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Abstract: Machine-vision technology has progressed remarkably in both accuracy and speed owing to advances in 
computer technology and artificial intelligence. In this paper, state-of-the-art research on vision-based techniques is 
reviewed for civil infrastructure condition assessment. The major challenges of machine vision technique in civil structural 
health monitoring are presented. 
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1. Introduction
Civil infrastructures, including bridges, highways, dams, and reservoirs, are critical engineering facilities related to 

the national economy and people’s livelihood[1-3]. Most of them were erected many decades ago and still in service[4-6]. 
For instance, China has over 98,000 reservoirs, with 36% of them in dangerous condition due to inadequate surveys, poor 
construction quality, and improper protection[7]. The United States has 607,380 bridges over 50 years old, 25% of them 
being defective or abandoned, and over 56,000 of bridges structurally defective[8]. Evaluation of the condition of civil 
infrastructures have been examined via the use of monitoring information[9]. 

Currently, engineers use smart sensors and multifunctional sensors to evaluate infrastructure status, combined with 
relevant decision-making national regulations or standards[10]. However, this technique is laborious, environmentally 
susceptible, costly, and time-consuming[11-15]. Machine-vision technology has been deemed a core and promising 
component of structural health monitoring in the field of civil engineering[11, 15]. Also, it is the most closely connected 
and extensive frontier in civil engineering that has been incorporated with artificial intelligence (AI)[16-18]. At present, AI 
applications in civil engineering typically involve intelligent city planning, three-dimensional (3D) printing, building 
information modelling, and structural health monitoring[4, 6, 16, 19-22]. 

Machine-vision systems are devices that automatically collect and intelligently process images of a real object or 
scene through photoelectric devices or sensors, fully useful information, or equipment used to control machine motion[23]. 
The three major functional modules of a machine-vision system are image acquisition, image processing, and output and 
communication[24-26]. The advantages of machine-vision systems are noncontact, real-time detection, long-term stability, 
high accuracy, remote monitoring capability, high environmental adaptability, controllable image-taking speed, and data 
archiving applications[27-29]. Stereo vision technology is the core of machine vision technology. The true 3D position of the 
target is obtained through the principle of optical geometry, such that the target’s geometric shape can be directly sensed, 
key geometric parameters measured, and the damage degree evaluated[30-35]. Therefore, stereo vision technology plays an 
important role in structural health monitoring.

Given all these advantages, what does the future hold for machine vision-based structural health monitoring? 
Recently, we conducted a webinar on major unsolved challenges in vision-based structural health monitoring (Fig. 1). 
These included the major challenges that might require significant breakthroughs or research in the coming decade. Then, 
we discussed the current state-of-the-art of stereo-vision, target area extraction, and 3D point-cloud processing technology.

Copyright ©2020 Yunchao Tang, et al. 
DOI: https://doi.org/10.37256/aie.112020250
This is an open-access article distributed under a CC BY license 
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/



 Volume 1 Issue 1|2020| 9 Artificial Intelligence Evolution

                     

Figure 1. Grand challenges of machine vision systems in civil structural health monitoring

2. Current state-of-the-art of stereo-vision technology
Stereoscopic-vision technology provides 3D stereoscopic information of the target using a projection of the target’s 

