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Abstract: Rheumatoid arthritis is an autoimmune disease that causes joint damage due to inflammation in the soft tissue 
lining the joints known as the synovium. It is vital to identify joint damage as soon as possible to provide necessary 
treatment early and prevent further damage to the bone structures. Radiographs are often used to assess the extent of the 
joint damage. Currently, the scoring of joint damage from the radiograph takes expertise, effort, and time. Joint damage 
associated with rheumatoid arthritis is also not quantitated in clinical practice and subjective descriptors are used. In 
this work, a description of a pipeline of deep learning models to automatically identify and score rheumatoid arthritic 
joint damage from a radiographic image is provided. An automatic tool was built to produce scores with extremely high 
balanced accuracy within a couple of minutes and utilizing this would remove the subjectivity of the scores between 
human reviewers. Using a joint segmentation approach and training joint score prediction models with ordinal class 
encoding, under-sampling, and transfer learning, the joint wised ±1 balanced accuracies ranging from 91.51% to 
97.30% were achieved. The ±1 balanced accuracy of the 4 models showed great potential in achieving industry-standard 
reliability.
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1. Introduction
Rheumatoid Arthritis (RA) is an autoimmune disease where the immune system mistakenly attacks the body’s 

own tissues. This causes inflammation in the synovium, which eventually leads to joint damage. External symptoms 
can include red and swollen joints accompanied by pain. About 0.5-1% of the global population are affected by RA [1]. 
Inflammation of the joint will slowly cause cartilage, the layer of tissue that covers the ends of the bones, to erode. As 
the amount of cartilage decreases, the joint space also narrows. Long-term inflammation can also cause an increase in 
osteoclasts, cells that break down the tissue in bones, resulting in bone erosion. The degrees of narrowing and erosion 
observed in radiographs for RA are used in the Sharp/van der Heijde (SvH) method [2] to measure joint damage. This 
method looks at specific joints in the hands and feet, usually linked to inflammation caused by RA. Radiographs can 
provide a fair representation of joint damage but are presently not used to their full potential because there is no fast way 
to measure the damage quantitatively [1]. Currently, the scoring of the degree of joint damage in RA patients is done by 
manually reviewing their radiographs. This is generally expensive as it takes effort and time. Additionally, joint damage 
associated with RA is not quantitated in clinical practice, but instead, subjective descriptors such as “mild, moderate, or 
severe” are used in official reports [1]. Thus, it is desirable to have a method that can quickly and objectively classify 
joints to allow for more consistent and accurate scoring in clinical and research settings without the need for much 
medical expertise.

For image classification, Deep Learning (DL) models have been outperforming classical Machine Learning (ML) 
models since the 2012 ImageNet challenge [3]. The DL model, AlexNet, which contained 5 layers of Convolutional 
Neural Network (CNN) had achieved 15.2% Top-5 classification error [4]. Thereafter, subsequent years of ImageNet 
challenges have been dominated by CNN DL models. CNN DL models can achieve such remarkable performance due 
to their ability to extract essential features during training [5]. Raw images can be used directly as inputs without the 
need for prior feature extraction. The accuracies of these CNN DL models have been constantly increasing in plenty 
of diverse applications in computation vision medical tasks such as disease classification, brain cancer classification, 
organ segmentation, haemorrhage detection, and tumour detection [6]. Much work has also been done on applying CNN 
models to classifying X-ray images [7, 8], and how to enhance the image contrast [9]. An automated, accurate method 
is needed for unbiased assessment quantifying accrual of joint space narrowing and erosions on radiographic images 
of the hands and wrists, and feet for clinical trials, monitoring of joint damage over time, assisting rheumatologists 
with treatment decisions. Such a method has the potential to be directly integrated into electronic health records. An 
international crowdsourcing competition was designed and implemented [10] to catalyse the development of machine 
learning methods and quantify radiographic damage in Rheumatoid Arthritis (RA). A deep CNN architecture to estimate 
SvH scores for RA damage was designed which simultaneously performed joint localization, joint erosion assessment, 
and joint narrowing assessment [11]. Further, a specialized implementation of the Orthogonalizing Expectation 
Maximization (OEM) algorithm for cross-validation [12] was proposed as it dramatically reduced the computing 
time for penalized regression and cross-validation. For the joint classification, the average accuracy was 0.88, and 
the accuracy of severe, mild, and healthy reached 0.91, 0.79, and 0.9, respectively [13]. Existing work done on the 
automatic scoring of erosion due to RA produced a model based on Visual Geometry Group 16-layer model (VGG16), a 
CNN architecture [14], that is as accurate as human scorers [15]. Instead of SvH, the Ratingen erosion scoring was used 
[16]. The segmentation of the joints was not part of the work [16] as pre-extracted joint images were used.

