
Artificial Intelligence Evolution 48 |  Quoc Thong Nguyen, et al.

The Performance of the EWMA Median Chart in the Presence of 
Measurement Error

Huu Du Nguyen1, Quoc Thong Nguyen2*, Thi Hien Nguyen3, Narayanaswamy Balakrishnan4, Kim Phuc 
Tran5

1 Department of Mathematics, Vietnam National University of Agriculture, Hanoi, Vietnam
2 Institute of Artificial Intelligence and Data Science, Dong A University, Da Nang, Vietnam
3 Departement of Mathematics, CY TECH, CY Cergy Paris University, 95000 Cergy, France
4 Department of Mathematics and Statistics, McMaster University, Hamilton, ON L8S 4K1, Canada
5 Ecole Nationale Sup´erieure des Arts et Industries Textiles, GEMTEX Laboratory, France
   Email: thongnq@donga.edu.vn

Abstract: Measurement error always exists in quality control applications and may considerably affect the ability 
of control charts to detect an out-of-control situation. In this paper, we study the performance of the EWMA median 
chart using a Markov Chain approach with a linear covariate error model and a corrected formula for the distribution 
of the sample median. The performance is evaluated through the Average Run Length. Several figures and tables are 
presented and enumerated to show the statistical performance of the EWMA median control chart for different sources of 
measurement errors. The positive effect of taking multiple measurements for each item in a subgroup on the performance 
of the EWMA median chart is also investigated. An example illustrates the use of this study is introduced. The numerical 
simulation shows that the measurement errors have a negative influence on the proposed chart.
Keywords: measurement error, median, EWMA control chart, expert systems, smart production

1. Introduction
In manufacturing industries, a process of product can be affected by many assignable causes. Detecting the anomalies 

as soon as possible is one of the producer’s top priorities to ensure the product quality. Therefore, many anomaly detection 
techniques have been developed [30, 28]. One of the most widely used techniques is control charts. Control charts are the 
simplest type of on-line statistical process control (SPC) procedure used to detect variations in parameters of processes. 
In the SPC literature, the median ( )X  type charts have already been investigated and used to detect shifts in a process. As 
emphasized in [6], the main advantages of median type charts are that they are simpler than the corresponding mean ( )X  
charts and they are robust against outliers, contamination or small deviations from normality. Castagliola [4] was the first 
to introduce the EWMA median chart while the Shewhart - X control chart was suggested in [16]. Both of these control 
charts are robust and effective tools for practitioners who are only interested in the detection of permanent shifts in the 
process mean. As an effort to improve the statistical performance of median type control charts, the generally weighted 
moving average median (GWMA- X ) control chart has been studied in [23]. In practice, the parameters of control charts 
are usually unknown and estimated from an in-control sample. Castagliola and Figueiredo [5] proposed a modified Shewhart 
median chart with estimated control limits and showed that the in-control performance of the median charts with estimated 
control limits is different when the process parameters are assumed known. Very recently, Castagliola et al. [6] developed a 
new EWMA- X chart with estimated control limits to monitor the mean value of a normal process.

In many industrial scenarios, the presence of measurement error can seriously affect the performance of control 
charts. The performance of various control charts in the presence of measurement error has been shown by the works of 
several authors, including [19, 1, 13, 20, 15, 14, 26, 27, 22]. For the case of the EWMA- X control chart, the efect of measurement error 
on its performance has been considered in [10]. However, in that paper, the authors applied a mistaken formula for the 
cumulative density function of the sample median in the presence of measurement error. Therefore, the goal of this paper is 
to correct this formula and to investigate the true efect of measurement error on the EWMA- X control chart’s performance. 
This correction is needed to avoid confusion among readers.
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The outline of the paper is as follows. In section 2, the linear covariate error model for the sample median is defined, 
along with its corrected distribution. Section 3 presents the implementation of the EWMA- X with measurement error 
where the run length performances ARL and SDRL are defined by using a Markov Chain-based approach. In Section 4, the 
effect of measurement error on the EWMA- X control chart performance is investigated. Section 5 presents an illustrative 
example and, finally, concluding remarks and recommendations are given in Section 6.