two-dimensional (2D) image information, thus providing strong technical support for structural health monitoring. It can 
be divided into active and passive vision, depending on different perception methods. The 3D reconstruction of active 
vision needs to obtain depth information with the help of projection equipment, primarily including structured light and 
time-of-flight methods. The 3D reconstruction of passive vision requires 3D information of the target through the reflection 
of external light sources. This can be divided into monocular vision, binocular stereovision, and multi-eye stereovision 
depending on the number of cameras. The imaging principle of the binocular stereoscopic-vision method is similar to that 
of the human vision system. With stable reconstruction effects and wide application scope, reconstruction of stereoscopic 
information based on triangulation measurement is a highlight in research of 3D reconstruction technology[36]. Dong et 
al. have detected reinforced concrete beams using multiple stereoscopic-vision systems, correlated the vision system 
coordinates through a data-fusion algorithm, and finally reconstructed their 3D coordinates. This global measurement 
method is more efficient and more accurate than previous methods[37]. Malowany et al. have also proposed the use of 
multiple stereoscopic-vision systems for achieving the measurement of large buildings and the use of laser trackers 
for establishing the relationship between the vision systems, thus achieving the measurement of global deformation. 
The method is stable and reliable and has application prospects for 3D deformation measurement of large and complex 
engineering objects from multiple directions[38]. Tang et al. have used binocular stereoscopic vision to measure the 
noncontact deformation of concrete-filled steel tubular columns, used image processing technology and stereoscopic 
matching to obtain a 3D point cloud, and then extracted the point-cloud section and obtained the maximum deformation 
by fitting calculations. This method can reflect the deformation process of concrete-filled steel tube columns\ and the 
measurement results meet the accuracy requirements of engineering measurement (ISO IT7)[39]. Ferrer et al. have measured 
deformation using textural information of the concrete surface, first dividing the surface into small rectangular areas, 
determining the size of local areas by local entropy, and then determining deformation using image correlations. This 
method overcomes the limitations of previous methods, which require spraying signs and is more suitable for practical 
applications[40]. Tang et al. have constructed a four-ocular vision system using two sets of binocular vision, which perform 
real-time detection of concrete-filled steel tube columns for 3D deformation detection under dynamic loading, effectively 
reproducing the target’s 3D deformation process. The mathematical model combining the four-ocular vision coordinate 
system and point cloud matching proposed by this method expands the visual field of vision measurement and the method 
has real-time detection capabilities and good application prospects[41].

In the above-mentioned stereoscopic-vision technology, based on optical geometry, the key content is the post-
processing and reconstruction of the 3D point cloud of the structural target. A point cloud, as an unordered set of 3D 
points in space, generally only contains coordinate information. This leads to the lack of support from key features when 
performing high-level operations on a point cloud. To this end, scholars have proposed a series of algorithms for estimating 
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the features of structural targets. Huang et al. were the first to generate a uniform particle set on the original point cloud 
using the weighted, local, optimal projection operator, estimated the local normal of particle sets, and then introduced an 
iterative framework to determine the normal propagation scheme for flipping the normal of the combined particle set and 
original point cloud. This method has good applicability in the integration of original point clouds[42]. 

In recent years, with the progress of deep-learning research, robust and efficient deep-neural networks have made 
remarkable achievements in the field of stereoscopic vision. Saurabh Gupta et al. have used RGB-D depth cameras to 
obtain pictures and used a convolutional neural network (CNN) to extract features of RGB color information and depth 
information to achieve instance segmentation[43]. Due to the introduction of deep information to the network, compared 
with the contemporary RCNN (Region-CNN), research further elevated the success rate of target detection[44]. Žbontar has 
proposed that the use of an MC-CNN network, with left and right image segments and standard disparity maps as the input 
training networks, in combination with a variety of post-processing methods for achieving high-quality disparity maps. 
Compared with existing traditional stereoscopic matching algorithms, this performs better in both accuracy and speed[45]. 
Qi et al. have proposed the PointNet network to achieve the semantic segmentation of 3D objects[46]. Unlike existing 
research, this network directly takes the point cloud as input, fully retains the detailed information of the point cloud, and 
remains constant for different input orders. Qi et al. have further developed PointNet++, improved its ability to obtain the 
underlying local structure near the point and achieved the best test performance in the 3D point-cloud analysis benchmark 
test at that time [47]. Zhou et al. have proposed the VoxelNet network, which combines the advantages of voxel and point-
cloud networks[48]. Its performance in the automotive detection benchmark (Karlsruhe Institute of Technology) exceeds 
the most advanced 3D detection method based on laser radar. Kim et al. have combined a mask and Mask RCNN to detect 
cracks and then used morphological processing to quantify cracks, exhibiting better detection effects for small cracks[49]. 
Mundt et al. have established a public-concrete damage image data set to classify common types of concrete damage with 
multiple targets[50]. Kim et al. have used CNN to process detection images of concrete cracks to further distinguish between 
noisy point patterns of concrete cracks and similar cracks that are difficult to identify with existing image-processing 
algorithms[51]. Islam et al. have built a full CNN with an encoder and decoder framework for semantic segmentation of 
cracks, with both the F1 value and the recall rate up to 92%[52].

