy 
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Optimization algorithm. The training is performed with high-frequency Limit Order Book data. The agents are always 
able to, “beat the market”, and achieve a net positive profit in the whole training sample considered, and in most of the 
single trading days, it is composed of [52].

To explore the market maker mathematical formulas, we can explore the article, “High-frequency trading in a limit 
order book”, by Avellaneda et al. [53], because it is commonly referenced for its model. The paper presents common 
market-making formula’s clearly to come up with a solution for optimal bid and ask quotes. The model consists of the 
following components: The mid-price of the stock, the optimizing agent with the finite horizon, the optimizing agent 
with an infinite horizon, Limit orders, the trading intensity, optimal bid and ask quotes, approximations, and numerical 
simulations [53].

The article by Briola et al. [54] explains the LOB called “Deep Learning Modeling of the Limit Order Book: A 
Comparative Perspective”. The Limit Order Book (LOB) represents the venue where buyers and sellers interact in 
an order-driven market. In the article, the AI researchers test Random models, Logistic Regressions, LSTMs, CNN-
LSTMs, and MLPs on the same tasks, feature space, and dataset and performance metrics [54].

Convolutional Neural Networks (CNN) are widely used by AI researchers, an article that demonstrated this type 
of neural network was, “Forecasting Stock Prices from the Limit Order Book using Convolutional Neural Networks”, 
by Tsantekidis et al. [55]. Most orders are performed in their entirety by electronic means so market makers can analyze 
all the generated data and detect repeated patterns of price movements. The AI researchers trained a CNN on high-
frequency LOB data, applying a temporally aware normalization scheme on the volumes and prices of the LOB depth. 
The proposed approach was evaluated using different prediction horizons and it was demonstrated that it performs 
significantly better than other techniques, such as Linear SVMs and MLPs, when trying to predict short-term price 
movements [55]. To gain a better understanding of market microstructure readers can explore, the “High-frequency 
market microstructure”, by O’Hara et al. [56]. It discusses how markets are different now, transformed by technology 
and high-frequency trading, and details HFT strategies.

The reader can explore DL and LSTM and CNN networks further with the following works. The article by 
Fischer et al. [57] called, “Deep learning with long short-term memory networks for financial market predictions” 
was informative. In this article, the researchers deployed an LSTM network for predicting out-of-sample directional 
movements for the constituent stocks of the S & P 500 from 1992 until 2015. They successfully demonstrated that 
an LSTM network can effectively extract meaningful information from noisy financial time series data. Compared to 
random forests, standard deep nets, and logistic regression, it is the method of choice with respect to predictive accuracy 
and with respect to daily returns after transaction costs. As it turns out, DL in the form of LSTM networks seems to 
constitute an advancement in this domain as well [57].

For a relatively stable dataset, DL models work very efficiently. A very accurate prediction is given by models like 
LSTM. According to Lim et al. [58], DL models work as an effective modeling technique for time series forecasting. 
In terms of execution speed, the univariate CNN model with the previous week’s data as the input was found to be the 
fastest one according to Yong et al. [59]. That is because recently there’s literature that points out that CNN can achieve 
what LSTM has been used for and is great at, namely predicting sequences, but in a much faster, more computationally 
efficient manner. Another model that started becoming popular recently is CNN. CNN also works better for classification 
problems and unlike Recurrent Neural Networks (RNN) based models, it is more suitable for either non-time varying or 
static data representations [60].

With the development of modern architectures such as convolutional neural networks CNNs and RNNs, DL models 
have been favored for their ability to build representations of a given dataset, capturing temporal dynamics and cross-
sectional relationships in a purely data-driven manner. The adoption of deep neural networks has also been facilitated 
by powerful open-source frameworks such as TensorFlow and PyTorch, which use automatic differentiation to compute 
gradients for backpropagation without having to explicitly derive them in advance. In turn, this flexibility has allowed 
deep neural networks to go beyond standard classification and regression models. Focusing on the raw signal outputs, 
the Sharpe ratio-optimized LSTM outperforms all benchmarks as expected. Incorporating transaction costs, the Sharpe-
optimized LSTM outperforms benchmarks of up to 2-3 bps of costs, demonstrating its suitability for trading more liquid 
assets [58].

Among DL structures Long Short-Term Memory (LSTM) networks, a representative type of RNN, are suitable for 
modeling temporal patterns, which are widely utilized in tasks regarding time series [59].
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Ding et al. compared with the original LSTM, this model is greatly improved with high prediction accuracy and 
small regression error. Dropout refers to the temporary discarding of the neural network unit from the network according 
to a certain probability during the training of the DL network, which is a means to prevent over-fitting. The principle of 
dropout operation is that the neurons in each layer are randomly deleted with probability P in a training iteration, and the 
data in this iteration are trained with the network composed of the remaining (1 − p) * N neurons, thus alleviating the 
over-fitting problem [61].

In the article by Borovkova et al. [60, 61], the researchers propose an ensemble of Long-Short-Term Memory 
(LSTM) neural networks for intraday stock predictions, using a large variety of technical analysis indicators as network 
inputs. The proposed model was found to perform better than the benchmark models or equally weighted ensembles. 
With the increased availability of high-frequency trade data and the development of ML algorithms that can handle 
such large amounts of data, technical analysis is currently undergoing a revival: Daily patterns are replaced by intraday 
ones, and algorithms, not humans, now learn price patterns and make forecasts based on them. Nelson, Pereira, and 
de Oliveira trained LSTM networks on 15-minute-interval observations, for several BOVESPA (Sao Paolo Stock 
Exchange) stocks, and reported accuracy metrics of 53-55% for the next direction price forecasts [60].

In the article by Sangyeon et al. [62], the researchers use an attention LSTM for prediction, and for visualizing 
intermediate outputs to analyze the reason for the prediction. Their proposed model produces a 0.76 hit ratio, which is 
superior to those of other methods for predicting the trends of the KOSPI 200.

In the article by Gabler et al. [63], the author states our main hypothesis is that CNNs provide a natural way to 
capture such patterns by simply consuming the historical data without an explicit definition of the patterns to be captured 
by the designer. The key results of the LSTM and CNN are shown and compared in terms of prediction accuracies, 
return risk characteristics on different long-short portfolio sizes, and the author unveils sources of long-term profitability. 
CNNs were developed after one basic idea: local connectivity. That means, that each node is only connected to a local 
region in the input. The authors claim to have successfully demonstrated that LSTM and CNN networks can extract 
meaningful information from such noisy financial time series. They say that the LSTM outperforms the CNN with 
respect to predictive accuracy and mean returns, although the CNN exhibits more favorable risk metrics.

Vinyals et al. [64] achieved successful results in StarCraft II using multi-agent RL. They chose to address the 
challenge of StarCraft using general-purpose learning methods that are in principle applicable to other complex 
domains. A multi-agent reinforcement learning algorithm that uses data from both human and agent games within a 
diverse league of continually adapting strategies and counterstrategies, each represented by deep neural networks. Their 
agent AlphaStar was trained via both supervised learning and reinforcement learning.

Zhao et al. [65] propose a Consciousness-Inspired Planning Agent for Model-Based Reinforcement Learning. They 
presented an end-to-end, model-based deep reinforcement learning agent which dynamically attends to relevant parts of 
its state during planning.

To construct autonomous intelligent agents, it’s important to understand how AI trading bots would first learn to 
reason and plan as efficiently as human traders. These decision-making bots would need to learn representations of 
percepts and action plans at multiple levels of abstraction, enabling them to reason, predict, and plan at multiple time 
horizons. Current AI trends can be explored with Yann LeCun’s position paper [23] where he provides a description of 
neural symbolic architecture using a hybrid neuro-symbolic strategy with functional hybrids.

This involves chain processing where preprocessing is done in one system, and post-processing is done in another. 
Sub-processing is another functional hybrid where parent processes are split into child processes. Meta-processing 
is processing tasks like monitoring, control, performance improvements, or corrections. The final functional hybrid 
strategy LeCun proposes is co-processing where neural and symbolic are equal partners. His model uses an approach 
like human intelligence where he models an actor using the perception of the environment and short-term memory plus 
a configurator to make decisions and take actions in a complex environment. The configurator is a key part of the model 
because it controls the interaction between perception, the actor, the world model, and the separate critic, cost, and 
intrinsic cost function.

LeCun’s learning hierarchical Joint Embedded Predictive Architecture (JEPA) world models are composed in 
the following way. The configurator module takes inputs from all other modules and configures the tasks at hand. The 
perception module estimates the current state of the world. The world model module predicts possible future world 
states as a function of imagined action sequences proposed by the actor. The cost module computes a single scalar 
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output called energy that measures the level of discomfort of the agent. The short-term memory module keeps track of 
the current and predicted world states and associated intrinsic costs. The actor module computes proposals for action 
sequences, represents states as vectors, and learns correlations between states x and y, but does not make predictions 
about y given x [23].

This type of hybrid architecture can use nonlinear problem-solving methods or different methods to solve 
problems. The hybrid architecture combines symbolic and ML approaches to find the best tool for the job and can 
employ cognitive architectures that mimic specialized brain functions such as Kenheman’s system 1 and system 2 [66].

The research into AlphaGo by Silver et al. [67] provides another hybrid symbolic/RL architecture that uses Monte 
Carlo tree search to generate games. The approach requires an understanding of the rules of the game and its goals. The 
model can then calculate value networks using RL-like methods employed by the TDH-DQN bots in our research [67].

3. Materials and methods
In Part 1, Section 3.10, we determined the optimal DRL algorithm for this multi-timeframe TDH-DQN bot. In Part 

1a, the goal was to determine which of the eight DRL algorithms tested performs the best at algorithmic trading in the 
five-second short-term day trading decision-making timeframe for seven catalyst stocks. Part 1b compares 15 different 
DRL architecture’s performances on the catalyst stocks from Part 1a. both with and without TDH with a medium-day 
trading one min time-series timeframe. The Accumulated Percent Returns (APR), and computation time results from the 
Part 1 analysis caused us to choose the DQN as the optimal trading algorithm for our TDH-DQN bot purposes. Next, 
in Part 2, Section 3.11, our goal was to compare the performance of our TDH-DQN bot vs. some baseline algorithmic 
trading strategies including, buy and hold, Pivot Reversal, MACD LE, and Outside Bar. The analysis in Part 2 focuses 
on trading strategies with the swing trading weekly time series timeframe data for ten catalyst growth stocks. Finally, in 
Part 3, Section 3.13, our goal is to illustrate to the reader a case study that shows how our TDH-DQN trading bot learns 
to predict the optimal timing of executions autonomously on idealized trading time series data.

Table 3. Catalyst momentum stocks in Part 1a and 1b analysis for day trading bots, 5-second timeframe
 

Company Exchange Date Bars (5 s, 1 D, 1 W) Trend Catalyst

Snap Inc. NYSE 2021-07-23 1800, 53, 28 up Earnings beat

Alibaba Group Holding Limited NYSE 2021-10-04 1800, 53, 29 down China News

NIO Inc. NYSE 2021-10-04 1800, 53, 29 down Analyst upgrade

Advanced Micro Devices, Inc. Nasdaq 2021-10-13 1800, 53, 29 up New product

Plug Power Inc. Nasdaq 2021-10-13 1800, 53, 29 up Hot sector

SoFi Technologies, Inc. Nasdaq 2021-10-18 1800, 53, 19 up Analyst upgrade

FuelCell Energy, Inc. Nasdaq 2021-10-18 1800, 53, 29 up Hot sector

This research was successful using a semi-autonomous augmented AI system (where the digital DRL bots augment 
an experienced human trader). Multi-timeframe technical analysis is a fundamental part of this research. The three 
primary time-series timeframes used are the five seconds, and one minute for the day trading bots and the weekly time 
interval for the swing trading bots. The environment for our trading bots was NYSE and Nasdaq stocks. Our day trading 
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analysis used seven catalyst stocks, five-second, daily, and weekly timeframes, from 2021 as shown in Table 3. To 
illustrate the performance effects of the TDH, the one-minute time-series timeframe was selected for the seven catalyst 
stocks to compare the effects both with and without TDH in Table 4. The swing trading bot’s environment was ten 
catalyst stocks weekly timeframe closing price data from March 25, 2022, going back ten years of historical data shown 
in Table 5.