2. Linear covariate error model and sample median distribution
2.1 Linear covariate error model

Using the general linear covariate error model suggested in Linna and Woodall [18], Tran et al. Kim Phuc 
Tran et al. [25] provided the linear covariate error model for the sample media X . From the observable quantities 

{ * * *
, ,1 , ,1 , ,,  ,  ..., i j i j i j mX X X }, where *

, ,i j kX  represents the kth measurement of the jth sample at time i, k = 1, . . . , m, j = 1, . . . , n, 

i = 1, 2, . . ., the mean *
,i jX  is determined, which is a normal distribution. In particular, ( )* * *

, ,i j N µ σ

X  with 
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where A and B are the two coefficients in the linear covariate error model; σM is the standard deviation of the random error 
term in the model, µ0 and σ0 are the nominal mean and standard-deviation; and δ is the mean shift. Let *

iX  be the sample 
median of the mean values { * * *

,1 ,2 ,, ,...,i i i nX X X } corresponding to subgroup i = 1, 2, . . . Then, *
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where { * * *
,(1) ,(2) ,( ), ,...,i i i nX X X } is the ordered sample of the mean values forsubgroup i = 1, 2, ...            

2.2 Sample median distribution
The sample median distribution has been provided and applied broadly in the literature. In Cheng and Wang  [10], the 

authors applied asymptotic formula for the variance of sample median when n is odd, i.e.   
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As a result, when the sample size n is odd, the cumulative distribution function (cdf ) of the sample median *
iX  is 

reported as (see Eq. (5) in Cheng and Wang [10])
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where Φ(.) is the cdf of the standard normal distribution and Fbeta(x; a, b) is the cdf of beta distribution with parameters 
1 1,

2 2
n n+ + 

 
 

. Similarly, when the sample size n is even, the cdf of the sample median is (see Eq. (6) in Cheng and Wang [10])             
                                                           

                                                                                                                                               (6)
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where F(x2 / n) and f(x2 / n) are the cdf and the probability density function ( pdf ) of the order statistic *
, /2i nX .

However, it should be considered that the formula (4) is an asymptotic one. It can only be used to approximate the 
distribution of the sample median when the sample size is sufficiently large, which is not the case in practice when the 
sample size only takes not so large value such as n = 3, n = 5 or n = 7. Moreover, when using the asymptotic distribution of 
the sample median, it is not a beta distribution with the added incorrect term 2n

π
 as given in Cheng and Wang [10]. Instead, it 

is a normal distribution. 
Based on the exact probability density distribution ( pdf ) of the sample median when n is odd provided by Chu [12], we 

have checked that the correct cdf of sample median is
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where Φ(.) is the cdf of the standard normal distribution and Fbeta(x; a, b) is the cdf of beta distribution with parameters (a, b). 
This formula has also been used by other authors [7, 25]. Similarly, when n is even, the correct distribution of sample median 
must be (see equation 2.5.10 in  [2], for example)
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When working with the sample median, it is usual assumed, without loss of generality, that the sample size n is an odd 
value. This makes the sample median easier and faster to compute. In the rest of this paper, we will thus confine to the case 
where n is an odd value. That is to say, the formula (7) will be used as the cdf of the sample median.

3. Implementation of the EWMA- X control chart with measurement error
In this section, we present the implementation of the EWMA-X control chart with measurement error. Let *

1Z , *
2Z ,... 

be the EWMA sequence obtained from *
1X , *

2X ,..., i.e. for }{1,2,...i∈ ,

                                      ( )* * *
11i i iZ Z Xλ λ−= − + 

,                                                                                                 (9)

where * *
0 0Z µ= and ](0, 1λ∈ −  is a smoothing constant. The values in the EWMA sequence will be monitored to define 

whether the process is still in-control. This is performed by comparing these values with the control limits of the EWMA- 
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where K > 0 is a constant that depends on n, λ and on the desired in-control performance.
The run length properties of the EWMA-X chart with linear covariate error model can be obtained using the classical 

approach proposed by Brook and Evans[3] which consists in dividing the interval [LCL, UCL] into 2p + 1 subintervals 
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Each subinterval ( ],j jH H−∆ + ∆ , }{ ,...,0,...,j p p∈ − + , represents a transient state of a Markov chain. 
I f  ]( ,i j jZ H H∈ −∆ + ∆  then the  Markov chain  is  in  the  t ransient  s ta te  }{ ,...,0,...,j p p∈ − +  sample  i .  I f 

