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Abstract: Buildings’ carbon emissions are the main contributor to climate change. The world needs to be able to 
foresee and further reduce construction carbon emissions if it wants to prevent the worst effects of climate change. 
The main challenge in carbon emission prediction for buildings is how to increase algorithm accuracy. Therefore, a 
novel technique for calculating carbon emissions is proposed in this study. The proposed technique uses improved 
particle swarm optimization (PSO) and deep neural network (DNN) to anticipate carbon emissions. DNN is employed 
in the proposed technique to forecast carbon emissions. The parameters used are fine-tuned using the improved PSO. 
Additionally, it chooses features that increase the predictability of carbon emissions. In this study, many methods 
for predicting carbon emissions are examined, including decision tree (DT), random forest (RF), support vector 
regression (SVR), DNN, and the proposed method. The outcomes demonstrate that the proposed technique can lower 
root mean square logarithmic error (RMSLE) prediction, and the final testing result of RMLSE is 0.3476 in this 
study. It demonstrates that the proposed method performs better than other alternatives when compared and has good 
implementation ability.
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1. Introduction
Carbon emissions have emerged as a critical signal that society, corporations, and other sectors need to comprehend 

and manage as nations throughout the world pay increasing attention to global climate change. Buildings are one of 
the largest sources of energy consumption in many nations since they serve as the primary spatial carrier for people’s 
lives and activities. Large-scale new building construction and the operation of enormous old buildings have produced 
a significant amount of carbon dioxide emissions in recent years due to the rapid rise of urban construction [1]. Cuéllar-
Franca et al. [2] have studied three types of buildings common in the UK, considering the environmental impact of each 
stage from a full life cycle perspective. The results show that the greenhouse gas emissions in the building use stage have 
the greatest impact on the environment, and the recycling and utilization of building materials are conducive to reducing 
greenhouse gas emissions. Suzuki et al. [3] conducted research on residential buildings in Japan, used the industrial 
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balance sheet method to calculate the carbon emissions and energy consumption of residential buildings throughout 
the life cycle, and proposed an input-output calculation method for calculating CO2 emissions for the whole process 
of building construction, use, maintenance, demolition, and cleanup. Nassen et al. [4] used the top-down input-output 
analysis method to calculate the energy consumption and CO2 emissions in the construction stage of a Swedish building, 
and compared the results with the case results calculated by the bottom-up full life cycle method, and found that the 
calculation results of the input-output method were 90% higher than that of the life cycle method. Carbon dioxide (CO2) 
emissions from building operations peaked in 2021, according to the 2022 Global Building and Construction Industry 
Status Report. The construction industry’s goal of achieving ultra-low emissions or perhaps zero emissions is a crucial 
first step toward achieving carbon peak and carbon neutrality as a response to the increasingly catastrophic situation 
of building carbon emissions. The real estate building business is currently supporting carbon reduction efforts in a 
progressive manner, but there are still numerous obstacles to overcome, including inconsistent norms, delayed actual 
development, and expensive new technology. The following variables are the main causes of the distortion of carbon 
emission data. First off, the results from carbon accounting are not accurate enough. Currently, the majority of carbon 
accounting research is based on IPCC accounting methodologies and guidelines [5], but this methodology is less precise 
and useful due to regional differences. The limits of carbon accounting guidelines are also becoming hazy. As a result, 
it has always been challenging to anticipate carbon emissions accurately and effectively. Machine learning has recently 
shown promise in helping to implement a number of carbon emissions policies, including carbon peaking and carbon 
neutrality. The traditional building carbon emissions prediction sector is evolving in an intelligent manner, propelled by 
the new generation of information technology. This branch of study has gradually advanced and become more in-depth.

Machine learning (ML) has been utilized to resolve this issue and forecast the CO2 concentration in order to 
test and monitor CO2 [6-13]. In order to forecast the findings of CH4 and CO2 concentrations in deltaic water bodies, 
Ludwig et al. [14] constructed a model utilizing machine learning. However, the majority of research focuses on 
machine learning for predicting carbon emissions, whereas feature extraction for predicting carbon emissions receives 
less attention. To estimate carbon emissions, Lee et al. [15] proposed using deep learning with autonomous feature 
engineering; however, parameters still need to be fine-tuned to increase prediction accuracy. In this research, we propose 
a DNN-based building carbon emissions prediction with improved PSO. The proposed approach makes efficient use 
of the improved PSO to select features and perform fine-tuning of parameters to increase the predictability of carbon 
emissions.

The remainder of this essay is structured as follows. The related methods of DT, RF, SVR, PSO, and DNN are 
introduced in Section 2. Described in Section 3 is the proposed algorithm. The outcomes are shown in Section 4. Finally, 
Section 5 provides the conclusions.

2. The brief description of DT, RF, SVR, PSO, and DNN
In this section, the related approaches of the decision tree, random forest, support vector regression, particle swarm 

optimization, and deep learning network are introduced.