This study built upon the approach [14-16] and achieved an even higher accuracy. As a deviation, this study 
focused on the problem as a classification of ordinal classes by utilizing ordinal class encoding. To deal with the 
imbalanced data, an under-sampling approach was attempted. Additionally, the automatic segmentation and extraction 
of joints were included. State-of-the-art DL models for computer vision were applied to remove image noise, and 
accurately segment the joints, which ensured the quality of the training samples. A lightweight U-Net architecture which 
was constructed for bone segmentation [17] was used for the purpose of removing background noise. As for robust joint 
detection in X-ray images, the You Only Look Once version 3 (YOLOv3) model [18] was implemented. This paper 
presents the results of our CNN model trained on these joint images for the automatic measurement of joint damage 
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according to the SvH scoring method. In addition, a Penalized-Regression was applied to predictions, to produce an 
ensemble prediction. Further, a shrinkage parameter (lambda) was used to minimize the cross-validation error.

2. Materials and methods
2.1 Dataset

The X-ray datasets used for the analyses described in this paper were contributed by the University of Alabama at 
Birmingham and were compiled from two sources - CLEAR (Consortium for the Longitudinal Evaluation of African 
Americans with Rheumatoid Arthritis [19]), and TETRAD (Treatment Efficacy and Toxicity in RA Database) and 
Repository: A study of RA patients starting biologic drugs [20].

A total of 367 sets of 4 radiographs each per patient were provided as JPG files. Each patient had a radiograph of 
their Left Hand (LH), Right Hand (RH), Left Foot (LF), and Right Foot (RF). Corresponding SvH scores were given 
in CSV format. It includes each patient’s overall total damage scores, total erosion scores, total narrowing scores, 
and the narrowing and erosion scores of each joint. In addition, it was noticed that the size of the X-ray images varies 
considerably. Thus, this called for the need to resize them before the images could be used for training inputs. In 
addition, the dataset consists of a large number and percentage of score = 0 for both narrowing and erosion (Figure 1).

Figure 1. Distributions of scores for erosion and narrowing of each limb
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2.2 Data pre-processing
2.2.1 Normalization

All images were normalized to have pixel values ranging from 0 to 1 by dividing the image arrays by 255 before 
training as the original pixel values belong to {0, 1, …, 255}.

2.2.2 Image re-scaling and padding

All the images were re-sized to 1,500 × 1,200 pixels. The original aspect ratio was retained via padding with black 
pixels at the borders where necessary to ensure the aspect ratio of the original is maintained.

2.2.3 Cropping

The raw images were first cropped to remove unnecessary parts of the limb that do not include the joints. For the 
hands, the bottom of the image was removed. This mostly removed the beginnings of the ulna and radius bones and part 
of the wrist. For the feet, the bottom 1/4 of the image was removed. This did not remove any of the joints involved in 
scoring as the toes are found nearer the top of the feet.

2.2.4 Noise removal and increasing image contrast.

A paper on Noise Removal and Contrast Enhancement for X-Ray Images [9] was replicated and the unessential 
parts of the feet images were additionally cropped out. Figure 2 illustrates the increase in contrast and a significant 
improvement in the image quality of the joints. The contrast of the images was then increased using Contrast Limited 
Adaptive Histogram Equalization (CLAHE) with a clip limit of 2 and the default grid size of (8, 8). This was done to 
address the issue that some images were almost too dark or too light to be seen clearly. Figure 2 shows the importance 
of improving contrast.