](* ,i j jZ H H∉ −∆ + ∆  then the Markov chain reached the absorbing state ( ] [ ), ,LCL UCL−∞ +∞ . We assume that Hj 

is the representative value of state }{ ,...,0,...,j p p∈ − + . Let Q  be the (2p + 1, 2p + 1) sub-matrix of probabilities j,Q k  

corresponding to the 2p + 1 transient states defined above, i.e.
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X chart. Similar to Tran et al.[25], the control limits of the EWMA -X  chart with measurement error are defined by
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From (11), (7) and (12), it can be proven that 
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Finally, dividing the numerator and the denominator by σ0 allows to obtain p as a function of the precision error ratio 
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Let q = (q-p, . . . , q0, . . . , qp)
T be the (2p + 1, 1) vector of initial probabilities associated with the 2p + 1 transient 

states, where
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When the number 2p + 1 of subintervals in matrix Q  is sufficiently large (say p = 100, i.e. 2p + 1 = 201), this finite 
approach provides an effective method that allows the Run Length properties of the EWMA-X chart with linear covariate 
error model to be accurately evaluated. Since the Run Length of the EWMA-X chart in the presence of measurement 
error is a Discrete PHase-type (or DPH) random variable of parameters (Q , q), see for instance [21] or  [17], then the pdf 

( )RLf l  and the cdf ( )RLF l  of RL are respectively equal to 

                                                                                                                                  (16)
                                  ,
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where ν1 and ν2 are the first and second factorial moments of the RL, i.e. 

( ) 1
1

Tv −= −q I 1Q ,                                                                                                  (20)    

( ) 2
2 2 Tv −= −q I 1Q Q .                                                                                              (21)

From (14), it should be considered that the values of ARL and SDRL of the EWMA- X chart with linear covariate error 
model do not depend on the constant A which implies that this constant does not have any influence on the performance of 
the EWMA- X control chart with measurement error. Nevertheless, the constant A must be taken into account concerning 
the process location, the item disposition or the process capability (see Linna et al. [19]).

4. The effect of measurement error on the EWMA- X control chart
In this section, we investigate the effect of measurement error on the performance of EWMA- X control chart 

represented by the mean and the standard deviation of the run length distribution (ARL and SDRL). Moreover, the expected 
average run length (EARL) is also considered. In Table 1, we presented the published studies on median monitoring with 
the present of measurement errors.

Table 1. The previous methods on monitoring median with the present of measurement errors

Publication Method Advantages Drawbacks

Tran et al.[25] Shewhart Classical method, easy to implement Least efficient

Cheng and Wang [10] EWMA and CUSUM The formula is not realistic in practice

Cheng and Wang [11] VSSI Easier than EWMA The formula is not realistic in practice

Tran et al. [29] Synthetic Not difficult to implement Less efficient than EWMA with small shifts

Tang et al. [24] Adaptive EWMA Good performance Complicated to implement

                                                        
As proposed in[6], the design of the EWMA- X control chart consists in selecting the optimal couples (λ*, K*) which 

minimize the out-of-control ARL for a specific value of n and δ subject to a constraint on the in-control ARL, which is 
denoted by ARL0 and set at ARL0 = 370.4 in this study. For computational reasons (convergence of the Markov-chain 
method), the value of λ is always kept larger or equal to 0.05.

Table 2 shows the optimal couples (λ*, K*) of the EWMA- X chart for B = 1 and m = 1 and different values of η ∈{0, 0.1, 
0.2, 0.3, 0.5, 1.0}, δ ∈{0, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0} and n ∈{3, 5, 7, 9}.

It is important to note that the optimal couples (λ*, K*) of the EWMA- X control chart for other investigated scenarios 
are not presented in this paper but are available upon request from authors.

Table 2. λ* and K* values of the EWMA- X control chart in the presence of measurement error for different values of η, δ, n, B = 1, m = 1
n=3

δ  η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.1 (0.1, 0.3) (0.1, 0.3) (0.1, 0.3) (0.1, 0.3) (0.1, 0.3) (0.1, 0.3)

0.2 (0.1, 0.3) (0.1, 0.3) (0.1, 0.3) (0.1, 0.3) (0.1, 0.3) (0.1, 0.3)

0.3 (0.1, 0.3) (0.1, 0.3) (0.1, 0.3) (0.1, 0.3) (0.1, 0.3) (0.1, 0.3)

0.5 (0.1, 0.4) (0.1, 0.4) (0.1, 0.4) (0.1, 0.4) (0.1, 0.4) (0.1, 0.3)

