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Abstract: Open World Object Detection (OWOD) is a computer vision task that focuses on real-world scenarios where 
object detection algorithms need to not only detect known and labeled objects but also handle novel and unknown 
objects that were not seen during training. This distinguishes OWOD from traditional object detection benchmarks, 
where the scope is limited to detecting only known object classes. The main challenge in OWOD lies in detecting 
and classifying unknown objects, which were not part of the training data. In standard object detection, objects not 
overlapping with labeled objects are automatically classified as background. However, these approaches are not suitable 
for OWOD, as unknown objects may be wrongly predicted as background due to the lack of specific supervision for 
distinguishing unknown objects from the background. The paper proposes a novel framework for Open World Object 
Detection called Open World Object Detection based on Non-Parametric classification (OWOD-NP). This method 
aims to address the challenges of identifying unknown objects and extending the knowledge base by incrementally 
introducing new object categories. OWOD-NP incorporates a non-parametric learning approach based on mean 
prototypes and rejection criteria into a standard detector model. The non-parametric learning model allows the system 
to detect whether the perceived region contains an unknown object and perform incremental learning in an end-to-end 
manner. The extensive experiments conducted on the benchmark dataset of Pascal Visual Object Classes (VOC) validate 
the effectiveness of OWOD-NP. Compared to the standard faster RCNN model, OWOD-NP achieves approximately 
14% higher mean Average Precision (mAP) in class incremental scenarios. This improvement showcases the capability 
of OWOD-NP to handle open-world object detection tasks more efficiently. By combining non-parametric learning with 
object detection, OWOD-NP provides a promising solution for open-world scenarios, where the environment is dynamic 
and new objects may appear over time. The ability to detect and classify both known and unknown objects makes 
OWOD-NP a valuable approach for real-world applications in robotics, autonomous systems, and other computer vision 
tasks. It allows for continuous adaptation and learning, enabling the system to extend its knowledge and cope with ever-
changing environments effectively.
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1. Introduction
In recent years, object detection has been increasingly used in many practical applications, such as autonomous 

driving, video surveillance, and robotics. Several approaches, particularly based on Convolution Neural Networks (CNN), 
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have shown great performance improvements on some public datasets, e.g., Pascal VOC [1-4]. Despite their success, 
these methods have restricted their understanding to the limited number of categories present in the training data, based 
on the closed world assumption, (i.e., the number of categories is assumed to be fixed and known as a priori). While, this 
assumption is not true for real-world applications that contain an infinite range of visual input conditions (e.g., lightning, 
pose, and environment) and concepts; it is practically impossible to capture all visual information about the real world 
in a single dataset. From these perspectives, it is important to make detection methods robust against unknown objects, 
thus allowing them to act in an open-world setting [5].

To exemplify an open-ended learning framework, consider a robotic detection framework in Figure 1, that is 
initially learned to identify a limited number of categories. Given an unknown concept (for example, a cat) within an 
image, the robot must be able to detect it as an unknown object and learn it in subsequent learning steps. To achieve this 
objective, a robot vision system must possess two essential capabilities: (1) open-set learning (detecting both seen and 
unseen objects) [6] and, (2) incremental learning (extending its base knowledge with new classes without forgetting the 
previously learned ones) [7].

Unknown object detection is a fundamental aspect of OWOD, as it involves identifying objects that were not seen 
during training and do not have specific labels in the dataset. The difficulty in unknown object detection arises from 
the lack of explicit supervision. Unlike known objects, which have labeled examples in the training data, unknown 
objects do not have such annotations. As a result, during the training of object detection models, object proposals that 
include unknown objects would be erroneously penalized as background. This misclassification leads to low recall rates 
for detecting unknown objects. In an attempt to address this challenge, most OWOD methods have employed various 
heuristics to differentiate between unknown objects. 

