
Artificial Intelligence EvolutionVolume 4 Issue 2|2023| 165

Copyright ©2023 Md. Alamgir Hossain. 
DOI: https://doi.org/10.37256/aie.4220233337
This is an open-access article distributed under a CC BY license 
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Artificial Intelligence Evolution
http://ojs.wiserpub.com/index.php/AIE/

Research Article

Enhanced Ensemble-Based Distr ibuted Denial -of-Service 
(DDoS) Attack Detection with Novel Feature Selection: A Robust 
Cybersecurity Approach

Md. Alamgir Hossain 

Department of Computer Science and Engineering, Prime University, Dhaka 1216, Bangladesh
Email: alamgir.cse14.just@gmail.com

Received: 6 July 2023;  Revised: 12 August 2023;  Accepted: 15 August 2023

Abstract: One of the major threats to computer networks and systems is distributed denial-of-service (DDoS) attacks. 
These attacks include saturating the targeted system with a large volume of traffic coming from several sources, which 
causes a service interruption. Detecting these attacks in real-time has become a critical task in cybersecurity. The existing 
method of DDoS attack detection suffers from the problem of high false positive rates. Additionally, the classifiers 
used in the existing methods may not be able to capture the complex patterns of the DDoS attack traffic, leading to 
low accuracy. In this research, I propose an enhanced approach for detecting DDoS attacks using an ensemble-based 
random forest classifier with a novel feature selection technique. The ability of the ensemble-based Random Forest 
Classifier to aggregate many decision trees to increase classification accuracy makes it a better option for DDoS attack 
detection than a single machine learning-based classifier. By lowering the variance and bias of the classifier, ensemble-
based approaches are known to reduce overfitting and increase the robustness of the model. To choose the most useful 
characteristics for DDoS attack detection, the feature selection strategy uses a novel combination of correlation analysis, 
mutual information, and principal component analysis techniques. A part of the CIC-DDoS2019 dataset is used for the 
evaluation of the proposed method and to compare it to other modern approaches. The experimental results reveal that 
when integrated with additional evaluation metrics, the proposed approach outperforms existing techniques in various 
aspects, including accuracy, recall, precision, F1-score, false positive rate, and more. The proposed approach obtained 
almost 100% accuracy, 0% false positive rate, and 100% true positive rate.

Keywords: DDoS attack detection, novel feature selection to detect DDoS attacks, ensemble-based approach to detect 
DDoS attacks, machine learning, cyber security

1. Introduction
A particular type of cyberattack known as a distributed denial-of-service (DDoS) attack uses a large number of 

compromised devices, often known as a “botnet”, to attack a target server or network with a large amount of traffic, 
data, or requests [1-2]. A DDoS attack seeks to disturb authorized users by making the targeted system inaccessible or 
performing slowly. DDoS attacks can be launched from anywhere in the globe, and since they are spread, they can be 
challenging to stop or effectively eliminate [3-5]. They are often used by hackers or malicious actors to extort money or 
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to disrupt the operations of a business, government, or organization [6]. DDoS attacks can be highly damaging, leading 
to financial losses, reputation damage, and even legal consequences [7].

DDoS attacks can compromise sensitive information and put users’ personal data at risk, which can have severe 
legal and ethical implications. These attacks are becoming increasingly common and sophisticated, making them more 
challenging to detect and prevent [8]. DDoS assaults may be launched by attackers using a variety of methods and 
technologies, and both their frequency and intensity are continuously increasing. DDoS attacks can have far-reaching 
consequences beyond the targeted organization. For example, a DDoS attack on a critical infrastructure provider could 
cause widespread disruptions, affecting the operations of other businesses, governments, and individuals. Therefore, 
solving the problem of DDoS attacks is not only critical for individual organizations but also for the larger community 
and society. Therefore, it is essential to create efficient techniques and tools for identifying and reducing DDoS attacks 
[9].

Due to the rising complexity of DDoS attacks, their problem-solving is challenging. DDoS attacks can target 
different layers of the network, making it difficult to implement effective countermeasures [10]. Furthermore, DDoS 
attacks can involve a large number of sources, making it difficult to distinguish legitimate traffic from attack traffic. 
These challenges require innovative and collaborative approaches to develop effective solutions for mitigating the 
impact of DDoS attacks.

We are proposing an enhanced approach for detecting DDoS attacks using an ensemble-based random forest 
classifier with a novel feature selection technique. For the purpose of choosing relevant features, correlation analysis, 
mutual information, and principal component analysis are all combined. Then from the various ensemble-based 
machine-learning approaches, the random forest is applied to the model. The proposed approach attempts to reduce false 
positives while increasing the accuracy of DDoS attack detection. We evaluate the proposed approach using a real-world 
dataset named CIC-DDoS2019 and show that it outperforms existing techniques in terms of accuracy, precision, recall, 
and other evaluation metrics. Our key contributions to this research are listed below:

• Researching the most recent DDoS attack detection techniques and evaluating their advantages and disadvantages.
• Evaluate the performance of several machine learning techniques for identifying DDoS attacks with the model.
• Developing a hybrid feature selection approach that will be effective for an ensemble-based machine learning 

classifier.
• Developing a machine learning framework based on ensembles that combine several classifiers to increase 

detection accuracy.
• Evaluating the effectiveness of the proposed ensemble-based strategy against current DDoS detection techniques.
The advantage of the ensemble-based random forest approach over the existing methods to detect DDoS attacks 

lies in its ability to combine the predictions of multiple decision trees to improve the accuracy of the classification. The 
random forest strategy can prevent overfitting and increase the robustness of the model by reducing the variance and 
bias of the classifier by utilizing an ensemble of classifiers rather than a single classifier. Moreover, the ensemble-based 
approach is better able to capture the complex patterns of DDoS attack traffic, which can lead to higher accuracy in 
detecting attacks compared to existing methods. Moreover, the ensemble-based approach is known for its scalability and 
can efficiently process large amounts of data, making it well-suited for detecting DDoS attacks in real-time scenarios.