Figure 2. Randomly selected before and after CLAHE processing images for side-by-side comparison

2.3 Joint segmentation and identification

Apart from the joints themselves, the rest of the image is unnecessary information. As such, first extracting only 
the joint images and using them to train a model to predict their scores would save computation and improve accuracy. 
Hence, a two-step method was used: U-Net background Masking, and YOLOv3.

2.3.1 Mask extraction algorithm

Before the U-Net could be trained and used for background removal, an algorithm was generated and applied to 
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the images first. This included 3 main steps: 1) Getting the entropy of the image, 2) applying Otsu thresholding, and 3) 
further removal of mask noise.

Entropy is a measure of the amount of randomness in an image [21]. As there is variation in pixel values between 
the background and the skin and bones of the limb, this textural feature can be obtained as the entropy of the areas 
across the image. Entropy can be defined as follows:

20
( ) log ( )n

i iH p x p x= −∑

where n is the number of discrete levels of pixel values within a region of 37 × 37 pixels, and p(xi) is the probability of 
a pixel belonging to the discrete level i, which is just the proportion of pixels that are in that level.

After obtaining the entropy across the image, Otsu thresholding [22] is applied to differentiate between background 
and limb. An intensity threshold level is supplied by minimizing the intensity variance within each class. This is defined 
as minimizing:

2 2 2
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where w0(t) and w1(t) are the probabilities of a pixel being in the two classes when separated by the threshold t. σ0
2 and 

σ1
2 are the intensity variances of the two classes.

The mask obtained from applying the threshold mostly have some amount of noise due to the varying and random 
X-ray photons detected in the background of the raw image. This method is adapted from a paper that only used flood 
filling [23], but it was found to be unsatisfactory. Hence, additional steps, such as contour identification and filling, and 
flood filling from multiple origins, were taken to further remove this noise.

Contours, the borders of a region with the same intensity, were first identified and filled with white pixels. Regions 
with sizes smaller than a threshold of 1% of the total white area were then removed by applying a layer of black pixels 
along its boundary. This mostly cleared any small regions of noise in the background.

Flood filling was then used to remove any noise found within the limb. The mask image was flood filled from the 
four corners in case any corner might have some noise remaining which could prevent the flood filling from working. 
These steps resulted in a mostly full and clean mask of the limb. The mask obtained was then applied to the cropped 
image to remove all the noise from the background.

Flood filling was then used to remove any noise found within the limb. The mask image was flood filled from the 
four corners in case any corner might have some noise remaining which could prevent the flood filling from working. 
These steps resulted in a mostly full and clean mask of the limb.

2.3.2 U-net masking

To achieve robustness against the background noise, the effectiveness of the nonuniform background noise removal 
step had to be improved. It is almost impossible to develop a robust unsupervised algorithm to remove noises that can 
come in various forms. As such, a deep learning model was used to learn how to generate masks of the limbs to remove 
noise in the background. The U-Net architecture was selected for this model. The traditional U-Net has been commonly 
used for semantic image segmentation, especially for biomedical applications. It has been modified from a conventional 
Fully Convolutional Network (FCN) [24] so that it is able to perform well on medical images [25]. It is implemented 
like an encoder-decoder network but contains skip connections [25]. These skip connections create a link between layers 
and others that are deeper in the network. Unlike the classical encoder-decoder network, the output space mapping 
depends on both the latent space and the input space instead of only the latent space.

The specific architecture chosen was a lightweight U-Net architecture which was constructed for bone segmentation 
[17], but in this project, it was used for the purpose of background masking. Here, the number of down and up-sampling 
operations were adjusted to achieve higher performance in radiographic image segmentation [17]. Additionally, a Multi-
Scale Block (MSB) structure was used to do feature extraction. The MSB utilizes filters of different kernel sizes to deal 
with features at various scales [17].