Figure 1. In an open world setting, a robotic vision system must be able to correctly detect the known object (dog) as well as the unseen object (cat). 
If the novel object is detected, its label and relative training images are provided through an external human source

Finally, the new training data is used to update the existing model through incremental learning and background 
during training. For instance, existing OWOD techniques [8, 9] use a pseudo-labeling scheme, where image patches 
with high backbone feature activation are considered to likely contain unknown objects. These patches are then 
used to create pseudo-labels, which are used for supervising the object detection model during training. While these 
heuristics have shown some improvement, the field of OWOD still has much room for improvement to achieve its 
goal of effectively detecting unknown objects in real-world scenarios. More research is needed to develop robust and 
generalizable methods that can accurately and reliably identify unknown objects without relying heavily on heuristics or 
pseudo-labeling schemes. In contrast to the previous methods that reason about known and unknown objects separately 
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using labels and pseudo-labels, our approach takes a more direct and unified approach. We aim to learn a model with a 
non-parametric classifier head that is capable of generalizing to any object, whether it is known or unknown. The idea is 
that all objects, regardless of their category, possess general features that can distinguish them from the background. By 
learning these general features, the model can improve both the detection of unknown and known objects. In essence, 
our approach focuses on developing a more comprehensive understanding of the underlying features that define objects, 
without relying on explicit knowledge of specific categories. This non-parametric classifier head allows the model to 
detect and differentiate between objects and the background without explicitly labeling or pseudo-labeling unknown 
objects.

In this paper, we introduce a novel Open World Detection system known as OWOD-NP. In OWOD-NP, the 
classifier head of Faster R-CNN is replaced with a non-parametric classification architecture, which consists of the 
online estimated mean prototypes representing each known class and class-specific rejection thresholds that allow the 
detection of novel objects in a life-long fashion. We show the effectiveness of our approach on the class incremental 
object detection protocols and demonstrate that the inclusion of the non-parametric classifier in the object detector 
model significantly improves the performance in real-world scenarios. The main contributions of the paper are as 
follows:

• The problem setting of open world object detection is formalized, which explains the actual real-world scenarios.
• A novel open world detection (OWOD-NP) framework is developed by incorporating the non-parametric 

classifier in the Faster R-CNN model, which allows the detection of unknown objects and performs incremental learning 
in an end-to-end fashion.

• Extensive experiments are conducted on the PASCAL VOC to show the effectiveness of our method in the class 
incremental setting.

2. Related work
The Open World Object Detection (OWOD) task, first introduced by [8], has quickly gained significant attention 

in the research community [9-15] due to its potential real-world applications. In their work, [8] proposed an approach 
called ORE, an approach of open-set recognition of objects using energy-based models. ORE incorporates several key 
components including feature-space contrastive clustering, a Region Proposal Network (RPN)-based unknown detector, 
and an Energy-Based Unknown Identifier (EBUI). To identify unknown instances, ORE employed auto-labeling 
unknown supervised learning. Similar to ORE, existing OWOD technique models like [15] and [9] use the same spirit. 
Likewise, [13] proposed Unknown-Classified Open World Object Detection (UC-OWOD) that can identify both known 
and unknown objects by using an unknown label-aware proposal and an unknown discriminative classification head. 
Further, [14] made efforts to enhance ORE by minimizing the overlap between the feature-space distributions of known 
and unknown classes. To achieve this, they set the number of feature clusters to be equal to the number of classes. 
By doing so, they were able to reduce the confusion between known and unknown objects. On the other hand, [12] 
also extended the ORE approach by introducing a second objectness detection head, inspired by the work [16]. This 
additional localization-based objectness detection head aimed to improve the recall of unknown objects. Their results 
demonstrated the utility of integrating the objectness detection component, which contributes to better detection and 
classification of unknown objects in the open-world setting. [9] introduced the Open-World Detection Transformer 
(OW-DETR)-based method, which adopted the deformable DETR model for open-world object detection and utilizes 
a pseudo-labeling scheme to supervise the detection of unknown objects, where unmatched object proposals with high 
backbone activation are selected as potential unknown objects.