2.1 Decision tree

The procedure used to choose the optimum splitting feature for each node in the DT algorithm is known as feature 
selection [16]. To create a corresponding feature branch for each value and divide the related data set samples, the most 
often used feature selection is condensed. Numerous subsets can be produced by such a partition. The data set will show 
more nodes as a result of the data set’s continuous division; this is the Gini coefficient, and equation (1) can be used to 
calculate it.

( ) ( )( )21Gini t p i t= - ∑ (1)

where t represents a specific node, i represents the index of the class, and p(i|t) represents the proportion of samples 
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belonging to a class in a node; the construction of a decision tree is the process of growing a tree by recursively 
partitioning the nodes.

2.2 Random forest

As depicted in Figure 1, the RF is an ensemble learning technique based on decision trees that excels at processing 
labeled data sets [17]. The data set is separated into several subsets using the bagging algorithm formula, and a decision 
tree is built for training for each subset. The principles of feature selection and node splitting are the foundations upon 
which the decision tree is built. The best features are chosen at each node to execute splitting, typically with the goal 
of lowering impurity. Until the termination condition is met, this recursive process keeps running. Each decision tree 
makes an individual forecast during the prediction stage, and the ultimate result is then decided by voting or averaging. 
It averages the regression tree’s outcomes if the issue is one of regression. The RF is popular in machine learning 
because of its many benefits. It can manage big data sets and high-dimensional feature spaces, for starters. Random 
forests are successful against the dimensionality curse because each decision tree is trained on just a small subset of 
features. It is additionally resistant to missing numbers and outliers. The impact of missing data and outliers is minimal 
because each decision tree is trained using partial samples and features. Because of this, random forests are excellent for 
handling erratic or insufficient real-world data.

Conclusion

Average or voting

Decision tree 1

Feature subset l

Decision tree 2

Feature subset 2

Decision tree 3

Feature subset 3

Random choose

Original data set

Decision tree N

Feature subset N

Figure 1. Random Forest



Artificial Intelligence EvolutionVolume 4 Issue 2|2023| 219

2.3 Support vector regression

A machine learning algorithm addressing regression issues is the SVR [18]. SVR provides particular advantages 
and features in conventional regression problems compared to conventional regression techniques. The fundamental 
tenet of the SVR method is that the model can be expressed by equation (2) by identifying an ideal separating 
hyperplane.

(2)( ) ( )Tf x w x b= Φ +

where w is the model parameter, b is a model parameter which means that the sample points are mapped to a high-
dimensional space, and the error between the predicted value and the real value is minimized. Support vectors are the 
training sample points that are closest to the hyperplane in SVR. The construction of the hyperplane and the prediction 
process both heavily rely on these support vectors. Unlike the support vector used in classification, the support vector 
used in SVR can be in the error band. The distance of the support vector from the hyperplane, which is determined by 
the loss function as shown in equation (3), defines the error between the forecast result and the true value.

(3)( ) 2, 1/2L b Cω ξ ω= ∑ +

where ||ω||2 represents the L2 norm of the weight vector ω, ξ is the slack variable, and C is a regularization parameter 
that controls the complexity of the model.

2.4 Particle swarm optimization

The PSO is regarded as one of the modern innovative heuristic algorithms because of how widely used it is and 
how easily it can be implemented [19]. The PSO algorithm has carefully researched the collective behavior of animals 
with an eye to the future to serve as a dependable method to solve optimization issues in a wide range of applications. In 
PSO, each possible solution is represented by a particle, and the population of the algorithm is represented by the entire 
swarm. The particles are able to learn and develop to the highest level of efficiency because of the swarm’s collaboration 
and information sharing. For n-dimension, each particle of the swarm is represented by xij = (xi1, xi2, …, xij), and the 
position is as shown in equation (4).

(4)( ) ( ) ( )1   , 1, 2, , ij ij ijx t x t v t i j n= - + = 

where xij(t) is the current position, xij(t - 1) is the previous position and vij(t) is the velocity which determines the 
movement of each particle in the current iteration. The velocity of the particle is given by the following equation (5).

(5)( ) ( ) ( ) ( ) ( ) ( )1 21 1 1 1 1 ,  , 1, 2, , ij ij ij ij ij ijv t wv t r pbest t x t r gbest t x t i j nα β   = - + - - - + - - - =    

Where vij(t) denotes the velocity in the current iteration, vij(t - 1) is the velocity in the previous iteration, w is 
the inertia weight, r1 and r2 are two variables which are randomly derived from uniform distribution in range [0, 1], 
acceleration coefficients with a significant impact on the effectiveness of the PSO method are defined as α and β, pbest(t 
- 1) is the best position of the particle up to the previous iteration, and gbestij(t - 1) is the best position of the entire 
swarm up until the same iteration. As a form of memory, it stores the best prior location that the particle has attained 
as [pbestij(t - 1) - xij(t - 1)]. The term [gbestij(t - 1) - xij(t - 1)] refers to the particles that act in accordance with the 
information they have learned from the swarm, using the swarm’s optimal position as a guide.
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2.5 Deep learning network

A strong nonlinear modeling tool is the DNN, an artificial neural network having several layers between the input 
and output layers [20]. Figure 2 depicts the DNN’s fundamental structure. A neural network has two hidden layers, and 
each layer’s neurons are connected to those in the layer before it. Each neuron processes information from the layer of 
neurons above it using weights and activation functions before generating an output. Equation (6) describes the output 
of neuron j.