The remaining section of this paper discusses related research for detecting DDoS attacks. In the next section, 
every part of the proposed model development is described. The fourth section contains the results and discussion along 
with essential figures and tables. The fifth section of the paper addresses the conclusion of this research.

2. Review of the literature
To identify DDoS attacks, a number of methods have been proposed over time including rule-based, statistical, 

machine-learning-based, etc. The most recent DDoS attack detection methods are reviewed in this section, along with 
their benefits and drawbacks.

In rule-based techniques, a set of rules is created to recognize DDoS attacks [11]. The parameters of the traffic flow, 
such as the packet rate, packet size, and protocol type, are often the basis for these rules. Although rule-based techniques 
are straightforward and simple to use, they might not be able to identify novel or advanced DDoS attacks that do not 
follow predefined rules [12]. In addition, rule-based approaches could identify genuine traffic as an attack because of 
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their high false positive rate. To find irregularities in network traffic, statistical approaches employ statistical models 
[13]. These methods examine how the traffic moves and search for changes from the typical traffic patterns. Statistical 
approaches are superior to rule-based solutions because they can identify both known and unidentified attacks. To 
understand the typical traffic patterns, statistical approaches may need a lot of training data, which might be difficult to 
get. Furthermore, statistical methods may have a high false alarm rate, resulting in the designation of legitimate traffic 
as an attack.

Machine learning techniques involve the use of algorithms to learn the patterns of normal and attack traffic and 
use this knowledge to detect DDoS attacks. The multi-scale base CNN technique presented by Cheng et al. [14] in 2020 
to identify DDoS obtained 74% accuracy, which is quite low, and a very low True Positive Rate (TPR). The same year, 
Sambangi and Gondi [15] introduced a method of multiple linear regression with a 75% accuracy rate and a very high 
False Positive Rate (FPR). 

An Intrusion Detection System (IDS) framework that integrates a group of feature engineering methods with the 
use of deep neural networks was suggested by Lopes et al. [16] in 2021. Nearly 99% accuracy was attained. Despite 
having an IDS framework, it can only identify DDoS attacks. To detect DDoS attacks, Dasari and Devarakonda 
suggested yet another machine learning (ML)-based model. They used different single ML-based classifiers [17]. 
The model with logistic regression produced the best result from the performance study, with an accuracy of 99.61%. 
The specificity in this case was about 84%. Since it uses a single classifier, the performance varies depending on the 
type of DDoS attack. SVC-RF-based classifiers with a 98.8% accuracy were proposed by Ahuja et al. Only the SDN 
environment is suitable for this complex model [18].

In 2022, Nuiaa et al. [19] suggested improved optimization techniques for the detection of DDoS attacks. The 
model with the K-Nearest Neighbor (KNN) classifier produced a result of 89.59%. Regarding their research, they 
recommended using additional methods like clustering or neural networks to increase the detection rate and reduce the 
false alarm rate. In the same year, Elgendy et al. [20] released DTEXNet, a cutting-edge method with a 95% accuracy 
rate. This is more difficult since it combines two neural network models. And the accuracy should be improved in 
relation to the dataset’s size.

In 2023, Sabir [21] applied BayesNet, KNN, and J48 classifiers to detect DDoS and found the J48 classifier-based 
model produce the best result with an accuracy of 98.31%. But this single classifier is not workable to detect other 
datasets or newly patterned attacks.

With the current feature selection method, the current DDoS detection model demonstrates that not all types of 
DDoS detection are compatible with single-classifier-based machine learning models. Additionally, compared to the 
existing techniques, accuracy, and TPR should be increased, while FPR should be decreased. Although some offer much 
better solutions but newly patterned DDoS cannot be tackled by the existing models [22-24]. Therefore, it is necessary 
to develop a DDoS attack detection model that would be effective against all types of attacks. In order to provide 
network security against all types of DDoS attacks, the suggested technique of employing an Ensemble-based Random 
Forest (ERF) machine learning classifier for identifying DDoS attacks could be able to provide a more comprehensive 
and efficient solution.

3. Proposed model development
The proposed method for identifying DDoS attacks is thoroughly described in this section. The architecture of the 

pipeline for developing a machine learning-based model, including the feature selection, is shown in Figure 1.

3.1 Dataset

The CIC-DDoS2019 dataset is publicly available and used in this research to evaluate the model for detecting 
DDoS attacks. It contains network traffic data from various types of DDoS attacks, as well as legitimate traffic, and 
can be used to develop and test machine-learning models that find attacks involving DDoS. It contains over 16 million 
network flows with 88 features, making it one of the largest and most comprehensive DDoS datasets available [25]. This 
research exclusively utilizes LDAP-type attacks from this dataset.
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3.2 Data preprocessing

The preprocessing steps in the model’s implementation include removing duplicates, transforming infinite and large 
values to Not a Numbers (NaNs), deleting rows with NaNs, separating numerical and categorical columns, normalizing 
numerical columns, encoding categorical columns, and transforming the target variable into a discrete variable.

Comparison with 

Existing Models

Dataset

No. of Estimator

Selection

Preprocessing

Training Data

(80%)

Model Testing

(20%)

Ensemble Method Selection

(Random Forest)

Model Evaluation
(Accuracy, Precision, Recall, 

F1-score, Area under the ROC 
Curve (AUC), etc.)

Relevant Feature Selection

(Correlation Analysis, Mutual 
Information, PCA)

Figure 1. Proposed model-developing pipeline

3.3 Relevant feature selection

The relevant features in this model have been selected using correlation analysis, mutual information, and principal 
component analysis.

The correlation coefficient between each pair of variables in the dataset is determined via correlation analysis 
[26]. The correlation coefficient, whose values range from -1 (perfectly negative correlation) to 1 (perfectly positive 
correlation), assesses the degree and direction of the linear relationship between two variables.