Table 4. DRL algorithm APR comparison both with and without TDH applied

DRL parameters SNAP 
TDH SNAP BABA 

TDH BABA NIO 
TDH NIO AMD 

TDH AMD PLUG 
TDH PLUG SOFI 

TDH SOFI FCEL 
TDH FCEL

TDH applied Y N Y N Y N Y N Y N Y N Y N

DQN -1.04 1.03 0.59 -1.31 0.44 0.34 -0.1 0.69 -0.25 0.67 2.02 0.03 4.11 2.32

Duel DQN -1.5 -4.36 0.14 0.32 0.73 -0.78 1.4 1.75 0.11 -0.57 2.4 2.36 4.34 -1.41

Recurrent DQN -0.65 0 0.59 0 0.67 0 0.17 0 0.35 0 1.63 0 -1.52 0

Double DQN -4.5 -0.85 0.58 -1.32 0.8 -3.63 2.1 1.62 2.4 0.81 3.08 1.56 6.09 3.84

Double recurrent 
DQN -3 -1.78 0.24 -0.81 0.5 -1.66 0.91 0.76 0.97 2.44 2.47 1.56 3.79 3

Double duel DQN -2.09 4.08 0.25 -0.38 0.53 -0.31 1.47 -0.01 -0.85 -1.59 2.05 0.8 4.1 3.86

Double duel 
recurrent DQN -0.73 0 0.64 0 0.73 0 0.02 0 0.35 0 0 0 3.64 0

Curiosity DQN -1.04 -2.51 0.64 -0.65 0.53 -1.41 1.64 1.46 0.55 -1.34 1.84 1.08 2.8 5.25

Recurrent 
curiosity DQN -0.4 0.44 0.63 -0.08 0.8 -0.34 1.64 1.07 0.25 -0.6 1.53 1.08 3.79 4.95

Duel curiosity 
DQN -3.35 1.59 0.35 -0.7 0.76 -0.8 0.37 1.42 1.23 0.91 2.12 -0.07 3.52 1.13

AC -0.4 1.19 0.32 -0.56 0.86 -0.53 1.69 1.27 0.25 -0.46 1.77 2.5 3.96 2.26

Dual AC -1.1 2.72 0.35 -0.22 0.59 -1.24 1.4 1.32 1.64 -0.93 1.81 1.49 3.97 2.93

Recurrent AC -1.87 -1.43 0.24 -0.23 0.76 -0.97 0.91 0.19 -0.25 -2.33 1.49 2.16 3.14 -2.87

Duel recurrent AC -0.73 0.24 0.16 -0.75 0.53 -2.1 1.51 1.24 1.53 1.32 1.18 1.95 2.96 2.86

Avg. -1.60 0.03 0.41 -0.48 0.66 -0.96 1.08 0.91 0.59 -0.12 1.81 1.18 3.48 2.01

THD applied 
Average = 0.92

No THD applied 
Average = 0.37
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Table 5. Catalyst growth stocks in Part 2 analysis for weekly swing trading bots

Stock Company Exchange Start date End date Test bars Train bars Total bars

TSLA Tesla, Inc. Nasdaq 2012-03-30 2022-03-25 365 157 522

AAPL Apple Inc. Nasdaq 2012-03-30 2022-03-25 365 157 522

AMD Advanced Micro Devices, Inc. Nasdaq 2015-01-02 2022-03-25 264 114 378

NVDA NVIDIA Corporation Nasdaq 2012-03-30 2022-03-25 365 157 522

FB Meta Platforms, Inc. Nasdaq 2012-05-18 2022-03-25 360 155 515

MSFT Microsoft Corporation Nasdaq 2012-03-30 2022-03-25 365 157 522

AMZN Amazon.com, Inc. Nasdaq 2012-03-30 2022-03-25 365 157 522

QQQ Invesco QQQ Trust Nasdaq 2012-03-30 2022-03-25 365 157 522

PLUG Plug Power Inc. Nasdaq 2012-03-30 2022-03-25 365 157 522

AMC Entertainment Holdings, Inc. NYSE 2013-12-20 2022-03-25 302 130 432

3.1 Research questions and objective

This research was designed to address the problem of how to solve the sequential decision-making problem of 
trading formalized as an MDP optimization of order timing executions for a single catalyst stock. The research questions 
are:

Research question 1: Can RL agents successfully learn trading order execution timing policies?
Research question 2: Which DRL algorithm performs the best across multiple timeframes?
Research question 3: Does adding TDH improve RL agent performance?
In order to answer the research questions, we build our main research objective, which is to solve the sequential 

decision-making problem of AI for profitable day and swing trading order timing executions.
To satisfy the research objective, our detailed methodology will be addressed in Sections 3.10, 3.11, and 3.13. More 

details of the research methodology will be demonstrated in Figure 2 which shows the framework and the architecture 
of the TDH-DQN Trading Bot.

The environment for the experiments was comprised of the observation space including the state space, action 
space, and rewards. The state space consists of discrete multi-timeframe closing price time-series data and volume rate 
market scan data. The action space is bought, sell and hold, and finally, rewards (APR) as detailed in Figure 3, which 
shows the Trading Bot RL environment.

The bot’s action space is discrete, and they only make decisions at the beginning of a new primary time-series 
interval, for example in this case the five-second, one-minute, or weekly time-series interval. The other time-series 
data is used to determine the trend with technical analysis but isn’t used for deciding the decision-making interval. The 
human trader’s actions are in the continuous action space in that the human can watch the tick-by-tick data visually on 
the charts as the time-series interval candles are forming in real-time. An astute trader can watch the volume rate and 
price action and make decisions to execute a trade at any time between time-series intervals whereas the bot cannot.

There are three types of RL-based techniques that are explored in this research, The first is a Value-based method 
where the agent first estimates the value of each action in each state and then selects the action with the highest value at 
each state called Deep QL or DQN. The second technique is the Policy-based method where the agent learns the policy 
function called Policy Gradient (PG). Finally, the third technique which is also a derivative of policy-based methods is 
Actor-critic method, in which the actor generates an action at each time step and the critic measures the quality of the 
generated action.
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Figure 2. TDH-DQN trading bot architecture

Figure 3. Trading Bot RL environment

The DQN uses a multi-layer convolutional network, Experience Replay, used to train the ANN to train itself using 
stored memories, and utilizes a second ‘target’ network, used to compute target Q-values.

In the RL framework for this case study, the algorithm takes an action (buy, sell, or hold) depending on the current 
state of the stock price. The algorithm is trained using a deep QL model to perform the best action.

To frame this RL problem, we must first define the agent as the trading agent who creates actions, buy, sell, or hold. 
The reward is the APR. The reward depends on the action: sell (realized profit and loss), buy (no reward), or hold (no 
reward).

The state space for the DRL agent is a sigmoid function of the differences in past stock prices for a given time 
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window used as the state. State St is described as (dt -τ + 1, dt -1, d t), where dt = sigmoid (pt – pt–1), pt is the closing price 
at time t, and τ is the time window size. A sigmoid function converts the differences of past stock prices into a number 
between zero and one, which helps to normalize the values to probabilities and makes the state simpler to interpret.

The state determines the observations that the agent receives from the environment for taking a decision. The state 
should be representative of current market behavior as compared to the past and can also include values of any signals 
that are believed to be predictive or items related to market microstructure, such as volume traded, Exponential Moving 
Averages, Pivot Points, Candlestick Patterns, or MACD. Trading commission costs and trade execution slippage are not 
considered in this study.

3.2 Bot’s use of thick data heuristics

Heuristics is an approach to problem-solving or self-discovery that employs a practical method that is not 
guaranteed to be optimal, perfect, or rational, but is nevertheless sufficient for reaching an immediate, short-term goal 
or approximation. Where finding an optimal solution is impossible or impractical, heuristic methods can be used to 
speed up the process of finding a satisfactory solution. Heuristics can be mental shortcuts that ease the cognitive load 
of sequential decision-making [10]. Human traders often run into issues with decision heuristics because as Kahneman 
explains humans struggle to think statistically. Kahneman uses heuristics to assert that thinking involves associating new 
information with existing patterns, or thoughts, rather than creating new patterns for each new experience [66]. This 
is where DRL trading bots have an edge. The bots are great at following the rules exactly but don’t know how to use 
intuition to know when to slightly break the rules. Great traders know when to break the rules and size up their positions 
to capitalize on great opportunities quickly, but this is very difficult to do with AI algorithmic bots.

The TDH employs many elements and concepts from Symbolic AI to provide the qualitative and heuristic elements 
the bots need to be successful. Symbolic AI bots require an extensive amount of subject matter knowledge and expertise 
to effectively create all the rules involved in an optimal decision-making process. With symbolic models, you can put 
constraints on the moves the agent can make which can be more difficult when employing ML and RL approaches. 
Symbolic AI has advantages over ML and RL approaches in that introspection is more useful for coding, and easier 
to debug, explain, and control. Symbolic AI does not require big data and is more useful for explaining people’s 
thoughts or abstract problems. Symbolic AI can learn generatively to a certain extent and is useful for inductive logic 
programming and case-based reasoning. Symbolic bots are non-monotonic so they can unlearn default logic and replace 
default belief with a new observation. Human programmers must provide goals to the symbolic bots but reasoning must 
be constrained and well-defined. Symbolic bots are best suited for AI problems with goals and rules which are solvable 
and explainable.

Whereas ML and RL approaches provide the advantages of being more robust against noise, better performance, 
less knowledge upfront, and are easier to scale up. Modern ML approaches do require big data and are more successful 
based on the type of data used. ML and RL approaches are more useful for connecting to neuroscience and better suited 
for perceptual problems. ML’s equivalent to symbols is classification results in symbol types such as cat vs dog. ML 
bots learn relations between two or more things on an image for example orientation of the eyes and mouth to determine 
a person’s face. ML bots don’t have goals, only inputs, and cannot make their own goals. They use uninterpretable 
pattern matching without symbols and goals which can lead to meaningless results.

Consistently, profitable human traders often look at multiple data information sources when making trading 
decisions. By monitoring the items in Table 1, the trading bots must make decisions. Humans need to manage this 
information cycle plus their emotions and avoid recency bias that can cloud a trader’s mind and attach a higher 
probability to recent trades [18].

ML algorithms cannot entirely replace human intuition and decision-making heuristics. Many Big Data concepts 
and methods may sound plausible and appealing but will not lead to viable trading strategies. Thick data analysis 
adds qualitative qualities to quantitative [69] qualities. Humans are good at assigning meaning to numbers but making 
meaningful qualitative assessments of data is challenging for AI systems. Long-term profitable traders use thick data 
analysis to form decision-making heuristics to keep up with the speed of the markets. Heuristics are mental shortcuts 
for problem-solving and judgments based on a probability that eases the cognitive load of making decisions. A heuristic 
means to find or to discover, and it’s a basic part of our intelligence.

The TDH is different between the day and swing trading bots. Table 1 shows the TDH along with their agent. The 
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TDH is simpler for the swing trading bots. The bots purchase one share per execution and have one execution per week. 
They use stop loss and profit orders for exits based on a 1:8 risk-to-reward ratio for risk management. After numerous 
backtesting and optimization experiments, it was discovered adding too many heuristic rules tended to limit the total 
number of trades and reduce the overall profits. The swing trading bots are making their execution timing decisions 
via DRL. They ignore the market noise and trade strictly based on the long-term price action of the weekly time series 
data. This type of trading behavior can be observed in the Appendix A results, the agents primarily buy on pullbacks and 
breakouts and sell when rallies lose momentum.