(1)

(2)
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Masks that were used to train the U-Net were first obtained using the Mask Extraction algorithm. From there, good 
mask outputs which match the limb well and do not contain noise from the background were selected by the eye. A 
total of 296 hand masks and 238 feet masks were selected for training. These were then used to train 2 separate U-Net 
models, one for each type of limb. Figure 3 shows examples of good masks that were chosen from the Mask Extraction 
algorithm.

Figure 3. Examples of good masks with their corresponding original images

The optimiser used was the Adam optimizer with a learning rate set as 0.0001. The batch size was set at 16, and 
training ran for 200 epochs. Early stopping was used to prevent overfitting of the model. The loss function selected was 
binary cross entropy since a mask pixel can only either be 0 or 1. This is defined mathematically by:

 

0

1 log (1 ) log(1 )N
i i i ii

BCE Loss y y y y
N =

= − × + − × −∑

where yi is the value of the i-th pixel from the predicted output, yi is its corresponding target value, and N is the number 
of pixels in total.

2.3.3 YOLOv3 and joint identification

YOLOv3 is used for fast object detection where multiple bounding boxes would be predicted at the same time 
together with their class probabilities from one full image directly by a single network [18]. It outperforms Faster R-CNN 
(FRCNN) in terms of fewer background errors [18]. YOLOv3 is also generalizable as it was able to learn broader 
representations of images. Hence, it can be applied to medical images such as radiographs in this case.

The overall process of using YOLOv3 for joint detection and identification includes selecting images to be labelled, 
initial pre-processing, manual labelling of selected images, training of 2 models for both hands and feet separately, 
followed by an additional step to identify the type of joints identified and their respective coordinates in the image.

All selected images were annotated via the use of an open-source graphical image annotation tool called labelImg 
[26]. Since all the joints are of varying sizes, all boundary boxes had to be manually drawn individually.

The hands and feet images were trained separately. Since both the hands and feet contain the same number of 
classes, Proximal Interphalangeal (PIP) and Metacarpophalangeal (MCP) for hands, PIP and Metatarsal-Phalangeal 
(MTP) for feet, the parameters for training these 2 sets of data were the same. The configurations that were changed 
from the default settings are as follows:

1. max_batches = 4,000.
2. steps = 3,200, 3,600.

(3)
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3. classes = 2.
4. filters = 21 for the end of each convolution block - layers 82, 94, and 106.
However, the YOLOv3 models were not trained from scratch. A pre-trained weight on Common Object in Context 

(COCO) dataset which could predict 80 classes was used [18]. The YOLOv3 trained models could now detect the ROIs 
and identify the type of joint - whether it is PIP or MCP for hand images, and whether it is PIP or MTP for foot images, 
by keeping the threshold at 0.5 confidence level even though most of the joints were classified to be around 95-100% 
confident. If more than 10 or 6 joints were identified for the hands and feet respectively, the top 10 or 6 joints identified 
based on their confidence levels were picked (Figure 4).

However, the predictions do not provide information on which PIP, MCP/MTP the joints belonged to. To determine 
which fingers and toes, such as the index, middle, etc, a simple algorithm was developed to help in the identification. 
The algorithm was conducted based on the detected joints’ positions along the horizontal axis. A backup algorithm was 
also created to determine joint type and location if the YOLOv3 model predicted the number of each joint type wrongly.

In the case where the model detects fewer than the required number of joints (10 for hands, and 6 for feet), the joint 
types identified by the model would not be utilized and their locations cannot be determined accurately. As such, this 
information would be unavailable during the prediction of the scores for these joints. Consequently, the scores cannot be 
tagged to the exact joint.

Figure 4. Example of a patient’s hand image with their ROI joints identified

The YOLOv3 models performed tremendously well at detecting joints. They were tested on the remaining images 
that were not used for training and all the joints, except one, were correctly identified with high confidence level. The 
only joint that was not identified was an MTP joint of the third toe. Upon observation, it was noticed that the joints in 
that image had a severe amount of overlap which could have caused the error. This implied that the YOLOv3-trained 
models had a high combined percentage accuracy of 99.991%.