In general, the traditional stereo vision method based on optical geometry theory has gradually matured, which 
guarantees the effective application of the stereo vision method in the field of structural health monitoring. On the other 
hand, deep learning theory yields more possibilities in the development of the stereo vision field. Statistical methods based 
on big data complement the previous methods based on optical geometry. However, unlike 2D image processing, current 
deep networks have not yet become mainstream 3D vision methods. The main reason for this is that the application-level 
3D visual deep network has deeper layers and more complex logical structures. Compared with 2D tasks, the accuracy 
of networks in 3D tasks is often low, especially in the most difficult 3D matching links, and deep networks have still not 
become the dominant method. In addition, the difficulty of acquiring and processing the 3D data set is much greater than 
that of the 2D image data set. As the requirements of target monitoring tasks gradually increase, we need to find a model 
that enables the optical geometry method to cooperate with deep networks efficiently, so as to obtain a more intelligent, 
stable, and accurate stereo vision system.

3. Research status of target area extraction
The extraction of target areas is a key step in visual monitoring. By detecting and segmenting the target position in 

the image, removing uninteresting targets, and improving the calculation accuracy and efficiency, has been the focus of 
research in the field of visual monitoring. Traditional target region-extraction algorithms have been proposed since the 
1970s, mainly including threshold, regional, and edge detection methods[53-56]. Traditional algorithms rely on information, 
such as the color, shape, and texture of the target, for detection and are considerably subject to light and background. As a 
result, its extraction effectiveness in complex scenes is not ideal. Constrained by the limitations of traditional algorithms, 
scholars have begun to seek new theoretical breakthroughs. After 2000, graphic extraction and clustering-based extraction 
and segmentation algorithms have emerged. The stability and accuracy of such segmentation methods have been greatly 
improved, compared with that of traditional algorithms. Methods based on graph theory map the image into an undirected 
graph with weights and convert the problem of segmenting the target area into a problem of graph partition. Typical 
methods include the normalized cuts[57], graph cuts[58], and superpixel lattice algorithms[59]. Cluster-based methods use 
mutual information between pixels to aggregate neighboring pixels with similar features into a superpixel block to 
complete segmentation. Typical algorithms include the Medoidshift[60], Turbopixels[61], and SLIC algorithms[62].

The above target extraction methods all belong to unsupervised learning algorithms, which require neither labelling 
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of the pictures nor consumption of time and effort for training. However, the accuracy of target extraction is expected to be 
further improved. In contrast, the CNN target extraction algorithm, which belongs to the category of supervised learning, 
requires mathematical models built in advance, via training of manually labelled data sets to correctly extract the target but 
which greatly surpasses other methods in accuracy.

At the end of the last century, LeNet proposed one of the earliest CNNs to achieve accurate recognition of handwritten 
characters with a recognition rate of up to 98%, laying the foundation for the rapid development of CNN[63]. Affected 
by computer computing capabilities and other factors, CNN development has remained slow for more than ten years. 
Krizhevsky et al. have proposed AlexNet, which won the ImageNet competition for its great advantages and demonstrated 
the effectiveness of large-scale CNN[64]. The proposal of the model was of great significance for CNN development, which 
has made CNN one of the most popular research topics at present. With the birth of more classification CNN models, 
scholars have also proposed many excellent network models for the task of image target-region extraction.