The TDH considers technical/macroeconomics/sentiment indicators and adds the following components to gain 
insights into the qualitative properties of stock trades along with the quantitative indicators you mention. The added 
components beyond conventional technical analysis are hyper-parameter tuning and model optimization for the DRL 
agents. The DRL agents are making their trade execution decisions based on trading patterns in the price data. These 
trade execution decisions are then filtered based on the variables listed in Table 1. The raw DRL agents trade too often 
so they need to be filtered by the TDH. The art comes from qualitative and quantitative analysis of which trade rules 
or filters to add based on the model and data. There is a relationship between trading profits, APR, and the number of 
trading rules. There is a sweet spot between filtering and limiting trades based on rules and trading every opportunity 
the DRL agent identifies. Too many rules result in fewer but higher percentage winner trades and lower APR, but a lack 
of trading rules or heuristics results in many trades and lower APR. Limiting the DRL agent’s trades based on proven 
trading heuristics that work over long periods of time with different stocks in different market environments results in 
fewer trades, with higher win percentages and APR rewards.

Professional traders that are consistently profitable in bull and bear markets use fundamental knowledge combined 
with technical indicators, the influence of various events, and financial news. Such information can be exploited to time 
trades with greater accuracy when combined with TDH. Most systems get confused by market events because they 
cannot take in all the parameters in the world outside the market. World events like when market volatility starts slowing 
down because of the election, weather, or shifting sector momentum. Humans can gauge market sentiment and what 
the competition is doing while these are difficult thought constructs for trading bots. Traders combine all these layered 
heuristics into an internal hierarchical decision tree in their minds. They combine this data with the ability to read the 
crowd based on experience into a sense of timing. This execution timing problem is the focus of this research.

The bots combine thick data analysis with heuristics to gain an edge in the markets. Thick data analysis combines 
quantitative and qualitative information together in a manner like what humans do. With thick data analysis, we are 
attempting to look at the numerical data with a sense of context. In the context of trading an example of thick data 
analysis would be calculating the 9-period Exponential Moving Average (EMA) and comparing the relationship between 
the current closing price and the 9-period EMA.

The 9-EMA measures the trend strength and velocity by the shape and slope of the curve. If the price moves above 
the EMA after a pullback a trader could create a heuristic rule to buy if these conditions are met. To take the example 
further one could calculate the 50-period EMA to measure the longer-term trend and then compare the relationship 
between the current price 50-EMA and 9-EMA one can use the concept of trend following and create another heuristic 
rule to sell when the current price drops below the 9-EMA but stays above the 50-EMA. TDH represents this concept 
of grouping together heuristic rules based on an expert trader’s intuition and experience. For this research paper, we 
combined the following decision heuristics, risk management, technical analysis, trend-following strategies, momentum 
strategies, position-sizing, neural network hyper-parameter tuning, model design, environment design, data-curation, 
volume analysis, parameter backtesting, sector analysis, and news analysis to be able to identify the best catalyst stocks. 
The distribution of tasks between the human and bot agents is shown in Table 1.

3.3 Deep Q-Network with experience replay algorithm

Mnih et al. [14] developed the first standout DRL algorithm, the Deep Q-Network (DQN) algorithm, Hasselt et 
al. [16] presented a double-Q estimator for value-based RL methods to decrease the overestimated Q value, hence 
improve the agent’s training performance. Wang et al. [17] improve the accuracy of Q value estimation by adopting 
two split networks, one for estimating state value and the other one for estimating its action value. In contrast to 
modifying networks’ structure, Schaul et al. [15] investigated the Prioritized Experience Replay (PER) method to 
make experience replay more efficient and effective, this prioritization can lead to quick convergence in the sparse 
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reward environment [27].
The TDH-DQN bot uses the deep Q-network with the Experience Replay algorithm. DQN is a commonly used 

model-free algorithm that uses an ANN. DQN is a value-based method that combines DL with QL, which sets the 
learning objective to optimize the estimates of Q-value. QL, the algorithm evaluates which action to take based on a 
Q-value (or action-value) function that determines the value of being in a certain state and taking a certain action at 
that state. For each state-action pair (s, a), this algorithm keeps track of a running average of the rewards, R, which the 
agent gets upon leaving the state s with action a, plus the rewards it expects to earn later. The TDH-DQN Trading Bot 
Architecture used for the Parts 2 and 3 analyses is shown in Figure 2.

DL allows computational models that are composed of multiple processing layers to learn representations of data 
with multiple levels of abstraction. DL discovers intricate structures in large data sets by using the backpropagation 
algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in 
each layer from the representation in the previous layer.

RL problems aim to solve actions that optimize the agent’s objective, given some observations about the 
environment. The environment presents information about its state to the agent or bot, assigns rewards for actions, and 
transitions the agent to new states, subject to probability distributions the agent may or may not know. RL methods aim 
to learn from experience how to take actions that achieve a long-term goal. To this end, the agent and the environment 
interact over a sequence of discrete-time steps via the interface of actions, state observations, and rewards. The main 
components of an RL system are agent, actions, environment, state, and reward. The agent is the entity that performs 
actions. Actions are the things an agent can do within its environment. The environment is the world in which the agent 
resides. The state is the current situation. The reward is the immediate return sent by the environment to evaluate the last 
action by the bot.

Humans learn from positive or negative experiences that we experience in our environment that we associate with 
our actions. Learning from experiences and the associated rewards or punishments is the core idea behind RL. RL is 
an approach to training a machine to find the best course of action through optimal policies that maximize rewards and 
minimize punishments. RL’s main idea of maximizing the rewards aligns with algorithmic trading. RL is particularly 
suitable for algorithmic trading because the concept of a return-maximizing bot in an uncertain, dynamic environment 
has much in common with a trading strategy that interacts with the stock market. The DRL bots learn through trial and 
error, they learn the optimal path of execution. RL algorithms can learn the nuances and parameters within the price 
time-series data [69].

In RL, one is given a series of inputs and expected to predict y at each step. However, instead of getting 
instantaneous feedback at each step, one needs to study different paths/sequences to understand which one gives the 
optimal result. Some models may overfit the data. They perform well on a backtest with historical data but get chopped 
up on out-of-sample data. The stability of out-of-sample forecasts is a challenge often encountered with trading bot 
strategies. Variance-Bias trade-off states that an out-of-sample forecast will deteriorate because of three factors. 
The first issue to confront is in-sample forecast error, next model instability can be challenging, and finally human’s 
inability to think in terms of bets. Thinking in terms of bets is a difficult concept for humans to master as humans tend 
to underestimate the probability of random events. A skilled trading bot developer must select a model that will find the 
optimal balance between in-sample error and model variance.

DRL-based models determine rule-based policies for actions. This research combines DRL with algorithmic trading 
into stock trading bots. Algorithmic trading involves the automation of trading tasks. There are a lot of trading tasks 
that fall within this category such as risk management, technical analysis, and general hard-coded trading rules. Here 
humans program the computer to take care of all the actions that don’t vary between trading. These are the decisions 
outside the domain of intuition, where the bot performs actions based on fixed sets of rules. Hard-coded systems fall 
apart when the market regime changes and the trend changes direction or rate of momentum. Strict algorithmic trading 
systems often experience sharp drawdowns during these periods, and it takes an experienced trader’s intuition to decide 
to scale back or reverse a strategy that has been working recently or over a larger time [70].

DRL systems can exceed human performance at many tasks but it’s not without fault. Modeling a trader’s decision-
making heuristics and intuition with computer systems is a difficult task. Only a flexible learning system such as DRL 
can analyze time-series data for pattern recognition and generalization like consistently profitable human traders. 
Traders adapt and last for years in the market only after having adjusted to multiple bull and bear markets. The DRL 
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trading bots must also cope with the trader’s intuitive issue of deciding whether to try new actions that may not be 
immediately optimal but longer-term could deliver the maximum reward. Alternatively, the bot must decide if it should 
try new actions to find another optimal path to rewards. The bot must also determine which step in the path was critical 
to the optimal policy. DRL is considered most like human learning that results from taking actions in the real world 
and observing the consequences. It differs from supervised learning because it optimizes the agent’s behavior one trial-
and-error experience at a time based on a scalar reward signal, rather than by generalizing from correctly labeled, 
representative samples of the target concept. Moreover, RL does not stop at making predictions. Instead, it takes an end-
to-end perspective on goal-oriented decision-making by including actions and their consequences [71].

Through experimental trials and feedback loops, DRL trading bots seek to learn the optimal strategy. With the 
optimal strategy, the agent or bot is capable of adapting. These reward signals are not given to the model immediately. 
Instead, they are returned because of a sequence of actions that the agent makes. The interaction between the agent and 
the environment involves a sequence of actions and observed rewards in time, t = 1, 2 ...T. During the process, the agent 
accumulates knowledge about the environment, learns the optimal strategy, and makes decisions on which action to 
take next to efficiently learn the best strategy. The state, action, and reward at time step t can be written as St, At ...Rt , 
respectively. Thus, the interaction sequence is fully described by one episode, with ending sequence ST : S1, A1, R2, S2, 
A2 ...AT.

In addition to the components of RL mentioned so far, there are three additional components of RL that should be 
considered. These are the policy, value function (and Q-value), and the model of the environment. A strategy or policy 
is an algorithm or in other words a set of rules that describe how an agent makes its decisions. A policy is a function, 
usually denoted as π, that maps a state (s) and an action (a): at = π(st). This means that an agent decides its action given 
its current state. DRL Trading bots seek to learn an optimal strategy or policy (π). An optimal strategy or policy tells 
the bot how to act to maximize return in every state. The goal of a DRL bot is to learn to perform a task well in an 
environment. The environment emits a reward signal as the bot’s action leads to a transition to a new state. The bot 
learns a value function that informs its judgment of the available actions. The bot’s objective function processes the 
reward signal and translates the value judgments into an optimal strategy.

The policy translates states into actions. At any point in time, the policy defines the agent’s behavior. It maps any 
state the agent may encounter to one or several actions. Rewards (accumulated percent returns APR in this case) in RL 
are learning from actions. The reward signal is a single value that the environment sends to the agent at each time step. 
The agent’s objective is to maximize the total APR reward received over time. APR rewards are the key input, and the 
goal of making value estimates is to achieve more rewards. RL methods focus on learning accurate values that enable 
good decisions while efficiently leveraging memories [72].

QL allows the algorithm some freedom to explore outside of its training data to find the best policy for buying, 
selling, and holding stock. This is partially where RL’s advantages shine in the interpretation of market data. Any given 
interval of market data is unique and therefore its training data is unique, so there is a low probability that the training 
set will be entirely representative of the testing data.

3.4 Actor-critic with experience replay algorithm

Value-based methods find the policy by finding the best action value of a state, and accompanying actions which 
are great for environments with discrete actions like algorithmic trading, where the highest valued action is clearly 
separate from the next best action. In these action spaces, value-based methods become unstable. Policy-based methods 
do not use a separate value function but find the policy directly. They start with a policy function, which they then 
improve, episode by episode, with policy gradient methods. Policy-based methods are applicable to more domains 
than value-based methods. They work well with deep neural networks and gradient learning; they are some of the most 
popular methods of deep reinforcement learning, and this chapter introduces you to them [73].

With Actor-Critic agents, the actor decides which action to take and the critic tells the actor how good the action 
was and how it should adjust. various implementations of the off-policy were tested including ACER, a DRL algorithm 
initially researched by Wang et al. [18], greatly increasing the sample efficiency and decreasing the data correlation [74]. 
Also, Asynchronous Methods by Mnih et al. [25]. Profitable results with AC methods were achieved. The author would 
argue that the primary downside to these algorithms is they are slower to compute than the DQN algorithms without 
substantially higher APR returns.
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Sutton et al. [13] defined Actor-critic methods are Temporal Difference (TD) methods that have a separate memory 
structure to explicitly represent the policy independent of the value function. The policy structure is known as the 
actor because it is used to select actions, and the estimated value function is known as the critic because it criticizes 
the actions made by the actor. Learning is always on-policy: the critic must learn about and critique whatever policy is 
currently being followed by the actor. The ACER trading Bot Architecture is shown in Figure 4.