2.4 Joint scoring
2.4.1 Train, validation, and test splits

All train-test splits were conducted with a test size equal to 10% of the entire data with a random state of 42. Note 
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that the test sets were not touched during training and were only used for the final prediction and accuracy evaluation. 
During training, a validation split of 10% of the training sets was used.

2.4.2 Metric for evaluating the model performance

The joint scores for both erosion and narrowing take discrete integer values. As such, they can be deemed as 
separate classes. This means that joint scoring becomes a classification problem as compared to initially using RMSE 
for regression. However, it should be noted that these classes should be considered ordinal in nature.

The metric used to measure the performance of the models tested thus had to change. A modified accuracy score, 
the ±1 balanced accuracy, was used. To understand this, balanced accuracy is first defined as:

0

1       
    

N

i

Number of Correctly Predicted Class iBalanced Acc
N Total Number of Class i=

 
=  

 
∑

where N is the total number of classes.
The ±1 balanced accuracy is like balanced accuracy just that samples that were predicted as a neighbouring class 

to its actual class (off by one class) would be considered as correctly predicted. This helps to account for the ordinality 
of the classes as well and an off-by-one classification is still medically acceptable [15]. This is also a suitable metric for 
a test set with an imbalanced distribution of the classes. In this case, a prediction of all samples as class-0 could achieve 
a high percentage accuracy. Hence, a better measure of performance would be how accurate the model is at predicting 
samples amongst each class. Using a balanced accuracy achieves this.

2.4.3 VGG16 with Transfer Learning (TL)

VGG16 is a vision model with CNN architecture that performs well in image classification [25]. Transfer learning 
refers to applying previously learned knowledge from other tasks to new but related tasks. Unfortunately, the pre-trained 
weights for VGG16 were not trained on any radiographic images. As such, the model had to be trained on radiographs 
using transfer learning.

The original VGG16 architecture was used but the convolution layers were frozen, leaving only the weights on the 
fully connected dense layers to be trainable. This was to prevent any changes in the pre-trained weights so the model 
could be tweaked to suit radiographic images. The original architecture consists of convolutional layers that have kernel 
sizes of (3, 3) and stride 1, and Max Pooling layers with a pool size of (2, 2) and stride 2. The same padding is used 
throughout. It ends with fully connected layers using Rectified Linear Unit (ReLU) as activation. Sixteen of its layers 
have weights and have about 138 million parameters.

In the modified model used, each convolution block has 2 convolution layers before ending with Max Pooling. In 
total, it had 6 convolution blocks unlike the original which only has 5. Here, ReLU activation was still used throughout 
the model after each Batch Normalization layer that can be found in each block, twice in the convolution blocks, and 
once in the fully connected blocks. The dropout used was set at 0.5. For the final activation, what was used depending 
on the approach taken. This could include ‘softmax’, ‘sigmoid’, and ‘linear’.

2.4.4 Ordinal class encoding

For further improvement, the use of class ordering was relooked into. Hence, another approach was required to 
include the ordering into the training. This was done with ordinal class encoding. This approach deviated from the 
method used by [15] where only Weighted Categorical Cross Entropy (WCCE) loss was used. This was an improvement 
upon their method as it utilizes class order which is essential information. Ordinal class encoding is a special encoding 
that is similar to multi-label classification encoding. It is as though the higher numbered classes must have the labels 
of all the classes lower than them and one more additional label. This suggests that each class is a subset of the classes 
lower than it. For example, the encoding for classes 0-2 would be as follows:

Class 0: [1, 0, 0].
Class 1: [1, 1, 0].

(4)
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Class 2: [1, 1, 1].

2.4.5 Loss and activation functions

When using ordinal class encoding for the training of joints, the loss function needs to be Binary Cross Entropy 
(BCE) with a ‘sigmoid’ final activation. The sigmoid function allows for the multi-labels to work. BCE is used here 
because this classification is done as multiple binary classifications. For example, the first binary classification would 
be between the 0-class samples and the non-0-class samples. The next binary classification would be between the 
1-class samples and the non-1-class samples. This continues with all the other classes. In this way, the multi-labels and 
BCE take the class ordering into account during training. Ordering the classes was important information to be used. 
However, by removing the use of loss weights, the imbalance in classes would have a strong effect.