In terms of target detection, Girshick et al. have proposed the first deep-learning model RCNN for target detection[44]. 
This model first extracts a large number of candidate regional frames from images through a selective search algorithm, 
then scales all regional frames, and extracts the features one by one via AlexNet. Next, it uses the support vector machine 
to classify the features present and performs border regression to yield the position of the predicted frame. The average 
detection accuracy of RCNN in the VOC data set greatly surpasses that of other algorithms. However, RCNN has the 
problems of requiring a high amount of repeated calculations, susceptibility to loss of feature information, and complex 
training steps, such that it is not an end-to-end network model. He et al. have proposed SPP-Net, which solves the 
problems of large calculation volume and susceptibility to loss of feature information in RCNN through candidate region 
frame mapping and spatial pyramid pooling[65]. Ren et al. have proposed Faster RCNN, in which constructed a candidate 
region network is constructed and the candidate region frame-extraction link incorporated into a neural network model, 
thus achieving end-to-end training and prediction for the first time[66]. The above models belong to the two-stage method; 
that is, the detection process can be divided into candidate frame extraction and convolution classification. This method 
has high positioning and detection accuracies but has much slower detection speeds when compared to the one-stage 
method without the link of candidate frame extraction, which directly converts the problem of frame positioning into the 
regression problem. The most representative one-stage method is the YOLO model proposed by Redmon et al. This model 
directly completes tasks, such as feature extraction, frame regression, and classification, in a network. The detection speed 
can reach 45 frames per second, which meets the requirements for real-time performance[67]. Since then, in response to the 
shortcomings of YOLO, scholars have proposed SSD[68], YOLOv2[69], and YOLOv3 models[70] for continuous optimization, 
thus materially improving target detection technology.

In terms of object segmentation, Long et al. have proposed a fully convolutional network (FCN). This model uses 
VGG16[71] as the backbone skeleton and uses convolutional layers instead of fully connected layers, restores the size of the 
feature map by means of deconvolution operations, and also defines a jump layer to improve segmentation accuracy. The 
segmentation accuracy in the VOC dataset reaches 62.2%[72]. Badrinarayanan et al. have proposed the SegNet model and 
designed an encoder-decoder symmetric structure, which can extract high-dimensional features through convolution, using 
up-sampling to recover the feature map size, yielding excellent segmentation performance[73]. Chen et al. have proposed 
an excellent series of semantic segmentation models, called DeepLab, developed from DeepLabv1, which initially used 
cavity convolution and conditional random fields, to produce DeepLabv3, which has an encoder-decoder structure. The 
segmentation accuracy in the VOC dataset also improved from 71.6 to 89.0%[74, 75].

The proposal of excellent algorithms and models has promoted the research and application of target region-extraction 
technology in various industries. Silva et al. used CNN to build a model suitable for detection of concrete cracks under 
different conditions, solving the problem of limitations of traditional image-processing methods[76]. Liang et al. proposed 
a dual CNN consisting of a CNN and FCN to identify cracks on concrete bridges, where CNN was used to exclude 
interference information, such as speckles, and FCN was used to extract crack features. This model has high recognition 
accuracy[77].

With the rapid development of CNN theory, 2D detection and segmentation framework with general significance has 
basically matured and offered many choices, which makes the target area monitoring task simple and reliable. Thus far, 
the structure of interest can be effectively detected and segmented by training images of specific targets, providing reliable 
input for subsequent point cloud processing.

4. Research status of 3D point-cloud processing
The original 3D point cloud usually has many defects, which are not conducive to the direct computer processing and 
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reduces the accuracy of monitoring. Generally speaking, point cloud processing is a necessary part of the monitoring task 
and common defects in point clouds include noise, cavities, and unevenness. In addition, the 3D point cloud is discrete data 
and there is no topological correlation information between points. Usually, a topological surface needs to be generated 
for further processing and the generation of the surface involves feature information, such as the normal of the 3D point 
cloud. Thus, 3D point-cloud processing includes several steps, such as filtering, smoothing, feature estimation, and surface 
reconstruction. Scholars have conducted in-depth research for each processing link, resulting in a large number of excellent 
algorithms.

Point-cloud smoothing is designed to solve problems, such as uneven point-cloud density, small cavities, large surface 
fluctuations, and overlapping. Moving least squares, as one of the most widely used smoothing algorithms, was first 
proposed by Lancaster et al.[78]. The moving-least squares method uses the coefficient vector and basis function for fitting 
and then introduces the probability of compact support. It is considered that any point is only affected by other points in its 
neighborhood and is not associated with the outside of the neighborhood. This determines that this method has smoothing 
effects incomparable to any other algorithms. After years of development, scholars have continuously improved the 
moving-least squares method.