(6)( )1
n

j ij i jiy f w x θ== -∑

where yj is the output of jth neuron, xj is the ith input, wij is the weight for the ith input and jth neuron, n is the total 
number of input, θj is the threshold of jth neuron, and  f  is the activation function.

Input layer Hidden layer Output layer

Figure 2. The deep learning network structure

3. The Proposed method
The development of carbon emission predictions using deep learning and enhanced particle swarm optimization 

is proposed in this research. Figure 3 displays the proposed algorithm’s flowchart. The used data for carbon emissions 
are initially loaded into Figure 3. The DNN is then used to make the best possible prediction of carbon emissions. The 
enhanced PSO is then used to carry out feature selection and parameter fine-tuning. The proposed procedure is then 
carried out until the stop requirements are satisfied. This study’s carbon emission dataset was downloaded from Kaggle 
with ten features [21]. Table 1 provides a thorough explanation of these ten features.
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Figure 3. The flowchart of the proposed method

Table 1. The used carbon emissions dataset

# Characteristics

1 Year

2 Energy Related CO2 Emissions

3 Oil Production

4 Natural Gas Production

5 Coal Production

6 Electricity Generation

7 Hydroelectricity Usage

8 Nuclear Energy Usage

9 Installed Solar Capacity

10 Installed Wind Capacity

The structure of DNN is set up as shown in Table 2. In Table 2, dense_input is the input layer with 1,024 neurons. 
The dense_1, dense_2, and dense_3 are hidden layers. The dense_output is output layer. The activation function of the 
input layer and the hidden layers are set as relu function. For the output layer, the activation is set to linear function. 
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For improved PSO, the value of weight w varies according to the number of the current iteration t and the number of 
maximum iterations tmax = 5,000. It is described as follows in equation (7).

(7)max

max

t t
w

t
-

=

The fitness value of the jth particle is shown as equation (8).

(8)( )1/ 1j jFitness RMLSE= +

The following is the basic process of the improved PSO algorithm.
Step 1: Generate starting particles in the population at random.
Step 2: Using equation (8), calculate the fitness value of each particle in the population.
Step 3: Using equation (7), calculate the weight w.
Step 4: Using equation (5), calculate the velocity of each particle.
Step 5: Using equation (4), move each particle in the population to the next place.
Step 6: If the stop criteria is met, the algorithm is terminated. Otherwise, proceed to Step 2.

Table 2. The structure of DNN

Layer Shape

input 1,024

hidden_1 512

hidden_2 256

hidden_3 128

output 1

4. Simulation results
For the simulation, we defined the stop condition as the output prediction that has not been improved further after 

30 iterations. In this study, 80% of the data on carbon emissions is utilized as training data, while the remaining data is 
used as testing data. The representation of a particle’s solution is specified as the values of α, β, θj, and the number of 
10 features in the employed carbon emissions dataset for feature selection to apply the improved PSO. The proposed 
technique requires 10 features from the carbon emissions dataset to determine which features are chosen. The value 
of characteristics ranges from 0 to 1. If a feature’s value is less than or equal to 0.5, the corresponding feature is not 
chosen. If, on the other hand, a feature’s value is larger than 0.5, the corresponding feature is chosen. Table 3 shows 
the outcomes of various methodologies for predicting carbon emissions. It should be noted that the proposed method 
and the DNN have the same architecture. The stop condition for SVR, DNN, and the proposed method are all the same 
condition. It is demonstrated that the proposed method has the lowest RMLSE, and the result is shown in Figure 4. 
Furthermore, the proposed method includes four features: oil production, coal production, hydroelectricity usage, and 
installed solar capacity.
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Table 3. The results of various approaches to carbon emissions

Approaches RMLSE

DT 0.7597

RF 0.5355

SVR 1.7748

DNN 0.4973

The proposed method 0.3476
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Figure 4. The result of RMLSE

5. Conclusions
This paper proposes deep learning-based carbon emission prediction with improved PSO. The proposed technique 

employs improved PSO for feature selection and parameter fine tuning. Carbon emissions are predicted using a deep 
learning network. According to the results, the proposed method has the lowest RMLSE of the techniques tested. It 
is also discovered that the improved PSO features oil production, coal production, hydropower usage, and installed 
solar capacity. In fact, the proposed method beats all previous algorithms tested. For carbon emission prediction, it 
could depend on the factor of seasons. The long short-term memory (LSTM) and gate recurrent unit (GRU) are time-
recurrent neural network (RNN). They are proposed to solve problems such as long-term memory and gradients in 
backpropagation. In future work, these approaches may do more research for predicting carbon emissions with the 
factor of seasons.
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