The recent advancements in Open World Object Detection (OWOD) have highlighted the importance of integrating 
objectness estimation and pseudo-labeling to achieve robust performance. However, prior approaches have typically 
treated objectness estimation and class prediction as separate components, and pseudo-labeling may require sampling 
unknown instances during training, which limits their effectiveness in diverse and dynamic real-world scenarios 
where prior knowledge of unknown objects is unavailable. In contrast, our method takes a more direct and robust 
approach to open-world object detection by formulating the problem without relying on any prior assumptions about 
unknown objects. This means that our approach is designed to handle diverse and dynamic environments without prior 
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knowledge of the types of unknown objects that may appear. Moreover, our method introduces a direct integration of 
class prediction for identifying both known and unknown objects. This integration improves the detection of unknown 
objects, a critical challenge in open-world scenarios where new objects may emerge over time.

3. Proposed methodology
In this section, we discuss the proposed methodology for open world object detection. First, we formalize the 

problem of open world object detection and then discuss the proposed method that incorporates non-parametric learning 
into the Faster R-CNN model.

3.1 Problem definition

The main objectives of open world object detection include (i) identifying all object and non-object regions 
(background region), (ii) recognizing all the known object categories, (iii) identifying the unknown objects, and (iv) 
adding the new classes incrementally. Let the input space of the system be denoted by X and the output space as O. 
Under the closed world assumption, the input space is composed of a set of possible regions within an image and the 
output space contains the labels of known object classes and the background class (i.e., O = K + b where K = 1, 2, 3, ..., 
C ). During incremental learning, the output space evolves, and after the t th incremental step, the output space becomes 
Ot = Kt + b. Under open world circumstances, the output should have a special category U = {C + 1, ...} for unknown 
objects, extending output space as O = K + b + U. Hence, our primary goal is to develop a model that can classify 
various regions of interest from an input image as the known object label (K + b) or unknown object label (U ). A brief 
overview of the problem set is illustrated in Figure 2.

Figure 2. Overview of open world object detection problem setting: During the initial training phase, the model learned the mean prototypes and 
rejection thresholds that define the clusters of known classes (e.g., Car, Bicycle, and dog) and background class within Region of Interest (ROI) 
representation space. During test time, the samples that fall outside the threshold of known class clusters (green circle) are detected as unknown (denoted 
as ?). The incremental learning is performed to add a new unknown class to the existing representation space

3.2 OWOD-NP: Open world object detection using non-parametric learning

Open World Object Detection is capable of solving real-world challenges by detecting unknown objects and 
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performing incremental learning on the detected novel objects without forgetting previously learned categories. We 
developed a new algorithm, OWOD-NP that addresses the difficult problem setting of open world detection.

The key component of our design is non-parametric learning that creates an efficient clustering of each class 
sample. The clustering at the intermediate latent space distinguishes the feature representations of known and unknown 
classes, allowing us to identify the unknown object as a novel category. In addition, it also facilitates incremental 
learning and significantly reduces forgetting by eliminating feature representation overlaps between the new and 
previously learned classes. To get optimal clusters, we employ the mean prototype and rejection threshold-based 
classifier head that creates a clear distinction between features related to known, unknown, and background regions.

The high-level architecture of OWOD-NP is shown in Figure 3. In OWOD-NP, the feature vector from the Region 
of Interest (RoI) of Faster R-CNN is provided to the non-parametric classifier head. Additionally, an embedded module 
is used to reduce the dimension of the pooled ROI feature vector, making the end-to-end learning process more stable 
[17]. In the following subsection, each of the components of OWOD-NP is briefly explained.