2.4.6 Under-sampling

The paper by [15] used WCCE loss to deal with the class imbalance. In our study, the imbalance in class 
distribution was very large where the number of 0s was 10 times the size of any other class. To deal with the imbalance 
now that weights could not be added, an under-sampling approach was used.

Under-sampling refers to using fewer samples of a class for training. So, in this case, the number of 0 s was reduced 
to only 3 times the size of the other classes. Under-sampling refers to using fewer samples of a class for training. In this 
case, the number of joints with 0 s was reduced to an amount close to the class that had the next highest sample size.

2.4.7 Training

A total of 4 models were trained. Two separate models for the erosion and narrowing of the joints in the hands, and 
2 separate models for erosion and narrowing of the feet joints. All models were trained for 250 epochs with a learning 
rate of 0.0001. As the convolution layers were frozen, the number of trainable parameters was reduced to:

• Total parameters: 15,113,049.
• Trainable parameters: 396,815.
• Non-trainable parameters: 14,716,234.
Google Colaboratory was used for all the joint model training. The Google Colaboratory provided a single 25 GB 

NVIDIA Tesla K80 GPU and 2vCPU @ 2.2 GHz.

Figure 5. Full pipeline

2.5 Full pipeline

These models were then integrated into the end of the pipeline which includes the stages of pre-processing, 
masking, joint identification, and extraction. They are meant to perform the final step in the pipeline: joint score 
prediction. The raw radiographs would be passed into this pipeline as input while the individual joint scores and overall 
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scores would be outputted together with the labelled images. See Figure 5 for the visualization of the full pipeline.

3. Results
A summary of the model results can be found in Table 1 below, which shows the joint-wise ±1 balanced accuracy 

for each prediction model. Note that the performance on the unseen test dataset outdid the results achieved in the paper 
by [15] (83%). An extremely high ±1 balanced average accuracy of 94.63% was attained. Table 1 below shows the joint-
wise wise ±1 balanced accuracy of each prediction model and Figure 6 below shows the models’ confusion matrix.

Table 1. Joint-wise ±1 balanced accuracy of each prediction model

Model Balanced test accuracy (%) ±1 Balanced accuracy (%)

Narrowing (Hands) 82.07 97.30

Narrowing (Feet) 83.76 91.51

Erosion (Hands) 78.77 94.63

Erosion (Feet) 57.83 92.49

4. Discussion
4.1 Summary of results

The ±1 balanced accuracy of the 4 models showed great potential in achieving industry-standard reliability. 
However, the balanced accuracy without ±1 tolerance is not as promising as it ranges from 57.83% to 83.76%. This 
suggests that if being exact is important, this approach does not do very well in achieving that. However, since most 
methods to determine RA severity relies on subjective measures, it shows that such a tool would still be able to 
help by getting a gauge of the disease progression. It might not be suitable to rely on this method to get an objective 
measure with high accuracy for standardized use in research. On the other hand, by allowing physicians to save time 
by automatically predicting joint damage at high accuracy, it can still be used as part of the process of determining RA 
severity rather than just on its own.

4.2 Possible impact

Currently, the method can be used as an automatic tool to get a gauge on the degree of joint damage. This might 
not be able to serve as a standardization for clinical or research use, but it can still help in determining RA severity. 
Subjective measures are still used in the clinical setting due to limited time and resources. As such, this method can 
provide a highly accurate and quick measure of the amount of joint damage which is indicative of RA severity.