As an unordered set of 3D points in space, a point cloud generally only contains coordinate information, which 
results in a lack of support for key features when performing high-level operations on a point cloud. To this end, scholars 
have proposed a series of feature estimation algorithms. Rusu et al. have proposed a point-feature histogram as a high-
dimensional feature for describing the geometric attributes of the point neighborhood[79]. This feature has a constant 
density and attitude and provides good initial conditions for operations, such as registration, and improves the evaluation 
quality of external geometric features of the structure. After presenting the point-feature histogram, Rusu et al. have 
modified the mathematical expression and greatly reduced the calculation time through an optimization method, with the 
optimized feature called the quick-point feature histogram[80]. Normals are another important feature of a point cloud and 
have received wide attention from scholars. Currently, the normal estimation methods are roughly divided into three types: 
the local neighborhood plane fitting method[81], Voronoi/Dalaunay method[82], and a method based on robust statistics[83]. 
These three algorithms are robust enough to calculate normal information from the point cloud but cannot guarantee the 
consistency of the normal directions.

Point cloud-surface reconstruction methods mainly include the triangular mesh and implicit function methods[84]. 
Points are projected onto the plane using the triangular mesh method, with the points on the plane triangulated and a certain 
triangular patch expanded as the initial surface, which reconstructs as jagged[85]. The main representative algorithm of the 
implicit function method is Poisson’s surface-reconstruction algorithm. This algorithm provides a point cloud with normal 
information and solves the surface-indication function, thus distinguishing the interior and exterior of the surface model[86]. 
The typical algorithm of the implicit function method is the Poisson’s surface reconstruction algorithm. This algorithm is 
able to generate a smooth watertight surface, automatically filter noisy points, and has high tolerance for an uneven point 
cloud[87]. V. Estellers et al. have proposed a more robust Poisson's surface reconstruction, which transforms the surface 
reconstruction problem into a convex function minimization problem of the surface internal indicator function and used 
the Huber penalty, instead of least-square fidelity term, to obtain better results, even under the environment of nonuniform 
sampling and noisy points[88].

In fact, point-cloud processing is not an established model. Common point-cloud filtering, local feature extraction, 
and 3D reconstruction operations are optional rather than necessary. The specific choice depends on the requirements 
of accuracy and speed. To date, point-cloud processing is also developing in a data-driven direction. Deep networks are 
expected to be better applied in traditional frameworks to achieve robust point-cloud processing.

5. Conclusion
This study summarizes the latest research in civil engineering health monitoring based on stereoscopic vision and 

presents the available machine-vision technologies for civil health detection by category. The study particularly expounds 
the developmental status and problems of stereoscopic-vision technology and offers suggestions for development.

The application of machine-vision in civil structural health monitoring is becoming more and more widespread. As 
scholars continue to study monitoring in terms of stereo vision, feature recognition of civil structures, and post-processing 
of point clouds, the application of machine-vision in civil structural health monitoring is progressing toward improved 
developments in efficiency, accuracy, robustness, precision, and degree of automation. In addition, the monitoring field 
of view is expanding and real-time performance continuously improving, which is a good trend. At the same time, there 
are challenges. For example, most current research results still require manual input and the degree of automation in the 
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acquisition of machine vision elements, such as images or videos, needs to be improved. Most studies use flat surface 
samples and the influence of the surface quality or material of the samples on monitoring results remains to be explored. 
When the weather and other environmental factors change, the stability of a machine vision system remains a challenge. 
The above challenges still require more research effort.

Based on the above discussion, this article draws the following conclusions:
(1) The acquisition of the geometric features on an object’s surface has always been the ultimate goal of visual 3D 

reconstruction technology and is also the focus of practical applications.
(2) The rapid development of deep learning has greatly promoted the development of visual perception technology 

and is gradually influencing the field of 3D vision, thus providing remarkable support for traditional 3D reconstruction 
technology. However, there is an urgent need to find a model for efficient collaboration between deep learning and 
traditional, optical, geometry methods.

(3) The development of CNN has greatly promoted the development of target area extraction technology, making 
accurate, real-time, and stable target detection and segmentation possible, and significantly improving the accuracy of 
damage detection in civil infrastructure.

(4) There has been relatively little research on the basic theory of 3D visual-reconstruction technology, which is 
particularly critical for tracking 3D deformation in a dynamic or seismic environment.

(5) The integration of intelligent 3D visual-reconstruction technology and deep learning will become a key, frontier 
research direction.
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