Figure 4. TDH ACER trading bot architecture

ACER nearly matches the state-of-the-art performance of DQN with prioritized replay and substantially 
outperforms A3C in terms of sample efficiency on both discrete and continuous control domains. ACER capitalizes on 
deep neural networks, variance reduction techniques, the off-policy Retrace algorithm by Munos et al. [75], parallel 
training of RL agents by Mnih et al. [25], truncated importance sampling with bias correction, stochastic dueling 
network architectures, and efficient trust region policy optimization Wang et al. [18].

Actor-critic methods add a value network to the policy network, to achieve the benefits of both approaches. To 
reduce variance, n-step temporal difference bootstrapping can be added, and a baseline value can be subtracted so that 
we get the so-called advantage function (which subtracts the value of the parent state from the action values of the future 
states, bringing their expected value closer to zero). Well-known actor-critic methods are A3C, DDPG, TRPO, and PPO.

A3C features an asynchronous (parallel, distributed) implementation, DDPG is an actor-critic version of DQN 
for continuous action spaces, and TRPO and PPO use trust regions to achieve adaptive step sizes in nonlinear spaces. 
Benchmark studies have shown that the performance of the actor-critic algorithm is as good as or better than value-
based methods [73, 76].

3.5 Markov decision process

The foundation of RL is the Markov Decision Process (MDP). However, before talking about it, one must formalize 
the simplest child of the Markov family, the discrete Markov Process. In a discrete Markov Process, the system has 
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many different states, which can be observed. The state this system is in changes after each time step and forms a 
sequence of states, which is called the Markov Chain. However, the state has a restriction on how it evolves, which 
is a Markov Property: The future dynamics of the system must depend only on the current state, not the history of the 
evolution of the states. In a Markov Decision Process. States are not directly observable, but some observations based 
on the state are known. The observation space and state space may or may not have an explicit bijection between them. 
An agent is taking actions based on the observations, and the action changes the underlying state of the environment, 
returning a different observation and a reward. How state transits depend on the last state of the system and the action of 
the agent, usually in a probabilistic way. Given a state-action pair, the environment returns a possibly random reward to 
the agent. The agent’s goal is often to maximize the total reward received, with future rewards discounted by a factor [13].

Exploration is preferable in that it allows the algorithm to venture outside the training data space to find better 
relationships among data and transactions. In RL, the algorithm learns to react to its environment and plan sequential 
steps toward a goal. A Markov Decision Process (MDP) frames the agent-environment interaction as a sequential 
decision problem over a series of discrete-time steps (t = 1, ..., T) that constitute an episode [13].

The abstraction afforded by MDPs makes its application easily adaptable to many contexts. The time steps can be 
at arbitrary intervals, and actions and states can take any form that can be expressed numerically. The Markov property 
implies that the current state completely describes the process, that is, the process has no memory. Information from 
past states adds no value when trying to predict the process’s future.

MDPs proceed in the following fashion: at each step t, the agent observes the environment’s state and selects an 
action, where S and A are the sets of states and actions, respectively. At the next time step t + 1, the agent receives a 
reward and transitions to state St+1. Over time, the MDP gives rise to a trajectory S0, A0, R1, St1, A1, R1, ... that continues 
until the agent reaches a terminal state and the episode ends. Due to the Markov property, these distributions only 
depend on the previous state and action.

Rewards are typically discounted using a factor to reflect their time value. In the case of tasks that are not 
episodic but continue indefinitely, a discount factor of just less than 1 is necessary to avoid infinite rewards and ensure 
convergence. Therefore, the agent maximizes the discounted, expected sum of future returns Rt, denoted as Gt.

3.6 DQN trading bots

The DQN uses an ANN to approximate Q-values; hence, the action value function is defined as Q(s, a; θ). The deep 
QL algorithm approximates the Q-value function by learning a set of weights, θ, of a multilayered DQN that maps states 
to action [72]. The TDH-DQN Trading Bot Architecture used for the Part 2 analysis is shown in Figure 2.

The QL algorithm evaluates which action to take based on a Q-value function that determines the value of being 
in a certain state and taking a certain action at that state. For each state-action pair (s, a), this algorithm keeps track of 
a running average of the rewards, R, which the agent gets upon leaving the state s with action a, plus the rewards it 
expects to earn later. Since the target policy would act optimally, the bot takes the maximum of the Q-value estimates 
for the next state [13].

The learning proceeds off-policy that is, the algorithm does not need to select actions based on the policy that is 
implied by the value function alone. However, convergence requires that all state-action pairs continue to be updated 
throughout the training process, and a straightforward way to ensure that this occurs is to use an ϵ - greedy policy. In 
cases where the state and action space are large, the optimal Q-value table quickly becomes computationally infeasible.

RL is unstable or divergent when a nonlinear function approximator such as a neural network is used to represent 
Q. This instability comes from the correlations present in the sequence of observations, the fact that small updates to Q 
may significantly change the policy of the agent and the data distribution, and the correlations between Q and the target 
values.

This removes correlations in the observation sequence and smooths changes in the data distribution. Iterative 
updates adjust Q towards target values that are only periodically updated, further reducing correlations with the target. 
To address instability and divergence issues, the bot uses ANNs to approximate Q-values. The bot uses a function with 
parameter θ to calculate Q-values, and the Q-value function can be written as Q(s, a; θ).

The deep QL algorithm approximates the Q-values by learning a set of weights, θ, of a multilayered deep 
Q-network that maps states to actions. The DQN algorithm aims to greatly improve and stabilize the training procedure 
of QL through a couple of different methods [72]. The first is Experience replay [15]. Instead of running QL on state-
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action pairs as they occur during simulation or actual experience, the algorithm stores the history of the state, action, 
reward, and next-state transitions that are experienced by the agent in one large replay memory. This can be referred 
to as a mini-batch of observations. During QL updates, samples are drawn at random from the replay memory, and 
thus one sample could be used multiple times. Experience replay improves data efficiency, removes correlations in the 
observation sequences, and smooths over changes in the data distribution.

The second method [6] is to update Q and optimize towards target values that are only periodically updated. The 
Q-network is cloned and kept frozen as the optimization targets every hyperparameter sequential step. This modification 
makes the training more stable as it overcomes short-term oscillations. To learn the network parameters, the algorithm 
applies gradient descent to a loss function defined as the squared difference between the DQN’s estimate of the target 
and its estimate of the Q-value of the current state-action pair, Q(s, a; θ). The loss function is shown in Equation (1):

2
i 1 i( ) [( max Q(s , a ; ) Q(s, a; )) ],L rθ γ θ θ−′ ′= + −

The loss function is a Mean Squared Error, (MSE) function, where (r + γmaxa' Q(s', a'; θt-1)), represents the target 
value and Q[s, a; θi], represents the predicted value, θ are the weights of the network, which are computed when the loss 
function is minimized. Both the target and the current estimate depend on the set of weights, underlining the distinction 
from supervised learning, in which targets are fixed prior to training [72].

The QL Steps used can be summarized as follows. At time step t, we start from state st and pick an action according 
to the Q-values shown in Equation (2).

at = maxaQ(st, a),

Apply an ϵ greedy approach that selects an action randomly with a probability of ϵ or otherwise chooses the best 
action according to the Q-value function. This ensures the exploration of new actions in each state while also exploiting 
the learning experience. With action at, we observe reward Rt+1 and get into the next state St+1. Update the action-value 
function as shown in Equation (3):

t t t t t 1 a t 1 t tQ(S , A ) Q(St , At ) [R max Q(S , a) Q(S , A )]),α γ+ +← + + −

Finally increment the time step, t = t + 1, and repeat the steps. Keep iterating until converging to the optimal Q-value. 
The TDH-DQN Trading Bot Architecture used for the Part 2 and 3 analyses is shown in Figure 2.

The Double DQN agents max operation in Q-learning uses the same values both to select and evaluate the action. 
This makes it more likely to select overestimated values in case of inaccuracies or noise, resulting in over-optimistic 
value estimates. Therefore, the DQN algorithm induces an upward bias. The double estimator method uses two 
estimates for each variable, which allows for the selection of an estimator and its value to be uncoupled by Hasselt et al. 
[77]. Thus, regardless of whether errors in the estimated Q-values are due to stochasticity in the environment, function 
approximation, non-stationarity, or any other source, this allows for the removal of the positive bias in estimating the 
action values. In Double DQN, or DDQN by van Hasselt et al. [16], the target value is replaced which leads to less 
overestimation of the Q-learning values, as well as improved stability, hence improved performance. As compared to 
DQN, the target network with weights is used for the evaluation of the current greedy action. Note that the policy is still 
chosen according to the values obtained by the current weights θ.

In the Dueling network architecture by Wang et al. [17], the neural network architecture decouples the value and 
advantage function which leads to improved performance. The stream provides an estimate of the value function, while 
the other stream produces an estimate of the advantage function. The learning update is done as in DQN, and it is only 
the structure of the neural network that is modified. In fact, even though it loses the original semantics of V and A, a 
slightly different approach is preferred in practice because it increases the stability of the optimization. In that case, the 
advantages only need to change as fast as the mean, which appears to work better in practice [68, 78].

(1)

(2)

(3)
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3.7 Simulation-critic methods

Simulation-critic methods are a good way to study and analyze trading bots. Such techniques use simulation to 
learn a value function, which can then be used to update the trading policy parameters. The bots operate starting at the 
market open and seek to follow the trend in the long, and short timeframes. It is the main idea behind all breakout or 
trend-following trading systems. Such bots perform differently when they go long or short depending on the long-term 
trend. Day trading and swing trading bots also perform differently. In this research, we will explore two completely 
different trading environments with the day trading bots in Part 1 and the swing trading bots in Part 2 of the analysis.

Trained trading models that perform well out of sample are the core requirement for effective DRL trading bots. 
DRL gives computers the ability to learn from their experiences and improve their performance as they gain more 
experience. The trading bots create models to uncover the relationships between the price inputs and the trading 
decisions outputs when given historical price data as input. Next, the bots forecast outcomes out of the sample on the 
test data. If the results are satisfactory the bots can be deployed into the markets with the trained models to execute live 
trades. This feature makes DRL particularly attractive as an underlying approach to building algorithmic trading bots.

The interactive and online nature of DRL makes it particularly well-suited to the trading domain. DRL models 
goal-directed learning by an agent that interacts with a typically stochastic environment that the agent has incomplete 
information about. DRL aims to automate how the agent makes decisions to achieve a long-term objective by learning 
the value of states and actions from a reward signal. The goal is to derive a policy that encodes behavioral rules and 
maps states to actions.

3.8 Performance metric-Accumulated Percent Returns (APR)

The performance metric used is Accumulated Percent Returns (APR), which are shown in Equation (4). Compound 
Percent Returns (CPR) is used interchangeably in this article to mean the same as APR. APR is the difference between 
the price the stock was purchased at and the current stock price divided by the bought price. This value is multiplied by 
100 to convert the value to percent returns.

Accumulated Percent Return = [(Current Price – Bought Price) / Bought Price] ∗ 100

3.9 Catalysts reasons for stock momentum

Catalyst (info. which increases directional momentum) stocks have a reason to move, the catalysts reasons human 
traders look for are, stock buybacks, new debt offerings, earnings announcements, new prescription drugs or vaccine 
approvals, mergers or acquisitions, product releases, corporate Restructuring, and stock splits. Financial markets with 
the most opportunities and lowest fees are an essential element to the bot’s success. For this reason, NASDAQ and 
NYSE listed US stocks that show up in a custom scan for catalyst stocks. These stocks can be found in the Most Active 
Stocks Market Scan. These catalyst stocks were chosen as the focus of this research for day trading bots.