Figure 3. The proposed deep architecture of OWOD-NP that combines the Faster R-CNN model with a non-parametric classifier through an 
embedding module

3.2.1 Non-parametric learning algorithm

Existing approaches to the open world problems mostly use non-parametric learning techniques on top of learned 
metric spaces, which enforce features of the same class close together while dissimilar class features are pushed apart. 
The most common technique uses mean prototypes and rejection criteria, with each class represented by a mean 
feature vector, i.e., centroid [18]. It assigns a class label to the test sample based on the minimum distance between 
its representative features vector and the centroids. Given an m-dimensional feature vector f (x) extracted from the 
intermediate ROI layer, the class label y of an input image x is computed by following distance criteria:

|| ( ) ||cy argmin f x µ= −c Ct

When new samples arrive, the entire architecture of OWOD-NP is trained in an end-to-end manner, causing the 
feature representations f(x) to be changed. During each iteration, class mean vectors are updated using an approximate 
strategy to track these changes. We compute the mean vectors for a mini-batch of samples B = (x1, k1), ..., (xb, kb) by:
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where nc is the number of data points from class c that the network has seen upto the current training step t, nc,B is the 
number of data points from class c in the current batch, and µB, c is the current mini-batch mean vector belongs to class c 
features.

For the open-set scenarios, the class-specific rejection criteria are employed such that each class c exhibits a 
threshold or maximal distance ∆c that is used to decide if the sample belongs to class c. The classification prediction thus 
becomes:
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where r = -1 when c = k and r = 1 otherwise.
To train the network, the following clustering loss is minimized. Formally, the loss term is given as follows with 

image x and its class label c.
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where T represents the temperature coefficient regulating the classifier’s behavior. It is the variance of activation volume 
produced in feature space.

Overall, the training process involves two steps: first, the feature extractor on the training set minimizes the 
clustering loss function, and second, the rejection criteria are learned on the samples that were left out of the training 
set.

3.2.2 Incremental learning

After the unknown objects have been identified, an open world detector must be able to learn new classes when 
some of the unknown classes of interest are provided with labeled examples. Interestingly, retraining from scratch is 
not possible, all training data related to previous tasks are not available. Only practicing with new class instances will 
result in a catastrophic forgetting of previous classes. To alleviate the forgetting, we employ rehearsal and knowledge 
distillation methods.

• The rehearsal method is based on memory that keeps the most hard samples of each task. The number of 
bounding boxes determines the hard samples, the images with a large number of boxes are the most difficult to 
recognize. The rehearsal memory augments the new training set with previous task samples, allowing the network to 
retain the mean estimates of previous classes. The size of memory is kept constant and pruned after each incremental 
step to prevent unlimited expansion. Furthermore, a batch sampler is also used, which ensures that a specific proportion 
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of the batch is made up of samples collected from the memory, regardless of the size of the memory. This approach 
prevents the incremental learning process from being biased toward novel categories [19].

• The Knowledge Distillation (KD) is based on parameter regularization which uses the network from the previous 
task and avoids deviating the important features for recognizing old classes. Typically, KD employs a teacher-student 
framework, in which the previous class knowledge is stored in the form of a frozen model that serves as the teacher, and 
a new learning model, which serves as the student, is used to create an adapted network for new classes. To maintain 
performance on older classes, the learning of the adapted network is restricted by introducing a distillation loss that 
minimizes the discrepancy between the response of two networks over the new training samples [20]. We apply KD 
feature-changing loss at Regional Proposal Network (RPN) and ROI pooling layer of faster RCNN, which considerably 
reduces forgetting [21].

4. Experiments and results
4.1 Dataset and evaluation

• Dataset: For the evaluation, we use the PASCAL VOC 2007 dataset [1], which is composed of 20 different 
classes, including, 10 K images and 25 K annotated objects. All 20 classes are alphabetically sorted and evenly divided 
into four different class groups to create a multi-class detection dataset. Each group contains images having at least one 
object category from that group’s classes and bounding boxes of other class groups are excluded [21].

• Protocols for training and testing: For incremental learning under both closed and open world scenarios, the 
following training and testing protocols are used.