The most commonly used correlation coefficient is the Pearson correlation coefficient, which is defined as:

r = (Σ(xi -  x̄)(yi - ȳ))/sqrt(Σ(xi -  x̄)2Σ(yi - ȳ)2)                                                        (1)

Where r is the Pearson correlation coefficient, xi and yi are the values of the two variables for the ith observation,  x̄ 
and ȳ are the sample means of the two variables, and Σ denotes the sum over all observations.

In this model, the relevant_features_corr list is generated by selecting the columns in the dataset that have an 
absolute correlation coefficient greater than 0.5.

A statistical metric known as “mutual information” estimates the amount of knowledge one variable offers about 
another one. It is based on information theory and can capture nonlinear relationships between variables [27]. The 
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mutual information between two random variables X and Y is defined as:

I(X; Y) = ΣΣp(xi, yj)log(p(xi, yj)/(p(xi)p(yj)))                                                         (2)

Where I(X; Y) is the mutual information between X and Y, p(xi, yj) is the joint probability mass function of X and Y, 
p(xi) is the probability mass function of X, and p(yj) is the probability mass function of Y. Overall conceivable X and Y 
values, the sum is calculated.

The mutual information estimator ranges from 0 to infinity, where 0 indicates no information gain and higher 
values indicate greater information gain. In feature selection, the mutual information estimator is often used to rank the 
variables based on their ability to discriminate between different classes or outcomes. The top-ranked variables are then 
selected for further analysis. The top 20 features with the highest mutual information scores are chosen for this model 
using the “SelectKBest” function from the “sklearn.feature_selection” package.

The method of principal component analysis (PCA) [28] is used to reduce the number of dimensions in 
multivariate data processing. It seeks to identify the main components-a more condensed set of uncorrelated variables-
that best depict the diversity of the original dataset. In mathematics, the data matrix X, which may be written as follows, 
is subjected to a singular value decomposition (SVD) in order to derive the principal components.

X = UΣVT                                                                                    (3)

Where U is a matrix of left singular vectors, Σ is a diagonal matrix of singular values, and V is a matrix of right 
singular vectors. The right singular vectors provide the loadings, or weights, of the original variables on each principal 
component, while the singular values show the percentage of variation explained by each principal component. PCA is 
often used for feature selection by selecting the top-ranked variables based on their loadings on the first few principal 
components. This may help in determining which factors are crucial for revealing the variation in the data. The PCA 
function from the sklearn.decomposition module is utilized in the model’s implementation to conduct PCA with 20 
components. The lists of features from all three techniques are then combined to create a list of the features that are the 
most important. Equations are below from selections to combine and select the relevant features:

(4)

(5)

(6)

relevant_features_corr = corr_abs[corr_abs > 0.5].index.tolist()

relevant_features_mutual = X.columns[mutual_info.get_support()].tolist()

relevant_features_pca = X.columns[pca.components_.argmax(axis=1)].tolist()

relevant_features = list(set().union(relevant_features_corr, relevant_features_mutual, relevant_features_pca))   (7)

After employing the three mentioned techniques in this research, the relevant features are stored in “relevant_
features”. The “relevant_features” is a list that contains the selected relevant features obtained from three different 
feature selection methods: correlation analysis, mutual information, and Principal Component Analysis (PCA). Each 
feature selection method independently identifies a subset of features that are most relevant or informative for the 
detection of DDoS attacks. These methods were applied to identify features that are deemed important for improving 
the performance of this model. Combining these steps, the overall time complexity of the combined feature selection 
approach can be approximated as follows:

O(n2)(Correlation Analysis) + O(n × m + n × log(n))(Mutual Information) + O(n2 × m + n × k)(PCA)

3.4 Ensemble-based random forest classifier selection

The use of ensemble-based machine learning models for intrusion detection is promising since it increases 
detection rates and attack resistance [24, 29]. These models incorporate numerous separate models to increase the 
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prediction’s overall accuracy and resilience, particularly for the detection of DDoS assaults. The diversity of the 
various classifiers in the ensemble allows the DDoS assaults detection system to detect a wide range of attack kinds and 
patterns. From the various ensemble techniques, the random forest ensemble classifier provides the best performance for 
the proposed model.

The Random Forest Ensemble Classifier is a powerful machine learning algorithm used for the detection of DDoS 
attacks in network traffic and distinguishing them from normal flows.

Let D be the training dataset containing N instances of network traffic flows, where each instance x_i is represented 
by a feature vector with m features: D = {(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)}, where y_i is the corresponding class 
label, indicating whether the flow is a DDoS attack (y_i = 1) or a normal flow (y_i = 0).

Algorithm 1 illustrates the Ensemble Random Forest classifier’s procedure, and Table 1 lists the hyperparameters 
that have been used in the model’s development.

Algorithm 1: Working process of the Ensemble Random Forest classifier to Detect DDoS Attack.
1. Initialize the ensemble of decision trees T as an empty set.
2. For t = 1 to T:
  a. Randomly select m features from the set of input features.
  b. Create a new decision tree T_t by recursively splitting the training data D into smaller subsets based on the 

selected m features:
    i. At each node of the tree, choose the feature that maximizes the information gain or other splitting criterion.
    ii. Stop splitting when the maximum depth of the tree is reached or when all the instances at a node belong to 

the same class.
  c. Add the decision tree T_t to the ensemble T.
3. For each instance x_i in the training set D:
  a. Create a feature vector z_i by extracting the relevant features selected using techniques such as correlation 

analysis, mutual information, and principal component analysis (PCA).
  b. For each decision tree T_t in the ensemble T:
    i. Calculate the class prediction y_i, t using the decision path of the instance x_i in the tree T_t.
  c. Aggregate the predictions of all the decision trees in the ensemble T to obtain the final class prediction y_i:
    i. If the majority of decision trees predict y_i = 1, classify x_i as a DDoS instance.
    ii. Otherwise, classify x_i as a normal instance.
4. Output the ensemble of decision trees T.