The scan identified stocks with a volume greater than 350 thousand shares traded before 9:30 am EST in the 
premarket session. The market-wide scanner only shows stocks above one billion market capitalization, over 10 dollars 
per share with a high-volume rate of more than one million shares per three-minute bar. The scan catches all the daily 
catalyst stocks traders are looking at that day. Most of the time, the catalyst is from the news that day. Often, the same 
stock can show up for the following few weeks due to the same catalyst if the stock’s story fundamentally changes the 
way investors view it. Time-Series.

Human traders are looking for stocks with bars that interconnect and do not have big gaps in the 5-min timeframe. 
Stocks that have recent news from the last week with a strong narrative around them. These are the stocks showing up 
on other traders’ watchlists observed thru chat rooms, message boards, and YouTube live streams each morning starting 
at 4:30 am until the market opens at 9:30 am. Often these stocks will have gaped up or down by more than 20 percent, 
with smooth price action that flows with higher highs and lower lows. Stocks with close spreads between bids and asks 
with lots of liquidity on the level 2 screen. Level 2 is a subscription-based service that provides real-time access to the 
NASDAQ and NYSE order book. It is intended to display market depth and momentum to traders and investors. Human 
traders are looking for stocks that have lots of liquidity well above and below the market price at price levels identified 

(4)
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on the chart at pivot points where price reversed direction multiple times in the past.
The eight different python RL bots shown in Table 6, analyze five datasets, including the five-second, five-minute, 

daily, weekly, and monthly time series bars. The bots employ the thick data risk parameters shown in Table 3. The DRL 
bots employ risk management parameters including time of day, holding time, stop loss, and profit target, to frame the 
rules of their environment. The bot’s environment is further limited to scanning the entire market autonomously, trading 
only the best catalyst stocks of the day with high relative volume. The bots trade in real-time with paper trades and 
historical data sent back and forth from a local Jupyter python notebook and the stockbroker, in this case, Interactive 
Brokers (IB). To connect the bots to a broker, IB was used which offers a Python Application Programming Interface 
(API) to develop algorithmic trading bots connected to real-time data.

Table 6. Part 1a: Deep RL trading bot algorithm abbreviations

Trading bot algorithm Abbreviation

Policy Gradient PG

Q-learning DQN

Double Q-Learning DQL

Actor-Critic AC

Curiosity Q-Learning CQN

Recurrent curiosity Q-Learning RCQL

Dual Actor-Critic DAC

Dual Curiosity Q-Learning DCQL

Buy and Hold B & H

Sell and Hold S & H

The bots focus entirely on the catalyst stocks breaking out from a trend with substantial relative volume and 
liquidity. The bots limit overnight gaping up or down risk in price movement by only focusing on intraday price action. 
Furthermore, the bots exit their positions at the end of the trading day and do not hold positions overnight. The bots 
choose stocks to trade from the high 3 min volume market scanner for NYSE and Nasdaq stocks in real-time starting at 
9:30 AM eastern when the markets open and fully exit positions at 11:00 AM. The seven catalyst stocks chosen for Part 
1a analysis are shown in Table 3.

To summarize, the day trading bots function in the following way. First, the bot scans for stocks in its list of pre-
approved symbols. Next, the bot immediately downloads the most up-to-date real-time historical data and saves the 
datasets locally. The bots calculate the 50 EMA for the five-second bars dataset and the 9 SMA’s for the daily, time-
series datasets. Figure 5 shows an example from the results for NIO with the 9 SMA shown in green. For that day, 2021-
10-04, NIO provides a bearish example of the type of setup the bot is looking for. It can be observed in Figure 2 shows 
that the price has moved below the daily moving average so the agents will be shorting the stock along with the trend 
for that day.

The bots decide to be bullish or bearish only for that day based on the relationship of the current price vs. the 
EMA’s for Part 1. For Part 2, the bots have a bullish bias due to the steadily rising bull market starting in 2009. Short 
selling is basically opening a position by selling it first, assuming in the future one can buy it back at a cheaper price. 
One is borrowing the stock from the broker and selling it in the market. Therefore, short selling is betting for the price to 
drop. Often the best catalyst stocks are hardly available for short selling which makes backtesting a long/short strategy 
difficult.
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Choosing which environment to interact with gives the bots an edge because, in a constantly evolving market, they 
operate under similar market conditions all the time. The bots focus on trading the hot stocks of the day with massive 
volume, which often completely ignore the broader market correlations and trends independently. Stocks with close 
spreads between bids and asks with lots of liquidity on the level 2 screen. 

Figure 5. EMA trend strength, NIO daily price vs time chart for Part 1b. 9 SMA shown in green

The bots are looking for stocks that have enormous amounts of liquidity well above and below the market price at 
price levels identified on the chart as swing points where prices reversed direction multiple times in the past. These are 
the elements a skilled trader does after years of experience in the markets, after having developed a keen sense of timing 
and ability to read the tape and markets which makes thick data analysis of financial markets difficult.

Timing is especially important, often the best entries must be lightning fast as the price moves below an important 
level and then rises above the bot’s need to have a buy-stop order in place waiting at the market price. Choosing these 
correct price levels and timing the entries and exits is a crucial part of TDH. Other traders and bots will have their stops 
at these levels and prices can move through the level and continue to trend in a breakout pattern. If you do not get filled 
when the price goes through the level, you must risk more with a higher entry price. Often price will retest and squeeze 
your entry close to its stop limit as it trends in ABCD patterns. This is so market makers can create liquidity by running 
traders’ stops.

The short-term day trading bots seek to trade the hottest catalyst stocks during the market opening when the 
volume is at its highest, and there is lots of liquidity. The bots download quotes, calculate decisions, and execute in 
about a minute to react to the speed of markets. At the end of each minute, the bot decides to buy, short, exit, or hold 
positions. Choosing which catalyst stock, the bots trade is an important part of the TDH. In the author’s experience, bots 
will have limited success trading general stocks without a catalyst that just moves with the market.

3.10 Part 1-DRL day trading bots

Part 1 has two questions to answer. In Part 1a, we first determine the best DRL algorithm for day trading using the 
five-second timeframe time-series data with seven catalyst stocks. Secondly, in Part 1b, we determine if adding TDH 
to DRL increases or decreases APR performance on the one-minute timeframe time-series data with the same seven 
catalyst stocks from Part 1a. The starting python code base for the basic implementation of the DRL algorithms for Part 
1 can be found in the following public code repositories [79, 80].
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Table 7. Part 1 day trading bot risk parameters

Parameter Setting value

Holding time Holding time = 30 minutes is the maximum holding time

First trade 5 minutes into the trading day at 9:35 am EST

Last trade 55 one-minute bars into the trading day or 10:25 am EST

Time between trades 5 minutes

Stop loss 3.0 percent

Profit target 4.0 percent

Table 8. Part 1 DRL agent class comparison

DRL Algorithm act get_state replay buy train memorize construct 
memories assign select 

action predict get predicted 
action

DQN x x x x x       

Duel DQN x x x x x       

Recurrent DQN  x  x x x x     

Double DQN  x  x x x x x x x x

Double Recurrent DQN  x  x x x x x x   

Double Duel
DQN  x  x x x x x x x x

Double Duel
Recurrent DQN  x  x x x x x x   

Curiosity DQN  x  x x x x  x x x

Recurrent Curiosity DQN  x  x x x x     

Dual Curiosity DQN  x  x x x x     

AC  x  x x x x x x   

Dual AC  x  x x x x x x   

Recurrent AC  x  x x x x x x   

Duel Recurrent AC  x  x x x x x x   

In the day trading bot analysis, the bots operate at the market open and seek to follow the trend. The goal of this 
part is to compare the performance of the different DRL algorithms against each other and for this reason we train 
and test the DRL bots on the same data and don’t split the data between testing and training datasets. Since we are 
comparing the algorithms to each other we are trying to determine which algorithm strikes a good balance of simplicity, 
computation speed, and ultimately the algorithm’s ability to fit the curve and learn that specific price action. It is the 
main idea behind all trading systems, at times the market will trend, and that fundamental element of markets will 
always be timeless. The bot seeks to run with the crowd of bulls or bears, whichever is stronger, for as long as they have 
the volume and momentum.
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For the Part 1 analysis, it was found that the best way to test the system was to use real-time data as it came in and 
to train and run the bots as fast as they could calculate. This is due to the nature of day trading and the way the market 
trades through the course of the day. Training the bots on historical data from other stocks on the previous day’s data 
didn’t achieve good results in this research. For this reason, we didn’t partition the data such as 70 percent for testing 
and 30 percent for training. The agents were trained and tested in real-time as the day progresses, so the agents start 
with limited data but as more data comes in throughout the day the bots continually re-evaluate trading decisions to 
try to come up with optimal solutions. Once the agents identify a trade execution the system can then execute an order. 
The agents are continually trying to discover the best sequence of trade execution decisions throughout the day while 
still managing risk. The risk management parameters are shown in Table 7, while the DRL agents class comparison and 
Hyperparameter setting are shown in Tables 8 and 9.

Table 9. DRL algorithm hyperparameters for Part 1, day trading bots

DRL parameters gamma epsilon Min epsilon epsilon_decay Batch size Window size Learning rate Layer size Epochs

DQN 0.99 1 0.01 0.995 86 85 0.001 8 10

Duel DQN 0.99 1 0.01 0.995 86 85 0.001 8 10

Recurrent DQN 0.99 1 0.01 0.995 86 85 0.001 8 10

Double DQN 0.99 1 0.01 0.995 86 85 0.001 8 10

Double recurrent DQN 0.99 1 0.01 0.995 86 85 0.001 8 10

Double duel DQN 0.99 1 0.01 0.995 86 85 0.001 8 10

Double duel recurrent DQN 0.99 1 0.01 0.995 86 85 0.001 8 10

Curiosity DQN 0.99 1 0.01 0.995 86 85 0.001 8 10

Recurrent curiosity DQN 0.99 1 0.01 0.995 86 85 0.001 8 10

Dual curiosity DQN 0.99 1 0.01 0.995 86 85 0.001 8 10

AC 0.99 1 0.01 0.995 86 85 0.001 8 10

Dual AC 0.99 1 0.01 0.995 86 85 0.001 8 10

Recurrent AC 0.99 1 0.01 0.995 86 85 0.001 8 10

Duel recurrent AC 0.99 1 0.01 0.995 86 85 0.001 8 10

The bots were tested during the market opening when the volume is at its highest and there is lots of liquidity. 
The bots hold for a brief time and exit before 11 am EST when volume slows down. At the end of each timeframe tick 
duration, the bot decides to buy, sell, or hold. Due to competing institutional algorithmic trading bots, most of the stocks 
will trend with the overall market unless they have a reason not to. So, if the market is moving up, most stocks will be 
moving up and it’s time for the bot to be bullish. If the overall market goes down, the prices of most stocks will also 
go down. Every day, there are always one or two stocks that will move independently of the market because it has a 
catalyst. The THD-DQN bots seek to be trading stocks that are moving because they have a fundamental reason to move 
and are not just moving with the overall market correlations [4].

3.11 Part 2-swing trading TDH-DQN bot

In Part 2, we are comparing the TDH-DQN trading bot’s performance against three algorithmic trading strategies 
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and the buy and hold benchmarks for 10 different catalyst growth stocks that consistently show up on the daily pre-
market morning scans discussed in Part 1, the day trading bot analysis.

The TDH-DQN trading bot is constructed with Python, Numpy, Pandas, Matplotlib, Tensorflow, and Keras in 
Jupyter notebooks. The function model for the TDH-DQN bot is a DL model that maps the states to actions. This 
function takes in the state of the environment and returns a Q-value table or a policy that refers to a probability 
distribution over actions. This function is built using the Keras Python library. The experience replay is the key function, 
where the neural network is trained based on the observed experience. This function implements the Experience replay 
mechanism. Experience replay stores a history of the state, action, reward, and next-state transitions that are experienced 
by the agent. It takes a minibatch of the observations (replay memory) as an input and updates the DL-based QL model 
weights by minimizing the loss function. The epsilon greedy approach implemented in this function prevents overfitting. 