- Training: Using the example groups, the detection model should be trained in multiple incremental training 
sessions. The first training session uses traditional techniques to train an untrained model with the first example group. 
The pre-trained model from the previous training session is then used for subsequent sessions, and incremental learning 
is performed to train the model with data from the corresponding example group, allowing the model to recognize more 
object classes. Since the open world setting requires an unknown set of classes, we split class groups into two sections: 
two groups are referred to as known categories, and the other two are referred to as unknown classes. Only the known 
groups of classes are used for training purposes under both closed and open world scenarios.

- Testing: The testing protocol is formed by combining the testing sections of all the observed groups after every 
training session, resulting in a hybrid testing dataset. The model is evaluated on the hybrid dataset to see how well 
it performs on both previous and new classes. This protocol is used for both scenarios. While the open world setting 
additionally uses unknown groups during testing.

• Metrics for Evaluation: Mean Average Precision (mAP) at 0.5 IoU is used to measure the performance of the 
model.

The Average Precision for class (c) is defined as
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where
True Positive TP(c): A proposal was made for class (c) and there actually was an object of class (c) in the ground 

truth.
False Positive FP(c): A proposal was made for class (c) but there is no object of class (c) in the ground truth.
For open world evaluation, Wilderness Impact (WI) metric is employed that characterizes the behavior of detector 
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where PK represents the model’s precision for known classes, and PK∪U represents the model’s precision when evaluated 
on both known and unknown classes. Ideally, WI should be lower, as unknown objects should not affect the model’s 
precision over known object categories.

4.2 Experimental set-up

For all experiments, Stochastic Gradient Descent (SGD) is used to train the network with a weight decay of 103 and 
a momentum of 0.9. All networks are trained for 55,000 iterations. For the first 50 k iterations, the learning rate is set to 
0.002 and then reduced to 0.0002 for the last 5,000 iterations.

We choose Resnet-50 Feature Pyramid Network (FPN), pre-trained with the Common Objects in Context (COCO) 
train2017 dataset, as the backbone of the model. We utilize the Faster R-CNN model from Torchvision, which is 
a PyTorch library. The entire framework is trained and tested using the Google Colab repository, which provides 
convenient access to Graphics Processing Unit (GPU) resources for accelerated computations. The embedding module, 
used in our architecture, is composed of two fully connected layers: the first layer with a width of 1,024, followed 
by batch normalization and Relu activation, and a final layer of width 256 with linear activation, followed by L2 
normalization. For the rehearsal strategy, we use a fixed size memory of 800 samples, and a batch sampler to construct 
each batch having 50% of the instances from the memory. The class-specific threshold is updated using 20% of memory 
samples that were never used during training.

For performance evaluation, we compare results against the state-of-the-art class-incremental object detector- 
Incremental Learning Object Detection (ILOD) and Class Incremental Faster RCNN with Non-Parameteric (CIFRCN-
NP) [21].

4.3 Results
4.3.1 Closed world detection

For the closed world, we compare model performance with and without the rejection criteria. In OWOD-NP 
without the rejection option, the model is only evaluated on the known set of groups, removing the chance of classifying 
a known sample as unknown. This scenario evaluates the model’s ability to correctly classify samples into the specified 
categories.

With rejection criteria, the model can classify the sample as one of the known or unknown categories. As samples 
from known groups may be misclassified as unknowns, this situation is more complicated than the previous one.

Table 1. Comparison test result of incremental learning under the closed world scenario without rejection criteria on the VOC 2007, when the groups 
of five classes are added sequentially. The rows show results of two known groups added during each incremental step

classes added algorithms A B all (mAP)

1-5 ILOD 63.9 - 63.9

CIFRCN-NP 56.8 - 56.8

OWOD-NP 58.28 - 58.28

6-10 ILOD 44.8 59.2 52.0

CIFRCN-NP 40.4 68.8 54.6

OWOD-NP 50.55 56.23 53.40

• Without Rejection Criteria: The results under the closed-world scenario without rejection criteria are compared 
in Table 1.