For more extensive use, the model needs to be able to be reliable enough for use in the industry where patients’ 
well-being is involved. Hence, the standards for the model must be extremely high. The approach proposed here and the 
performance it achieved shows great promise that it can reach this high standard. Once it is achieved, the solution would 
have a great impact on RA patient care through better disease management. This would be due to saving time and effort 
from manual scoring and providing an objective measure of the degree of damage for clinical diagnoses. It would also 
aid research that requires the use of objective joint damage scores.
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Figure 6. Confusion matrices for the +- balanced accuracies on the test set of (a) joint narrowing (Hands) model; (b) Joint erosion (Hands) model; (c) 
Joint narrowing (Feet) model; (d) Joint erosion (Feet) model

4.3 Future work/limitations

To achieve a standard high enough for use, some possible further improvements to overcome certain limitations 
identified could be implemented.

Firstly, improvements in the approach could be made. Bone segmentation could be used to remove the skin tissue 
in the radiograph. This could help improve the joint detection rate and increase prediction accuracy as there is less 
unnecessary information from the skin. Another improvement could be to do a binary classification of the 0 class and 
non-0 classes before differentiating between the non-0 classes. This could help with the imbalance in the distribution of 
classes where there are a lot of 0 class joints. Computer vision could also be used to get the physical characteristics of 
the joint spaces such as distance measures for narrowing scores or the contours of the joint.

Apart from adjusting the method, the accuracy of the prediction model can also be improved by obtaining more 
data samples for training. This could be done by getting data from hospitals and laboratories. Hopefully, with these 
improvements, the model will be able to achieve a high level of accuracy and hence, reliability, so that it can be 
deployed, and have its benefits realized. Further, it has been found that researchers mainly focus (93%) on medical 
images as data input for their models, and only one work (7%) used medical patient data in addition to medical images 
[28]. A valuable and important improvement can be made in integrating the image data with the clinical data that doctors 
use for patient diagnosis.

0 0.75 0.2

0.26

0.077

0.059

0

0 0.12

0.36

0.059

0

0

0

0

0

0

0

0

0

0

0

0

0

00.250.250.5

0.5 0.5

0

0 0

0

00

0

0

0

0

0

0

0

0

0

0

0

0 0

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0.09

0.33

0.09

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0 0 0.02

0.010.010.04 0

0000

0.10.1 0.05

0.230.1

0.17 0.30.46

0.020.260.14

0

0

0

00.09

0.060.06

0.06

0.08

0.03

0

0

0

0

0 0

0 0 0

00.010.1

0.11

0.11

0.17 0.17

0.040.04 0

000

0

0 0

0

0

0

0

0 00

0

0

0

0

0

0

00.026 0.026

0.029 0

0.042 0.0051 0.0033

0.87 0.81

0.53

0.57

0.89

0.91

0.94

0.92

0.84

0.67

1

1

0.71

0.76

1

0

0
1

2
3

4
5

6
7

8
9

10

0
1

2
3

4
5

1

1 12 3 4 4 50

0

0 1 2 3 7 8 9 10

0.0

0.2

0.4

0.6

0.8

1.0

4

0

1

2

2

3

3

4

4

Tu
re

 S
co

re
s

Tu
re

 S
co

re
s

Tu
re

 S
co

re
s

Predicted Scores
(a)

Predicted Scores
(c)

Predicted Scores
(b)

Tu
re

 S
co

re
s

2 3

21 3

Predicted Scores
(d)

5 64

1

0.82

0.67

0.74

0.68

1

1

1



Artificial Intelligence EvolutionVolume 4 Issue 2|2023| 131

5. Conclusion
The YOLOv3 models performed tremendously well at detecting the joints. All the joints, except one, were correctly 

identified with high confidence levels. The only joint that was not identified was an MTP joint of the third toe. The 
YOLOv3-trained models had a high combined percentage accuracy of 99.991%. An extremely high ±1 balanced average 
accuracy of 94.63% was attained, with 97.30% accuracy for Hands Narrowing, 91.50% for Feet Narrowing, 94.63% 
for Hand Erosion, and 92.49% for Feet Erosion. The automated algorithms may be highly beneficial for physicians as 
they may save physicians time by automatically predicting joint damage at high accuracy. In addition, automated deep 
learning algorithms may also be used as part of the process of determining rheumatoid arthritis severity rather than just 
whether the patient has rheumatoid arthritis or not.
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