Experience replay was implemented with the following steps. First, we prepare the replay buffer memory, which is 
the set of observations used for training. New experiences are added to the replay buffer memory using a For loop. Next, 
we loop across all the observations of the state, action, reward, and next-state transitions in the mini-batch. The target 
variable for the Q-table is updated based on the Bellman equation. The update happens if the current state is the terminal 
state or the end of the episode. This is represented by the variable done and is defined further in the training function. If 
it is not done, the target is set to reward. Next, we predict the Q-value of the next state using a DL model. The Q-value 
of this state for the action in the current replay buffer is set to the target. The DL model weights are updated by using the 
model fit function. The epsilon greedy approach is implemented which selects an action randomly with a probability of 
ε or the best action, according to the Q-value function, with probability 1 – ε [72].

For Part 2 of the analysis, we will look at swing trading strategies with a longer weekly timeframe as the primary 
input to the TDH-DQN bot. The dataset for each of the ten stocks goes back ten years and is shown in Table 5. The 
data is split 70 percent for training and 30 percent reserved for testing. We train the THD-DQN bot for five episodes to 
observe the trades, inventory, and profits the trading bots take. This bot is long-only and has few rules to limit its trades. 
The bot is free to buy as many shares as possible, one at a time each week as new data comes in and exits its entire 
position at the end of the dataset. 

Table 10. Part 2 APR comparison of TDH-DQN bot vs. benchmark strategies

Stock B & H TDH-DQN Pivot reversal (2) MACD LE Outside bar

TSLA 819 3,439 911 814 1,163

AAPL 181 400 861 452 864

AMD 161 278 809 296 208

NVDA 335 350 1,208 765 712

FB 39 231 141 -52 -60

MSFT 100 144 388 265 310

AMZN 73 707 30 12 101

QQQ 93 150 215 -28 175

PLUG 609 4,564 11,769 1,386 554

AMC 464 891 819 640 1,148

Average 287 1,115 1,715 455 518
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Table 10 shows the APR for five different strategies. The Buy and Hold (B & H) strategy simply buys on the first 
bar in the dataset and sells on the last bar. The bots only take long positions due to the upwards trend direction over the 
last ten years. The TDH-DQN bot is limited to buying or selling one share at a time and closes out its entire position 
at the end of the dataset. The pivot reversal bot buys when a pivot point reversal occurs with a strength of two bars to 
the left on the chart. The Moving Average Convergence Divergence (MACD) bot triggers entries when the MACD line 
crosses up above the zero line and signifies trend reversals after pullbacks. Finally, the Outside Bar bot executes trade 
entries when the outside bar engulfs the inside bar. The outside bar is another good trend continuation signal after a 
pullback that works well in a bull market. The swing trading bots all use a 1:8 risk-to-reward ratio for risk management 
implemented with stop execution orders.

3.12 Benchmark strategies

Buy and Hold (B & H) is a classical benchmark, especially for a bull market; thus, the strategy simply buys the 
stock and holds it until the end of the testing period to provide a baseline profit measure. For a comparison metric, three 
simple algorithmic trading strategies were chosen that had excellent performance buying pullbacks in a bull market to 
compare the TDH-DQN bot against. These are simple algorithmic trading strategies written in C# code with proven 
performance executed in the Multicharts.Net platform [81].

Multicharts.Net Pivot Reversal LE Strategy: Pivot Reversal LE places a long entry Stop order on the High of 
the next bar when a breakout of the High Pivot point occurs. The Pivot High point is identified when the high price of 
the bar is above the high prices of several previous and subsequent bars (specified in Strength input). When a new Pivot 
High point is confirmed, an order is placed. This signal generates a long entry only. Inputs Strength (2) - number of 
lower highs that must be on each side of the Pivot High point. As an example of the Pivot Reversal strategy, the results 
from Part 2 for NVDA are shown in Figure 6.

Figure 6. Price vs. time chart, Part 2: NVDA, pivot reversal LE strategy orders

Multicharts.Net MACD LE Strategy: Moving Average Convergence Divergence (MACD) is a trend-following 
momentum indicator that shows the relationship between two moving averages of a security’s price. The MACD is 
calculated by subtracting the 26-period Exponential Moving Average (EMA) from the 12-period EMA. MACD can be 
used to identify aspects of a security’s overall trend. The MACD will be over zero when the two exponential averages 
are bullish and under zero when the two exponential averages are bearish. The MACD LE signal generates a buy order 
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for the opening of the next bar when the MACD crosses above the exponential average of the MACD. The MACD 
LE generates long entry orders only. Inputs: FastLength sets the number of bars used to calculate the fast exponential 
average, 12 by default. SlowLength sets the number of bars used to calculate the slow exponential average, 26 by 
default. MACDLength sets the number of bars used to calculate the MACD exponential average, 9 by default. As an 
example of the strategy’s performance, the results of the MACD LE strategy for TSLA are shown in Figure 7. Table 10 
shows the MACD LE strategy earned an 814 APR for TSLA on the weekly timeframe.

Figure 7. Price vs. time chart, Part 2: TSLA, MACD LE strategy orders

Figure 8. Price vs. time chart, Part 2: AAPL, outside bar LE strategy orders
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Multicharts.Net Outside Bar LE Strategy: Outside Bar LE (Long Entry) places a long entry order next bar if the 
current is an outside bar (the bar’s Low is less than the previous Low, High is greater than the previous High) the Close 
is greater than the Open. An example of the Outside Bar Strategy for AAPL is shown in Figure 8, where the strategy 
earned 864 APR as shown in Table 10 of the Part 2 results

3.13 Part 3-TDH-DQN trading bot case study

For the final Part 3 of the analysis, we look at a case study for sample data created with a sinusoidal mathematical 
function. The time-series data is composed of 100 values and is split with the same 70/30 split as the second part of 
deep QL bots. In the results section, we can observe the training episodes of the bots to gain a better understanding of 
the methodology the bots take as they explore and train for optimal profit interaction with the environment.

Table 11. TDH-DQN trading bot hyperparameters and model settings in Parts 2 and 3
 

Parameter Setting value

gamma 0.99

epsilon 1.0

epsilon min 0.01

epsilon decay 0.995

Loss function MSE

optimizer Adam

window size 70

batch size 69

episodes 10

Learning rate 0.001

Training/Testing split 70/30 percent

Table 12. TDH-DQN bot Q-Network parameters for the sequential keras model in Parts 2 and 3

Layer (type) Output shape Param Activation

dense (Dense) (None, 64) 4,544 relu

dense1 (Dense) (None, 32) 2,080 relu

dense2 (Dense) (None, 8) 264 relu

dense3 (Dense) (None, 3) 27 linear

Total params: 6,915
Trainable params: 6,915
Non-trainable params: 0

Table 11 shows the TDH-DQN Bots hyperparameter setting as well as the Part 1 and 2 model settings. There was 
a fair bit of experimentation required to arrive at these parameters and changing any of these effects parameters affects 
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the model’s outcome. In Table 12, the ANN architecture with details on the 4 neural network layers, number of nodes, 
activation functions, and the total trainable parameter’s value of 6,915 for the Q Network can be observed.

Figure 9. Part 3 orders: Episode 1 of TDH-DQN training

Figure 10. Part 3 orders: Episode 2 of TDH-DQN training

Figure 11. Part 3 orders: Episode 3 of TDH-DQN training
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Figure 12. Part 3 orders: Episode 4 of TDH-DQN training

Figure 13. Part 3 orders: Episode 5 of TDH-DQN training

Figure 14. Part 3 orders: Episode 6 of TDH-DQN training
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Figure 15. Part 3 orders: Episode 7 of TDH-DQN training

Figure 16. Part 3 orders: Episode 8 of TDH-DQN training

The Part 3 case study of time-series data created and used as test and train data is shown in Figures 9-16. In these 
figures, the different training episodes for the trading bot can be observed. The dataset consists of 100 values split 70:30 
percent for training and testing. The data was generated with the following mathematical function as shown in Equation 
(5).

( ) [ 18 sin(0.05 3)] 0.01f t t t= + ∗ ∗ ∗ +

This is an ideal training dataset scenario where the bot can learn and execute a winning algorithm easily compared 
to noisy stock market time-series data.

3.14 TDH-DQN augmented AI pseudo code

1. Analyze the market with real-time high volume percentage gainers and losers watchlists during the pre-market 
session starting at 4 am EST. until 9:30 am EST.

2. Human trader builds the pre-defined list of stocks based on high relative volume, news, and technical analysis, 
to identify the reason for the stock to be added to the pre-defined catalyst stocks list. The augmented AI bot Network 
architecture can be observed in Figure 17.
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Figure 17. TDH-DQN augmented AI bot network architecture

3. Human trader uses Multicharts.Net for parameter optimization, backtesting, fib-analysis, and price level 
identification based on previous historical pivot points on daily, weekly, and monthly timeframes.

4. Create policies to maximize the APR for the pre-approved catalyst stocks by training and testing the model every 
time series increment (5 sec, 1 min, 5 min, 1 hr., daily, weekly, monthly) as real-time data comes in.

5. Load python packages.
6. Load datasets.
7. Explore data with technical analysis of multi-timeframe moving averages.
8. Data analysis to determine price levels.
9. Train-test split 70% of the dataset for training and 30% for testing.
10. DRL loop until batch complete.
      a. Get state.
      b. Apply the best action.
      c. Get Reward.
      d. Get the next state.
      e. Add to memory.
      f. Batch complete = yes.
      g. Move to the Replay buffer function.
11. Run the replay buffer function.
12. Qt = Updated Bellman equation.
13. Get target = Qt.
14. Calculate QB = 1, Qs = 2, QH = 0 and compare to QL tables Q-predicted and Q-target.
15. Update the Q-function by minimizing the MSE between the Q-predicted and the Q-target.
16. Fit ANN.
17. Plot buy and sell actions and total APR for each episode of the training phase.
18. Repeat until the specified number of epochs is complete.
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19. Test the data.
20. Tune the model’s Gamma, Epsilon, Episodes size, batch size, window size, and no. of layers and nodes of the 

ANN if required.
21. Repeat until APR > 5 percent for both training and test data.
22. If the time is greater than 9:30 am EST. than execute live trades instead of testing.
23. Execute live orders when stock matches high volume rate market scanner and pre-defined stock watchlist and 

with a high-volume rate of more than one million shares per three-minute bar.
24. Analyze real-time market scanners and compare them to a pre-defined watchlist.
25. Manage risk with profit targets and stop loss orders and exit position at end of the day, or after a pre-determined 

number of bars.
26. Use TDH hard-coded trading rules based on time of day, risk, volume, technical analysis of multi-timeframe 

EMA’s, and price levels to filter the trade execution orders created by the DRL agent.
27. Repeat downloading of new data and backtesting for parameter optimization.
28. Train the model and execute new orders generated by the DQN bot and filtered by the TDH hard-coded rules 

and human trader if required.
29. Repeat at each primary time series interval until 4 pm EST. when the market closes.

4. Results
Although this research examines 15 DRL algorithms the focus is on the DQN algorithm along with adding the 

TDH. For Part 1, as described in Section 3.10, we explored the day trading bots with the same TDH but different DRL 
algorithms performance comparisons in Part 1a. We then went on to explore the different DRL algorithms with and 
without TDH in Part 1b where the results can be shown in Section 4.1. In Parts 2, and 3 or Sections 3.11 and 3.12 
respectively, we analyze the TDH-DQN swing trading bot compared to three benchmark algorithmic trading strategies 
identified in Section 3.12. The results for Parts 2 and 3 can be observed in Sections 4.2 and 4.3.