- Overall performance: After incremental training sessions, the learned model could face some difficulties in 
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identifying objects from the oldest classes. The model focuses solely on new classes and suffers from a notable case of 
knowledge forgetting. ILOD has mitigated the forgetting phenomenon to some extent, and CIFRCN-NP has also shown 
less forgetting. While our method significantly reduces forgetting and archives 10 mAP gain.

- Performance on old classes: As Group A is evaluated in each session, so we compare the results for that 
particular group. Even when using only new classes of images during an incremental step, our OWOD-NP retains the 
majority of previously learned knowledge. At first, our OWOD-NP achieves 58.28% mAP on Group A, and after one 
increment process, it achieves 50.58% mAP, which is considerably better than other strategies, suggesting that the 
proposed OWOD-NP is capable of overcoming catastrophic forgetting to a large extent.

- Performance on new classes: For Group B, OWOD-NP attains mAPs of 56%, illustrating that the proposed 
framework does not prevent the model from learning new information.

• With Rejection Criteria: The comparison of the closed world with rejection criteria is given in Table 2. It is 
clearly observed that our approach based on the rejection threshold rejects only a few known samples. We compare the 
performance of OWOD-NP with that of OWOD-NP having no rejection option, and CIFRCN-NP. OWOD-NP without 
rejection is our upper bound in terms of performance in the closed world because it does not reject any instance of 
known classes as unknown. The purpose of this baseline is to show that the rejection criteria are always applicable.

Table 2. Comparison test result of incremental learning under the closed world scenario with rejection criteria on the VOC 2007, when the groups of 
five classes are added sequentially. The rows show results of two known groups added during each incremental step

classes added algorithms A B all (mAP)

1-5 CIFRCN-NP 56.8 - 56.8

no rejection 58.28 - 58.28

OWOD-NP 47.98 - 47.98

6-10 CIFRCN-NP 40.4 68.8 54.6

no rejection 50.55 56.23 53.40

OWOD-NP 48.94 46.93 47.94

4.3.2 Open world detection

Table 3 compares the results of OWOD-NP against Faster R-CNN using the proposed open world evaluation 
protocol. WI metrics are used to measure how the unknown instances are confused with known samples after each 
learning step. Overall, OWOD-NP has achieved fewer WI scores, indicating that it is less affected by unknown classes. 
OWOD-NP outperforms Faster R-CNN during incremental learning steps, demonstrating its effectiveness for the open-
world scenario.

Table 3. Comparison test result of incremental learning under the open world scenario on the VOC 2007, when the groups of five classes are added 
sequentially. The rows show results when both known and unknown classes are used for evaluation

classes added algorithm A B all (mAP) WI

1-5 Faster RCNN 49.32 - 49.32 0.2567

OWOD-NP 29.05 - 29.05 0.65

6-10 Faster RCNN 0 50 25.44 0.2020

OWOD-NP 42.62 36.62 39.68 0.208
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5. Conclusion
The Open World Object Detection (OWOD) task is a complex and challenging objective that involves integrating 

various aspects of generalized open-set object detection and incremental learning. The detection and understanding 
of unknown objects play a crucial role in ensuring the robustness of OWOD methods. To address this challenge, we 
proposed a novel framework called Open World Object Detection with Non-Parametric Classification (OWOD-NP), 
which significantly improves the detection of unknown objects in the benchmark. Our method OWOD-NP integrates 
the non-parametric learning approach into the standard Faster R-CNN model, enabling the detection of unseen objects 
and supporting incremental learning in an end-to-end fashion. Through comprehensive ablations, we shed light on the 
underlying mechanisms of our approach and demonstrate the benefits of each component. Extensive experiments on 
popular benchmark datasets clearly show the effectiveness of the proposed method. However, there is still ample room 
for improvement, not only in the realm of unknown object detection but also in other aspects of the OWOD task. Future 
research efforts will be dedicated to addressing the challenges of open-world detection in single-stage object detectors 
such as You Only Look Once (YOLO) and Single Shot Detector (SSD), further advancing the field of OWOD. 
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