Random Forest constructs multiple decision trees, each trained on a different subset of the data and a random 
subset of features [29]. By combining the predictions of multiple decision trees through majority voting, the classifier is 
able to effectively detect DDoS attacks and distinguish them from normal flows with high accuracy and robustness. This 
diversity curtails overfitting, enhances generalization, and hampers the dominance of noisy features, a crucial trait when 
dealing with complex, high-dimensional datasets. Each tree employs a bootstrapped subset of the training data. This 
means different trees see different instances, introducing diversity. Mathematically, if we denote the individual trees as 
classifiers h_1, h_2, ..., h_n, their collective output is akin to:

Ensemble Output = sign(h_1(x) + h_2(x) + ... + h_n(x))                                                (8)

Where x is the input instance. This diversity reduces variance and helps prevent overfitting.
Random Forest employs a subset of features at each split within a tree. Let’s say the total features are F and m << 

F features are randomly selected. Mathematically, if we have a split criterion Gini impurity, the probability of selecting 
any specific feature i is m/F. This subsampling dampens the impact of noisy features and mitigates their undue influence 
[30]. The process of averaging predictions from multiple trees, each with its unique biases and variances, reduces the 
overall variance while maintaining a reasonable bias. This striking balance aids in capturing complex relationships in 
the data while resisting overfitting. Random Forest utilizes the Out of Bag (OOB) samples (instances not used during a 
specific tree’s training) for error estimation. This offers a reliable estimate of the model’s generalization performance, 
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making it easier to tune hyperparameters [31]. It can potentially shatter the data by partitioning it into 2d (a single 
decision tree with depth d) regions. By averaging multiple such trees, Random Forest’s boundary is smoother and less 
prone to overfitting.

The Random Forest ensemble capitalizes on diverse trees, feature subsampling, and an inherent bias-variance 
equilibrium. Its mathematically grounded approach ensures robustness against noise and overfitting, making it an 
adept choice for DDoS attack detection than other classifiers where maintaining performance in real-world scenarios is 
paramount.

The hyperparameters in the Random Forest classifier for the proposed model are given in Table 1.

Table 1. Hyperparameters in the Random Forest classifier

Parameter Values Parameter Values

n_estimators 10 min_impurity_decrease 0.0

criterion ‘gini’ max_depth None

n_jobs None oob_score False

bootstrap True min_samples_split 2

min_samples_leaf 1 random_state 42

min_weight_fraction_leaf 0.0 verbose 0

max_features ‘sqrt’ warm_start False

max_leaf_nodes None class_weight None

4. Experimental results and analysis
The Scikit-learn package and the Python programming language are used throughout the whole experiment for the 

implementation of the model. Google Colaboratory, commonly referred to as “Colab”, is a tool developed by Google 
Research that have used for the experiment. Anyone can create and run arbitrary Python code using Colab, making it 
ideal for machine learning, data analysis, and educational applications. To be more precise, Colab is a hosted Jupyter 
Notebook service [32].

4.1 Evaluation metrics

The proportion of cases that are properly categorized to all instances defines accuracy. Accuracy indicates how 
effectively the model can differentiate between legitimate traffic and malicious traffic in the context of DDoS attack 
detection [33]. The mathematical formula for accuracy is:

Accuracy = (TN + TP)/(TP + TN + FP + FN)                                                        (9)

False Positives (FP) are instances of normal traffic that were mistakenly classified as DDoS attacks, while True 
Positives (TP) are instances of correctly predicted DDoS attacks, True Negatives (TN) are instances of correctly 
predicted normal traffic, and False Negatives (FN) are instances of correctly predicted DDoS attacks.

FPR quantifies the percentage of instances among all negative instances that are mistakenly identified as positive 
(i.e., as a DDoS attack) [34]. A high FPR suggests that too many typical scenarios are being classified as DDoS attacks 



Artificial Intelligence Evolution 172 | Md. Alamgir Hossain

by the model. FPR may be mathematically represented as:

FPR = FP/(TN + FP)                                                                         (10)

The ratio of genuine positives to the total of true positives and false positives is known as precision. Precision in 
the context of recognizing DDoS attacks evaluates the proportion of expected assaults that really occur as opposed to 
false alarms. Precision can be stated mathematically as:

Precision = True Positives/(False Positives + True Positives)                                         (11)

The ratio of true positives to the total of true positives and false negatives is known as recall. In the context of 
DDoS attack detection, recall measures how many of the actual attacks are detected by the model. Mathematically, 
recall can be expressed as:

Recall = True Positives/(False Negatives + True Positives)                                           (12)

The harmonic mean of recall and accuracy is known as the F1-score. It is a helpful indicator for assessing how 
accuracy and recall are traded off. The mathematical formula for the F1-score is:

F1-score = 2 × ((Recall × Precision)/(Recall + Precision))                                           (13)

Cohen’s Kappa is a statistical indicator of inter-rater agreement that is frequently used to assess the effectiveness 
of machine learning models [35]. It assesses the degree of agreement between expected and observed labels while 
accounting for the probability of chance agreement. Cohen’s Kappa formula is as follows:

Kappa = (Observed Accuracy - Expected Accuracy)/(1 - Expected Accuracy)                            (14)

Where Observed Accuracy is the percentage of properly categorized occurrences, and Expected Accuracy is the 
percentage of correctly identified instances that would occur by chance.

The percentage of actual attacks via DDoS that the model correctly identifies as such is measured by the TPR 
metric. TPR may be described mathematically as:

TPR = True Positives/(False Negatives + True Positives)                                             (15)

The percentage of cases that the model incorrectly categorizes is known as the error rate. It is the balancing act to 
accuracy [36]. The mathematical formula for the error rate is:

Error Rate = (False Negatives + False Positives)/(True Positives + False Negatives 

           + False Positives + True Negatives) (16)

Balanced accuracy is the average of the TPR and the true negative rate (TNR) [37]. It provides a more accurate 
measure of performance when the dataset is imbalanced (i.e., when there are many more instances of one class than the 
other). Mathematically, balanced accuracy can be expressed as:

Balanced Accuracy = (TPR + TNR)/2                                                            (17)

The test accuracy is the accuracy of the model on a different test dataset that it has not seen during training. The 
training accuracy is the accuracy of the model on the training data. The test accuracy is a more important metric as it 
measures the generalization performance of the model. When a model performs well on training data but badly on test 
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data, this is known as overfitting.