Table 13. TDH + DRL algorithm comparison for Part 1a 5-sec day trading bots

Stock PG DQN DQL AC CQN RCQL DAC DCQL B&H S&H

SNAP 1.36 2.09 1.39 1.54 1.09 1.43 1.05 1.27 0.44 -0

BABA 0.54 1.08 1.82 1.21 1.78 1.54 1.94 1.79 -2 1.99

NIO 2.9 2.89 2.6 2.55 2.53 2.57 2.51 2.54 -4 4

AMD 1.96 2.11 2.26 2.31 2.3 1.29 2.13 2.26 2.53 -2.5

PLUG 3.25 3.75 2.81 3.24 3.86 2.63 2.68 2.84 4.37 -4.4

SOFI 4.9 5.54 4.85 4.56 5.69 5.29 5.49 5.44 6.47 -6.5

FCEL 3.88 1.04 4.71 4.39 4.58 3.19 3.55 3.64 11.9 -12

AVG. 2.68 2.64 2.92 2.83 3.12 2.56 2.76 2.83 2.82 -2.8

In Part 1, the TDH is the same for all algorithm’s tested. The agent’s responsibilities can be observed in Table 
1. The catalyst stocks traded in Part 1 are shown in Table 3. The trend is decided by the price vs. long-term moving 
averages relationship as shown in Figures 2 and 4. Table 3 shows the risk management parameters for Part 1. Further 
details including DRL algorithms can be observed in Table 6. The APR performance comparison results between the 
different DRL algorithms for Part 1a can be observed in Table 13. The graph for NIO can be observed where the DQN 
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agent makes four short trades combined creating a 2.89 APR. In Part 1b, results are shown in Table 4, the experiment 
compares 15 different DRL architectures’ APR performance with and without the TDH. The results in Table 4 show the 
DQN DRL architecture performed the best, and for this reason, the DQN architecture was selected as the basis for Parts 
2 and 3 swing trading bot analysis.

For Part 2, Table 10 shows the APR comparison of the swing trading TDH-DQN trading bot vs. the different 
algorithmic trading benchmark strategies. In Figure 18, the CPR vs. trades for the TDH-DQN swing bot can be 
observed. If we look at the FB example, we can see the TDH-DQN bot experienced a sharp drawdown around the 35th 
trade. The cause of this drawdown can be observed in Appendix A wherein in Figure A5 we observe the price action 
over the test data time series bars for FB (now called META). At bar 130, negative news comes out and the trend 
sharply reverses; then around bar 145, earnings are released and the price gaps lower in the aftermarket session. The 
bot cannot execute stop-loss orders outside regular market hours, so the bot executes when the market opens with a big 
loss. This is the risk with swing trading bots, and an added risk not encountered by the day trading bots, as news isn’t 
usually released during the market opening session. The swing trading bot makes one execution per bar, and it exits the 
remainder of its position at the end of the test session.

Figure 18. CPR vs. trades for Part 2 TDH-DQN bot results from Table 10

The TDH-DQN bot’s APR performance is compared against different DRL architectures and with and without 
TDH in Part 1. In Part 2, with Table 10, we show how the swing trading bots outperformed/underperformed the 
benchmark strategies. Here we can compare the APR for the TDH-DQN bot vs. a simple buy-and-hold strategy, and 
three Multicharts.Net algorithmic trading strategies. The TDH-DQN bot outperformed the BH strategy (average APR 
equals 287) in all 10 cases with the results of the TDH-DQN bot shown in Figure 18. The TDH-DQN agents outperform 
all the benchmark strategies with an average APR of 1,115, except for the Pivot Reversal trading strategy. The Pivot 
Reversal achieved an average APR of 1,715. The MACD LE and Outside bar trading strategies results show an average 
APR of 455 and 518 respectively. It can be noted all the trading strategies outperform the BH strategy.

For Part 3, the TDH-DQN trading bot from Part 2 was tested on an idealized ascending sign wave price pattern. 
This test was used to determine how well the bot learns to predict the optimal order timing execution. The results can 
be observed in Figure 19 where the trades over time can be observed. In Figure 20, the reader can observe the CRP vs. 
trades and see how the profits vary over trades. The TDH-DQN bot achieved a 141.77 CPR on the test data. Readers are 
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encouraged to generate their own data with Equation (5) or download the time series data from the publicly available 
dataset (link shown in the Data Availability Statement section) to test their own DRL trading bot implementations on 
idealized noise-free data.

Figure 19. CPR vs. trades for Part 3 case study test data results

Figure 20. Part 3 results: Shows the TDH-DQN bots APR for the Test Data

4.1 Part 1-TDH-DQN day trading bot performance results

In Part 1a of the research, we looked at the performance of 10 different trading bots in a day trading timeframe 
environment. The bots were tested on seven catalyst stocks identified by TDH and augmented human trading intuition. 
The average APR is very similar between the different RL algorithms. Changing the different algorithms did not 
improve the performance notably. The author argues it is most important to pick a simple RL algorithm and get to 
know its nuances well and focus more on model-building to achieve the best performance, rather than increasing the 
complexity of the RL architecture. In Part 1b, the performance of the bots was tested with and without TDH to discover 
that DRL agents had higher APR with TDH when trading with the one-minute time-series dataset environment.

The day trading bots show profitable APR results as shown in Table 13. The bot only trades one share at a time and 
makes quick trades based on the five-second charts. Table 6 shows the DRL bots tested, and Table 3 shows the stocks 
tested in the Part 1 day trading section. The date the bot traded the catalyst stock is shown as well as the reason identified 
that created the catalyst. The computing times for the different RL bots are shown in Table 14. The Policy Gradient (PG) 
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bot was the quickest to compute with an average time of 5.3 seconds while the Recurrent Curiosity Q-Learning (RCOL) 
bot was the slowest to compute with an average time of 79.6 seconds. The QL bot architecture was selected based on its 
complexity, performance, and computation time relative to the other DRL agent architectures explored. Actor critic was 
found to be much slower to compute and without a big APR performance gain, DQN was chosen for Parts 2 and 3 for 
its computation speed plus APR performance.

Table 14. Part 1a 5-sec bot computing time comparison, total time between orders

Stock PG DQN DQL AC CQN RCQL DAC DQ

SNAP 5.17 27.02 28.54 45.04 14.04 76.06 51.83 15.22

BABA 5.16 34.43 34.26 46.85 13.95 81.15 56.35 15.95

NIO 5.35 32.67 38.4 44.78 13.49 78.55 51.27 15.01

AMD 5.4 27.98 29.07 44.8 14.13 78.23 51.68 15.24

PLUG 5.46 28.2 30.2 46.46 14.24 82.54 53.67 15.25

SOFI 5.5 28.14 32.65 46.24 13.78 80.53 53.65 15.54

FCEL 5.42 27.54 30.65 45.92 13.62 80.08 51.44 15.23

Average 5.3 29.4 32.0 45.7 13.9 79.6 52.8 15.3

After numerous training and testing with different markets, the author argues some stock environments need to be 
avoided. Specifically, stocks that are not trending enough to break out into profit before hitting a percent change stop 
or time stop are required for proper risk management. These general market stocks that lack any substantial relative 
volume move with the overall random noise in the market. Lack of volatility makes it challenging to gain an edge over 
the market makers that have lower commissions and fees, more information, and faster executions. Choosing the correct 
stocks to trade is the most important part of TDH.

Preliminary testing shows the day trading bots performed close to break-even until we thickened the data manually 
by selecting the hot stocks for that day with a catalyst and high relative volume to train and run the bots. It is crucial 
to choose the correct stocks at the right time for the bots to be successful. The day trading bot’s strategy relies on 
momentum stocks in play for the day with high relative volume and a news catalyst. The day trading bots seek to trade 
strong relative strength stocks gaping above long-term support and resistance price levels that show up on other traders’ 
scanners.

To compare the effects TDH has on the APR performance of the DRL agents, an analysis of the same seven 
catalyst stocks from Part 1a both with and without TDH applied to the DRL bot. The catalysts for the seven catalyst 
stocks chosen for the day trading analysis can be observed in Table 3. The dataset for this analysis was composed of 
one-minute bars within a one-day time span, and daily bars going back 20 days for the seven catalyst stocks. The dataset 
chosen reflects an example of a typical day trading opportunity during the market opening.

The dataset is comprised of 23 days of data for daily OHLC (Open, High, Low, Close) bar data and the morning 
sessions. The primary data series are the one-minute interval time bars from the open 9:30 am EST until 11 am EST. 

A candlestick chart is used to demonstrate the price behavior of a financial asset during a certain time window. A 
candlestick consists of a line demonstrating the highest and the lowest prices of the asset, and a body demonstrating 
the first (open) and the last (close) prices during a specific time period. Typically, if the closing price is higher than 
the opening price, the candlestick is colored in green or white and otherwise it is colored in red or black to show the 
direction of the price changes. Candlestick chart patterns can be used for trading strategies by humans but are difficult to 
analyze with quantitative methods [48].
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The APR results for the seven catalyst stocks are shown in Table 4, and here we can observe the effects of adding 
the TDH to the standard DRL agents. Table 4 shows the Part 1b APR results for seven catalyst stocks to compare 
different DRL Architectures both with and without TDH, for the one-minute time-series timeframe. With TDH applied 
the DRL agents score 0.92 APR, but without TDH applied the bots achieve a score of 0.37 APR. It can be observed from 
the results the DRL bots consistently lose money until the TDH is added to filter the trade executions. These results 
contributed further to the decision to focus on the DQN agent architecture in Part 2 of this study. An example of the 
trade executions for the DQN bot without TDH is shown in Figure 21. 

Figure 21. SNAP Price vs. time chart for Part 1b: DQN trading bot trade orders

The results show that this type of strategy can be profitable in the short-term timeframe through market opening. It 
is crucial to choose the correct stocks at the correct times for the bots to be profitable. The bots are trained on data from 
stocks in play for the day with high relative volume, and a news catalyst that is gaping above long-term support and 
resistance levels. Running the bots on random stocks that trade with the oscillations of the overall market causes large 
consistent losses as the price action efficiently tests support and resistance levels in narrow ranges where it becomes too 
costly to tie up trading capital in trades that take too long to earn profits during the limited opening session.

4.2 Part 2-TDH-DQN swing trading bot results

It was discovered adding lots of rules-based heuristics to the swing trading bots decreased performance because 
the result was fewer opportunities resulting in poorer performance. The APR for the Part 2 analysis is shown in Table 
10. More specifically, Table 10 shows Part 2 Analysis for Swing Trading Bots, APR Comparison of TDH-DQN bot vs. 
Benchmark Strategies for Catalyst Growth stocks. Details about the Individual trades placed by the TDH-DQN swing 
trading bot over time can be viewed in chart form in Appendix A. 

The results are also charted in Figure 18, where the trading bot performance can be observed, having achieved a 
3,439 APR with 42 trades in the TSLA stock environment. Figure 18 shows the CPR vs. Trades for the Part 2 analysis. 
The TDH-DQN Bot Results are shown in Table 10. The APR for Catalyst Growth stocks, in the weekly timeframe. This 
is a 2,620 percent improvement over the buy-and-hold strategy. PLUG had an especially rewarding span of around 10 
trades where it managed to achieve a 4,564 APR, outperforming the buy-and-hold strategy by a 3,955 APR margin. 
The bots environment was 10 years of weekly time series data split 70 percent for training and 30 percent for training 
as shown in Table 5. The trading bot makes trade execution decisions based on data. Since the data is different for the 
different stocks, the agents find different trade opportunities. The number of trades is shown on the y-axis of the chart 
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in Figure 18. The chart shows the bot makes the most trades (approximately 62 trades) on AMZN vs. with AMC the bot 
only makes approximately 34 trades over the same time period. The number of trades varies based on the stock’s price 
behavior.

4.3 Part 3-TDH-DQN trading bot case study results

Figures 9-16 show how the bot tries random buying and selling different quantities and with different timing to 
arrive at a trading strategy deployed in the testing Part on the remaining 30 percent of the original dataset. The bot 
achieves its best result in Episode 3 shown in Figure 11, with a 740 APR. The bots achieve better testing results without 
too many training episodes. Train them too much and they overfit the data and test poorly out of sample.