4.2 Analysis of the findings

The whole dataset is divided into training and testing data using the scikit-learn (sklearn) package’s “train_test_
split” function. The remaining 20% of the data is utilized for testing, while 80% is used for training. The research 
centers on the analysis of a specific DDoS attack dataset, focusing exclusively on LDAP attacks. Within this dataset, 
we have access to an extensive collection of 1,281,542 entries, encompassing a total of 87 features that pertain to this 
particular type of DDoS attack. After the preprocessing, the SMOTE (Synthetic Minority Over-sampling Technique) is 
applied. SMOTE is a data augmentation method designed to tackle class imbalance in machine learning [38]. It works 
by generating synthetic samples for the minority class, effectively leveling the playing field for training. By creating 
new instances that bridge the gap between existing ones, SMOTE enhances the model’s ability to accurately classify 
underrepresented classes, leading to more robust and balanced predictions.

The proposed model using the ERF and five additional classical machine learning classifiers for the identification 
of DDoS attacks in cyber security are shown in performance metrics in Figure 2. The metrics accuracy, recall, precision, 
Balanced Accuracy (BACC), and F1-score have been utilized to evaluate the models in this figure. The model using the 
ERF classifier has achieved excellent results on all measures, demonstrating that it is a highly effective classifier for 
identifying attacks that use DDoS in cyber security. This means that the ERF model has correctly classified all instances 
without any false positives or false negatives. The accuracy score of the model with the single classifier proves that the 
relevant feature selection approach is also promising.
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Figure 2. Performance of the model with classical ML classifier
          Note: Artificial Neural Network (ANN); Support Vector Machine (SVM)

The model’s performance with several ensemble-based classifiers is shown in Table 2 in terms of recall, FPR, AUC 
score, and testing time in seconds. The four ensemble-based classifiers used in the evaluation are ERF, Bagging, Ada 
Boosting, and Simple Stacking. Based on the presented metrics, the ERF classifier outperforms the other classifiers in 
detecting DDoS attacks. It achieved a perfect recall score of 1.0 and an FPR of 0.0, indicating that it correctly identified 
all DDoS attacks without incorrectly labeling any legitimate traffic as an attack. Moreover, it obtained a high AUC score 
of 1.0, indicating that it has excellent overall performance in distinguishing between attack and normal traffic. However, 
it had the lowest testing time of 0.29684 seconds, which is relatively faster than the other classifiers. Therefore, ERF is 
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an effective choice of classifier in an attack with a DDoS identification model.

Table 2. Performance of the model with different ensemble-based classifiers

Classifier Recall FPR AUC Score Testing Time (Seconds)

ERF 1.00000 0.00000 1.00000 0.29684

Bagging 0.99631 0.00369 0.99815 0.89521

Ada Boosting 0.99668 0.00420 0.99623 0.36795

Gradient Boosting 0.99999 0.01570 0.99213 0.20979

Simple Stacking 0.99631 0.00369 0.99815 10.61270

Figure 3 is a heatmap of the confusion matrix, which visually represents the performance of the model in predicting 
the classes of the test data. The rows of the heatmap correspond to the actual values of the test data, while the columns 
correspond to the predicted values. Table 3 shows the values of the confusion matrix generated from the test data, 
including the number of true positives (TP), false negatives (FN), false positives (FP), and true negatives (TN).
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Figure 3. Confusion matrix of the test data

The model correctly classified 201,932 instances as positive (true positive) and 271 instances as negative (true 
negative), while there were no false negatives or false positives. This means that the model has a perfect true positive 
rate and false positive rate, indicating that it has performed extremely well in detecting DDoS attacks.
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Table 3. Values of the confusion matrix of the test result

Test Data (20%)
(202203)

Predicted Values

Positive Negative

Actual Values
Positive TP = 201,932 FN = 0

Negative FP = 0 TN = 271

Figure 4 shows a line plot of the training and test accuracy of the model with the ERF Classifier for different 
numbers of trees. The x-axis, which ranges from 1 to 100, depicts the number of trees in the forest, and the y-axis, the 
model’s accuracy. For the training accuracy and the test accuracy, two lines are displayed. The figure demonstrates 
that after a given number of trees, both training accuracy and test accuracy continue to rise to 100%. This suggests that 
adding more trees beyond this point does not improve the model’s accuracy. The optimal number of trees for this dataset 
appears to be around 10-20, as this is where the test accuracy is highest.
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Figure 4. Accuracy of the model for different numbers of trees in the ERF classifier

The effectiveness of certain additional assessment criteria for the identification of attacks involving DDoS is 
shown in Table 4. The table contains the values for training accuracy, test accuracy, Cohen’s Kappa, observed accuracy 
(Po), expected accuracy (Pe), and error rate. The model has achieved high accuracy for both the training and test sets 
(1.00000), indicating that the model has been able to learn the patterns of DDoS attacks very well. Cohen’s Kappa 
is also high (1.00000), indicating that the model’s predictions are in excellent agreement with the actual values. The 
observed accuracy (Po) is 1.00000, which is the proportion of correct predictions. The expected accuracy (Pe) is 0.99732, 
which is the expected proportion of correct predictions if the predictions were made randomly. The error rate is 0.00000, 
indicating that the model did not make any errors in the classification of the test data. Overall, the model has performed 
very well in the detection of DDoS attacks. Overall, these metrics suggest that the model is highly accurate and effective 



Artificial Intelligence Evolution 176 | Md. Alamgir Hossain

for the detection of DDoS attacks.

Table 4. Performance of some other evaluation metrics

Training 
Accuracy

Test 
Accuracy

Cohen’s Kappa
Error 
Rate

Observed Accuracy (Po) Expected Accuracy (Pe)

1.00000 1.00000 1.00000 0.99732 0.00000

The ROC curve displayed in Figure 5, is the performance of a binary classifier for detecting DDoS attacks, where 
the positive class represents the DDoS attacks and the negative class represents non-attack traffic. The FPR is shown 
on the x-axis, while the TPR is shown on the y-axis, also known as sensitivity or recall. The curve shows how well the 
classifier is able to distinguish between the two classes at different probability thresholds. The value of the ROC curve 
(AUC = 1.00000) indicates that the model has a perfect classification performance and can distinguish between positive 
and negative classes with 100% accuracy.
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Figure 5. ROC curve of TPR vs FPR

The Precision-Recall curve, a key evaluation tool for evaluating the effectiveness of a binary classification model, 
is shown in Figure 6. The graph shows the dynamic interaction between recall (the proportion of actual positive 
instances correctly identified by the model) and precision (the ability of the model to accurately identify positive 
instances) at different probability thresholds. According to this graph, the model successfully detects positive instances 
while limiting false positives, resulting in high precision and recall at the same time.
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The ERF classifier-based approach employed for identifying the presence of attacks using DDoS in Figure 7 shows 
the log-loss values against the predicted probability for each class. The plot shows two lines, one for each class (Class 
0 and Class 1), and each line represents the log-loss values for that class as the predicted probabilities range from their 
minimum to their maximum values. The projected probability is represented on the x-axis, while the log-loss value is 
represented on the y-axis. The log-loss metric measures the performance of a classification model by penalizing false 
classifications. A lower log-loss value indicates better performance, with a perfect classifier having a log-loss of 0. In 
the figure generated from the code, the blue line represents the log-loss for class 1 (DDoS attack) and shows that the 
log-loss value remains constant at 0 for all predicted probabilities. This suggests that the model performs perfectly in 
predicting class 1, with no false positives or false negatives.
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Figure 8 underscores the model’s robustness and effectiveness in DDoS attack detection under varying degrees of 
noise or variations. While the metrics experience a gradual decline as noise increases, the model’s ability to maintain 
relatively higher Precision suggests its potential to accurately identify positive instances, which is crucial in the context 
of detecting DDoS attacks. The figure provides valuable insights into the model’s behavior in noisy scenarios, aiding in 
understanding its real-world performance and guiding potential improvements.
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The Learning Curve, shown in Figure 9, is used to evaluate how well the model performs as the size of the training 
dataset changes. It displays two separate curves that when compared to various training set sizes, show the training score 
(in blue) and the validation score (in orange). As the training set size grows, both curves converge and are stable at high 
accuracy levels, which suggests a well-generalized and reliable model. This result indicates that the model successfully 
learns from the data and performs consistently on hypothetical cases, indicating its capacity to identify underlying 
patterns without overfitting.

4.3 Comparing the performance with the existing models

Table 5 compares the effectiveness of several DDoS attack detection models using various assessment metrics for 
the CIC-DDoS2019 Dataset. Outperforming all other currently available techniques, the suggested technique achieves 
an accuracy of 100%. The proposed model outperforms the other current models, indicating that it is significantly 
more successful in terms of cyber security. This shows that the suggested methodology is quite accurate and effective 
in identifying attacks with DDoS. Moreover, the ERF classifier helps the model to generalize better by reducing the 
variance and increasing the robustness of the model. It also enables the model to handle missing data and outliers in the 
input dataset by considering multiple decision trees rather than depending just on one decision tree.

Table 5. Evaluation of the demonstrated model’s performance in comparison with currently available models

Model Name Accuracy
(%)

Recall
(%)

Precision
(%)

F1-score
(%)

Proposed Method 100.00 100.00 100.00 100.00

J48, 2023 [21] 98.31 98.30 98.30 98.30

DTEXNet, 2022 [20] 95.00 95.00 95.00 95.00

PFS and KNN, 2022 [19] 89.59 90.04 89.64 89.84

CyDDoS, 2021 [16] 99.60 99.70 99.70 99.60

LR, 2021 [17] 99.66 99.76 99.89 99.83

SVC-RF, 2021 [18] 98.80 97.91 98.27 97.65

CNN and BILSTM, 2021 [39] 94.52 92.04 94.74 93.44

FF-DL, 2021[40] 79.00 79.00 78.00 78.00

MLR, 2020 [15] 75.00 75.00 75.00 75.00

MS-CNN, 2020 [14] 74.00 74.00 74.00 74.00

Overall, the presented model for detecting DDoS attacks demonstrates outstanding performance across all 
evaluation metrics. Moreover, when compared to existing datasets, it consistently outperforms them. This exceptional 
performance positions the model as a formidable contender in the field of cybersecurity for DDoS attack detection. Its 
accuracy, precision, recall, and F1-score indicate its reliability and effectiveness in identifying and mitigating DDoS 
threats. As a result, this model holds great promise in bolstering cyber defense strategies and safeguarding against 
malicious attacks. Its robustness and superior results make it a valuable asset for enhancing the security landscape in the 
ever-evolving digital realm.
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5. Conclusion and future direction
The proposed model has showcased remarkable performance across various assessment parameters, displaying 

promising and effective results in the domain of DDoS attack detection. The exemplary AUC score of 1 underscores 
the model’s exceptional discriminatory power in distinguishing between normal network traffic and DDoS attacks, 
substantiating its robustness and reliability. By achieving a 100% accuracy rate, the demonstrated methodology holds 
tremendous potential to significantly bolster the recognition and response capabilities for countering DDoS attacks, 
thereby fortifying the overall cyber security posture of organizations and networks. Moreover, the innovative utilization 
of the ERF-based model addresses the limitations of single classifier-based approaches, enabling the detection of novel 
and previously unknown types of security threats, and extending the model’s versatility beyond DDoS attacks. With its 
superior performance and adaptability, the proposed approach can be seamlessly integrated into real-time systems such 
as network firewalls, intrusion detection systems, and network traffic monitoring tools, culminating in a comprehensive 
defense mechanism against diverse cyber threats.