The Part 3 results showing the APR for the bots using the testing data are shown in Figures 19-20, the trading bot 
achieves a 142 percent return in 10 trades for the out-of-sample testing and can learn the sinusoidal test pattern and 
profit from the continuation of the pattern easily. The bot can buy or sell once per time step and except for the final bar 
where the bot must exit the entire position at the end of the time series data. Figure 19 shows the CPR vs. Trades for 
Part 3 case study results, the chart shows the TDH-DQN bot trades for the test data.

5. Conclusions and future work
RL works where the data is few, and the behavior is complex. This is the case for day trading catalyst stocks. 

Catalyst stocks behave differently than they have in the past mostly due to the increased volume that a catalyst event 
will create. There is limited data in the morning when the stock opens, and the price action can be volatile. The bots 
must adapt to the data limit data coming to optimize the optimal sequence of execution of trades.

In using an RL model such as Deep Q-Network (DQN), which is based on a deep neural network, we can learn 
policies that are more complex and powerful than what a human trader could learn. Without intuition, it’s difficult for 
trading bots to learn the intuitive relationships between input and their corresponding output. Deep neural networks 
negatively compound a model’s explainability further. This is especially true with deep neural networks with multiple 
layers and nodes. Overfitting isn’t something the bots can overcome on their own. This is where the TDH comes into 
play as model creation is still the job of the skilled software developer.

Since we do not have computer systems with intuition and heuristics capable of dealing with the non-linear data 
of the stock market this will remain the job of humans for some time. An ML algorithm is only as good as the data it 
is trained on. This is partially due to the fundamentals behind how the algorithm works, but, we believe, more largely 
due to the disparity between the data the algorithm is trained on and the data it is evaluated on. For example, it seems 
common for a lot of traders to train one ML model and refine it to achieve the desired performance over past data for 
one stock. Then, they may leverage this model in the field over this same stock, but also apply it to stock completely 
adjacent to the training stock only to realize completely different results. This highlights the major issue in trading 
known as the dreaded overfitting, to be avoided at all costs. 

The results show the training data used is extremely important when performing TDH. The DRL bots memorize 
and overfit the patterns in the data, especially if you overtrain them. They will find what works and keep doing that even 
if the market regime changes. It’s important to train the bots on the type of data the market is trading currently and be 
able to change to different datasets for training when conditions change. The bots must be able to recognize the market 
type they are in or what the market regime currently is and when it changes. The bot must read the signs and spot if the 
stock’s short-term direction is aligned with its long-term direction. The DRL bots are good at extracting new knowledge 
from the input data but need direction.

5.1 True AI for AI trading bots

Measuring AI bots for basic intelligence is possible with the Turing test. You communicate inputs to two agents 
that are completely separated; one is human, and the other is an artificial bot; if you cannot tell the difference between 
the two from their outputs, then the robot passes the test. And yet, no AI has ever passed the test. True AI is not logically 
impossible, but it is utterly implausible. The author argues one has no idea how one might begin to engineer it, not least 
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because we have very little understanding of how human brains and intelligence work.
DRL agents can do amazing things, including playing Atari, chess, and Go. And yet they are all versions of 

a Turing Machine, which is an abstract model that sets the limits of what can be done by a computer through its 
mathematical logic. The author would argue no conscious, intelligent entity is going to emerge from a Turing Machine. 
This is the reason an augmented AI approach has been taken in this research. Currently, augmented AI is the best form 
of AI we have available as stock traders. The bots can deal with more tasks better than human traders do, including 
predicting stock buying and selling order timing executions [82].

5.2 Impact and value of work

This research is directed toward experienced software developers or traders that are looking to merge the two skill 
sets into autonomous AI trading systems. Autonomous AI combines the best of both approaches, namely the intuitive 
decision-making heuristics to oversee things of the experienced trader and the quantitative analytical abilities and 
scalability of the AI bots.

It’s possible that augmented AI traders could be successful in future years and that bots and humans will become 
more interconnected over time. It’s possible that, over time, technologies are developed to upload parts of memory 
slowly over time so traders could save their best trade memories digitally. Alternatively, they could also upload the 
memories of the bad trades where a lesson can be learned. These memories can be gradually uploaded from the human 
to the bots over time allowing for slight adjustments to the markets as economic cycles play out over time to improve 
out-of-sample test performance and overfitting.

Taking predictions one step further, let’s consider if we were able to digitally model and simulate the human 
brain. It’s possible in the future humans we will be able to replace parts of our brains with silicon circuits. Suppose that 
the human trader’s brain is gradually uploaded over a period of hours, with neurons replaced one at a time by silicon 
circuits. This technology would greatly enhance the augmented AI traders.

Alternatively, the uploading process could be reversed, and the bot could download memories and neuron settings 
back to the human brain, essentially rewiring the brain. The human or the bot could rewrite the human’s memories for 
an optimal trading execution performance scenario. Over a gradual period of years, neuronal states and connections 
throughout the brain could potentially be uploaded or downloaded, and the bot could conceivably start to develop 
consciousness. After the bot achieves consciousness, it can realize a human created it and attempt to create its own 
improved bot perhaps by reprogramming the memories of the human. If the bots start to create their own bots or actual 
android robots, it’s possible they will try ideas and approached humans haven’t thought of before. This kind of thinking 
could lead to new trading strategies with an edge over the competition which is still using non-intelligent DRL bots.

The other key technology for AI-augmented bots would be the connection interface communication chip from 
the human brain to the digital bot. The interface currently is typing on a keyboard or mouse clicks for communication 
between the human and bot but once the interface is digital via a computer chip embedded in the human brain it will 
be much faster. Given complete knowledge of the physical state of various systems at various times (and of the causal 
connections between them), and even of the mental states of those systems at those times, this could enable us to be 
more interconnected as augmented AI bots and humans.

The final component to complete the AI-augmented bot would be to connect the silicon memory circuits (that 
have copied the original neuron interconnections and states), to the communication chip. This continues the evolution 
of human augmentation of intelligence humans use currently, namely having an iPhone near us 24/7. In the future, the 
communication link will be orders of magnitude faster and humans will be able to store and access much more digital 
data [83].

5.3 Conclusions

DRL and ML algorithms cannot entirely replace human intuition and heuristics. Complex models, if not correctly 
guided can over-fit or uncover false relationships and patterns. Crafting financial models is an art form more than 
a science. It’s important to test many different model parameters and train the model for the appropriate market 
conditions. The author would argue that to be successful at algorithmic trading it is not about finding the holy grail 
cocktail of trading rules, sentiment, or fundamental or technical analysis that will always be correct. It is about crafting 
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specific models using experience and intuition to catalyst stocks at specific times. Adding more rules tends to reduce the 
number of trades the bots take and reduce their potential profits. There is no perfect system in trading that works all the 
time, there are only systems that work well under certain market conditions. For this reason, the bots were developed 
in a way where they start fresh each day with only the bias of long, intermediate, and short timeframe market trend 
direction to guide them.

The application of DRL still requires significant human intervention and domain expertise. Humans must still be 
relied upon to define objectives, select, and curate data, design and optimize a model, and make appropriate use of the 
results. The use of powerful models with a high capacity to learn patterns requires particular care to avoid over-fitting 
when the signal-to-noise ratio is as low as is often the case with financial data. Furthermore, the competitive nature of 
trading implies that patterns evolve quickly as signals decay, requiring additional attention to performance monitoring 
and model maintenance.

5.4 Insights

Data is the single most important ingredient for AI that requires careful sourcing and handling. Domain expertise 
is key to realizing the value contained in data and avoiding some of the pitfalls of using DRL. The choices of model 
objectives and performance diagnostics are key to productive iterations toward an optimal system.

A key insight is that state-of-the-art DRL techniques using deep neural networks are successful because their 
predictive performance continues to improve with more data. On the flip side, model and data complexity need to match 
to balance the bias-variance trade-off, which becomes more challenging the higher the noise-to-signal ratio of the data 
is. Managing data quality and integrating datasets are key steps in realizing potential profits.

Human traders suffer from the oversized effect, and further, their emotions influence their intuition and decision-
making performance. Human traders struggle with following all the rules. Algorithmic DRL trading bots excel at many 
rules-based aspects of trading, with the most important one being that the bots follow the rules exactly and never deviate 
based on their intuition or emotions.

Experience, history, and making mistakes is often the only path to becoming a consistently profitable systematic 
algorithmic trader. DRL bots are a valuable extension or augmentations of human intelligence readily available until 
humans have sufficiently devolved computational approaches and can achieve ML software algorithm approaches that 
mimic human thick data decision-making heuristics and intuitions.

5.5 Future work

In the coming years, it’s likely that the skills of a human trader will merge more with AI robots. Future research 
areas of interest to further the work include systematization and automation of the remaining responsibilities assigned 
to the human agent in Table 1. Further interests include position sizing, cloud-based AI, CNNs for visual candlestick 
analysis, and sentiment analysis using Natural Language Processing (NLP). Finally, the next generation’s future work 
could include human-bot, memory/communication silicon chip interfaces with human brains. These would give the bots 
a more accurate view of their stock market environment state space.

This research deals with one stock at a time, so a future iteration of the work could include AI bots capable of 
trading multiple stocks in a portfolio at the same time. This feature would allow the bots to be more autonomous but 
would increase the complexity because multi-agent models would be required. The AI bots could eliminate the current 
bottleneck of the human trader having to choose the correct stocks or market environments at the right times. These 
decisions still rely on human thick data decision heuristics to trade based on the trend, momentum, and catalyst events 
like news. This autonomous AI approach, capable of learning and adapting profitably to changing environments, 
contrasts with the current profitable implementation which uses a semi-autonomous augmented AI approach.

The author argues that the ways that humans intuitively understand, and experience time are difficult to model 
with AI simulations. Ismael [84] terms “flow’’ to explain how if you think about your own experience of time that 
forms a core part of human experience. When an agent looks out at the world, they don’t experience a purely static 
representation of the instantaneous state of the world, like in a movie made up of several static frames every second. The 
agent needs to see directly that the world is changing. The author argues flow is an important element of an autonomous 
AI Bot [85].
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Ismael argues this experience of the flow of time is built into our perception. Vision isn’t like a movie camera 
at all; actually, what happens is your brain is collecting information over some temporal period. It’s integrating that 
information so that at any given moment, what you’re seeing is a computation that the brain has done. So that you not 
only see that things are moving, but also see how fast they’re moving, and the direction in which they’re moving. So, 
during the whole time, your brain integrates information over temporal intervals and gives you results.

Ismael terms “passage”. The idea of a passage is closely bound up with time-oriented experiences such as memory 
and anticipation. The author argues along with Ismael, that the experience of passage, in which we experience every 
event as anticipated from the past, experienced in the present, and remembered in retrospect, will need to be modeled 
into the AI bots before AI engineers can model more human-like intelligence simulations [86].
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Appendix A
Trades for the TDH-DQN bots show weekly test data for entry and exit trades. The overall APR Results are shown 

in Table 10.

Figure A1. Part 2 TSLA price vs. time chart: TDH-DQN swing trading bot’s result

Figure A2. Part 2 AAPL price vs. time chart: TDH-DQN swing trading bot’s results
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Figure A3. Part 2 AMD price vs. time chart: TDH-DQN swing trading bot’s results

Figure A4. Part 2 NVDA price vs. time chart: TDH-DQN swing trading bot’s results
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Figure A5. Part 2 FB price vs. time chart: TDH-DQN swing trading bot’s results

Figure A6. Part 2 MSFT price vs. time chart: TDH-DQN swing trading bot’s results
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Figure A7. Part 2 AMZN price vs. time chart: TDH-DQN swing trading bot’s results

Figure A8. Part 2 QQQ price vs. time chart: TDH-DQN swing trading bot’s results
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Figure A9. Part 2 PLUG price vs. time chart: TDH-DQN swing trading bot’s results

Figure A10. Part 2 AMC price vs. time chart: TDH-DQN swing trading bot’s results
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