In future research, the focus could be directed toward optimizing the model’s performance in scenarios 
where network traffic is significantly higher and rapidly changing. This may involve investigating techniques for 
parallelization, distributed computing, or hardware acceleration to ensure the model’s effectiveness in handling 
substantial data volumes. Additionally, exploring ways to integrate the ERF-based model into advanced threat detection 
systems that operate in cloud environments or utilize Software-Defined Networking (SDN) architectures could be 
another fruitful direction. Investigating how the model can leverage cloud-based resources and adapt to dynamic 
network conditions would be essential for enhancing its scalability and responsiveness.
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Appendix
Feature of the dataset with description

Feature Name Description of the Feature

Idle Min Represents the minimum time duration in seconds that a flow remains idle, indicating periods of inactivity between 
packets.

Flow IAT Max Denotes the maximum inter-arrival time between two consecutive packets of a flow in seconds, revealing the longest 
time gap between packets.

Active Min Signifies the minimum time duration in seconds that a flow remains active, reflecting the shortest duration of flow 
activity.

FIN Flag Count Indicates the number of packets with the FIN (Finish) flag set in the flow, which is a common flag used in closing 
connections.

Flow Packets/s Represents the rate of packets per second in the flow, indicating the intensity of packet transmission.

Idle Std Represents the standard deviation of idle times in seconds for the flow, providing a measure of variation in flow 
inactivity periods.

Fwd Avg Bytes/Bulk Denotes the average number of bytes per bulk transaction in the forward direction, giving insights into data transfer 
patterns.

Bwd IAT Min Reflects the minimum inter-arrival time between two consecutive packets in the backward direction, indicating the 
shortest time gap between packets in that direction.

URG Flag Count Signifies the number of packets with the URG (Urgent) flag set in the flow, indicating the presence of urgent data.

Flow Bytes/s Represents the rate of bytes per second in the flow, providing an overall measure of data transfer speed.

Init_Win_bytes_
backward

Denotes the window size in bytes of the last packet in the backward direction, indicating the window size for flow 
termination.

Source IP Refers to the IP address of the source (sender) of the flow, identifying the origin of the network traffic.

Flow Duration Represents the total duration in seconds of the flow, providing a measure of the flow’s lifetime.

Bwd Header Length Denotes the total length of headers in bytes in the backward direction, indicating the header overhead.

Fwd IAT Std Represents the standard deviation of inter-arrival times in seconds in the forward direction, providing insights into 
packet arrival patterns.

Packet Length Std Signifies the standard deviation of packet lengths in bytes in the flow, indicating the variability in packet sizes.

Bwd IAT Total Denotes the total inter-arrival time in seconds for the backward direction, providing the cumulative time between 
packets.

Avg Bwd Segment Size Represents the average segment size in bytes in the backward direction, indicating the average data segment size in that 
direction.

Inbound A binary feature indicating whether the flow is inbound or not (1: inbound, 0: not inbound), revealing the flow’s 
direction.

RST Flag Count Indicates the number of packets with the RST (Reset) flag set in the flow, signifying connection reset occurrences.

Fwd Packet Length Min Reflects the minimum packet length in bytes in the forward direction, indicating the smallest packet size.

Destination IP Refers to the IP address of the destination (receiver) of the flow, identifying the destination of the network traffic.

Total Backward Packets Denotes the total number of packets in the backward direction, providing an overall measure of packet count in that 
direction.

PSH Flag Count Indicates the number of packets with the PSH (Push) flag set in the flow, signifying immediate data delivery.

Fwd IAT Min Represents the minimum inter-arrival time between two consecutive packets in the forward direction, indicating the 
shortest time gap between packets in that direction.

act_data_pkt_fwd Denotes the number of packets with actual data in the forward direction, excluding control packets.

Bwd Avg Bulk Rate Represents the average bulk rate in the backward direction, indicating the rate of bulk data transmission.
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Feature Name Description of the Feature

Average Packet Size Signifies the average size of packets in bytes in the flow, providing a measure of the typical packet size.

Down/Up Ratio Represents the ratio of download to upload traffic in the flow, indicating the flow’s traffic distribution.

Active Std Signifies the standard deviation of active times in seconds for the flow, providing a measure of variation in flow activity 
durations.

Protocol Represents the protocol used in the flow (e.g., TCP, UDP), indicating the communication protocol used.

Fwd URG Flags Indicates the number of packets with the URG (Urgent) flag set in the forward direction, signifying urgent data delivery 
in that direction.

Idle Mean Represents the mean of idle times in seconds for the flow, providing the average duration of flow inactivity periods.

Fwd Packet Length Mean Signifies the mean packet length in bytes in the forward direction, providing the average packet size in that direction.

Bwd Packets/s Represents the rate of packets per second in the backward direction, indicating the intensity of packet transmission in 
that direction.

Subflow Fwd Bytes Denotes the total number of bytes in the forward subflow, providing the total data size in that subflow.

Total Fwd Packets Represents the total number of packets in the forward direction, providing an overall measure of packet count in that 
direction.

Bwd Packet Length Mean Signifies the mean packet length in bytes in the backward direction, providing the average packet size in that direction.

Bwd IAT Std Represents the standard deviation of inter-arrival times in seconds in the backward direction, providing insights into 
packet arrival patterns in that direction.

Bwd Packet Length Std Signifies the standard deviation of packet lengths in bytes in the backward direction, indicating the variability in packet 
sizes in that direction.

Fwd Avg Bulk Rate Represents the average bulk rate in the forward direction, indicating the rate of bulk data transmission in that direction. 

Fwd PSH Flags Indicates the number of packets with the PSH (Push) flag set in the forward direction, signifying immediate data 
delivery in that direction.

Flow IAT Mean Represents the mean inter-arrival time between two consecutive packets in the flow, providing the average time gap 
between packets.

Bwd PSH Flags Indicates the number of packets with the PSH (Push) flag set in the backward direction, signifying immediate data 
delivery in that direction.

Bwd IAT Max Denotes the maximum inter-arrival time between two consecutive packets in the backward direction, indicating the 
longest time gap between packets in that direction.

SimillarHTTP A binary feature indicating whether the flow is similar to HTTP or not (1: similar, 0: not similar), providing insights 
into flow characteristics.

Fwd IAT Max Represents the maximum inter-arrival time between two consecutive packets in the forward direction, indicating the 
longest time gap between packets in that direction.

Idle Max Denotes the maximum time duration in seconds that a flow remains idle, indicating the longest period of inactivity 
between packets.

Total Length of Fwd 
Packets

Represents the total length of packets in bytes in the forward direction, providing an overall measure of data size in that 
direction.

Active Mean Signifies the mean of active times in seconds for the flow, providing the average duration of flow activity.

Total Length of Bwd 
Packets

Represents the total length of packets in bytes in the backward direction, providing an overall measure of data size in 
that direction.

Flow IAT Std Represents the standard deviation of inter-arrival times in seconds for the flow, indicating the variability in time gaps 
between packets.

Subflow Fwd Packets Denotes the total number of packets in the forward subflow, providing an overall measure of packet count in that 
subflow.

Active Max Denotes the maximum time duration in seconds that a flow remains active, indicating the longest duration of flow 
activity.

Destination Port Refers to the port number of the destination (receiver) in the flow, identifying the destination port used in the 
communication.
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Feature Name Description of the Feature

Fwd Packet Length Max Represents the maximum packet length in bytes in the forward direction, indicating the largest packet size in that 
direction.

Source Port Refers to the port number of the source (sender) in the flow, identifying the source port used in the communication.

Timestamp Represents the timestamp of the flow, providing the time at which the flow was observed.

Init_Win_bytes_forward Denotes the initial window size in bytes of the first packet in the forward direction, indicating the initial data 
transmission window.

Flow ID Provides a unique identifier for the flow, enabling individual flow identification.

Max Packet Length Represents the maximum packet length in bytes in the flow, indicating the largest packet size in the entire flow.

SYN Flag Count Indicates the number of packets with the SYN (Synchronize) flag set in the flow, signifying connection establishment 
requests.

Bwd Packet Length Max Denotes the maximum packet length in bytes in the backward direction, indicating the largest packet size in that 
direction.

Fwd Packets/s Represents the rate of packets per second in the forward direction, indicating the intensity of packet transmission in that 
direction.

Bwd Avg Bytes/Bulk Represents the average number of bytes per bulk transaction in the backward direction, providing insights into data 
transfer patterns in that direction

Subflow Bwd Packets Denotes the total number of packets in the backward subflow, which can help identify irregular packet patterns 
associated with certain DDoS attacks.

Avg Fwd Segment Size Represents the average size of forward segments in bytes, providing insights into the typical segment size in the 
forward direction.

Bwd URG Flags Indicates the number of packets with the URG (Urgent) flag set in the backward direction, which may indicate 
malicious attempts to bypass security mechanisms.

Fwd Header Length Denotes the total length of headers in bytes in the forward direction, which can help detect anomalies or excessive 
header data used in some DDoS attacks.

Fwd IAT Mean Represents the mean inter-arrival time between two consecutive packets in the forward direction, providing the average 
time gap between packets in that direction.

Bwd Packet Length Min Reflects the minimum length of a packet in bytes in the backward direction, providing insights into the smallest packet 
size received by the destination.

Packet Length Mean Signifies the mean length of packets in bytes in the flow, which can help establish the typical packet size and identify 
deviations during an attack.

min_seg_size_forward Denotes the minimum segment size allowed in the forward direction, which can be exploited in attacks attempting to 
overwhelm the target with tiny segments.

Fwd Packet Length Std Represents the standard deviation of packet lengths in bytes in the forward direction, which can help detect variations 
in packet sizes during an attack.

ACK Flag Count Indicates the number of packets with the ACK (Acknowledgment) flag set in the flow, which is commonly present in 
legitimate TCP traffic but can also be abused in DDoS attacks.

CWE Flag Count Indicates the number of packets with the CWE (Common Weakness Enumeration) flag set in the flow, which may 
suggest potential weaknesses that attackers can exploit.

Flow IAT Min Represents the minimum inter-arrival time between two consecutive packets in the flow, providing insights into the 
shortest time gap between packets.

Bwd Avg Packets/Bulk Denotes the average number of packets per bulk transaction in the backward direction, providing insights into patterns 
of bulk data transfer.

Bwd IAT Mean Represents the mean inter-arrival time between two consecutive packets in the backward direction, providing the 
average time gap between packets in that direction.

Min Packet Length Reflects the minimum length of a packet in bytes in the flow, which can help identify unusually small packets 
associated with certain attacks.

Fwd Avg Packets/Bulk Represents the average number of packets per bulk transaction in the forward direction, providing insights into patterns 
of bulk data transfer.

Subflow Bwd Bytes Denotes the total number of bytes in the backward subflow, which can help identify irregular data patterns associated 
with certain DDoS attacks.
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ECE Flag Count Indicates the number of packets with the ECE (Explicit Congestion Notification Echo) flag set in the flow, which may 
indicate potential network congestion due to an attack.

Packet Length Variance Represents the variance of packet lengths in bytes in the flow, providing a measure of the spread of packet sizes, which 
can help identify anomalous patterns.

Fwd IAT Total Denotes the total inter-arrival time in seconds for the forward direction, providing the cumulative time between packets 
in that direction.

Fwd Header Length Represents the total length of headers in bytes in the forward direction, which can help detect anomalies or excessive 
header data used in some DDoS attacks.