0.7 (0.1, 0.5) (0.1, 0.5) (0.1, 0.5) (0.1, 0.5) (0.1, 0.5) (0.1, 0.4)

1.0 (0.2, 0.7) (0.2, 0.7) (0.2, 0.7) (0.2, 0.7) (0.2, 0.7) (0.2, 0.5)

1.5 (0.4, 1.1) (0.4, 1.1) (0.4, 1.0) (0.4, 1.0) (0.4, 1.0) (0.3, 0.8)

2.0 (0.7, 1.5) (0.7, 1.4) (0.7, 1.4) (0.6, 1.4) (0.6, 1.3) (0.4, 1.0)
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n=5
δ  η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.1 (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2)

0.2 (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2)

0.3 (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2)

0.5 (0.1, 0.4) (0.1, 0.4) (0.1, 0.4) (0.1, 0.4) (0.1, 0.3) (0.1, 0.3)

0.7 (0.2, 0.5) (0.2, 0.5) (0.2, 0.5) (0.2, 0.5) (0.2, 0.5) (0.1, 0.4)

1.0 (0.3, 0.7) (0.3, 0.7) (0.3, 0.7) (0.3, 0.7) (0.3, 0.6) (0.2, 0.5)

1.5 (0.6, 1.1) (0.6, 1.1) (0.6, 1.1) (0.6, 1.0) (0.5, 1.0) (0.4, 0.8)

2.0 (0.9, 1.4) (0.8, 1.4) (0.8, 1.4) (0.8, 1.4) (0.8, 1.3) (0.6, 1.0)

n=7
δ  η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.1 (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2)

0.2 (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2)

0.3 (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2)

0.5 (0.2, 0.4) (0.2, 0.4) (0.2, 0.4) (0.1, 0.4) (0.1, 0.3) (0.1, 0.3)

0.7 (0.3, 0.5) (0.3, 0.5) (0.3, 0.5) (0.2, 0.5) (0.2, 0.5) (0.2, 0.4)

1.0 (0.4, 0.7) (0.4, 0.7) (0.4, 0.7) (0.4, 0.7) (0.4, 0.6) (0.3, 0.5)

1.5 (0.8, 1.1) (0.8, 1.1) (0.7, 1.1) (0.7, 1.0) (0.7, 1.0) (0.5, 0.8)

2.0 (0.9, 1.3) (0.9, 1.3) (0.9, 1.3) (0.9, 1.3) (0.9, 1.2) (0.7, 1.0)

n=9
δ  η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.1 (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2)

0.2 (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2)

0.3 (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2) (0.1, 0.2)

0.5 (0.2, 0.4) (0.2, 0.4) (0.2, 0.4) (0.2, 0.4) (0.2, 0.3) (0.1, 0.3)

0.7 (0.3, 0.5)  (0.3, 0.5) (0.3, 0.5) (0.3, 0.5) (0.3, 0.5) (0.2, 0.4)

1.0 (0.5, 0.7) (0.5, 0.7) (0.5, 0.7) (0.5, 0.7) (0.4, 0.6) (0.3, 0.5)

1.5 (0.8, 1.1) (0.8, 1.1) (0.8, 1.1) (0.8, 1.1) (0.8, 1.1) (0.6, 0.8)

2.0 (1.0, 1.2) (1.0, 1.2) (1.0, 1.2) (1.0, 1.2) (0.9, 1.2) (0.8, 1.0)

Some simple conclusions can be drawn from this table as follows.
Given n, δ, B and m = 1, when η increases, the values of λ* and K* decrease. For instance, when n = 5, B = 1, m = 1 

and δ = 1.5, we have λ* = 0.6 and K* = 1.1 for η = 0 (process is free of measurement error) and λ* = 0.5 and K* = 1.0 for η = 0.5.
When δ ≤ 0.3, given n, B and m = 1, values of λ* and K* are constants irrespective of the value of η. For instance, 

when n = 5, B = 1, m = 1 and δ = 0.2, we have λ* = 0.1 and K* = 0.2 for η = 0 (process is free of measurement error) and λ* 
= 0.1 and K* = 0.2 for η = 1.

Using the optimal couples (λ*, K*) in Table 2, the values of ARL and SDRL can be calculated as in (18) and (19). The 
results corresponding to the same values of parameters in Table 2 are presented in Table 3.
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Table 3. ARL and SDRL values of the EWMA- X control chart in the presence of measurement error for different values of η, δ, n, B = 1, m = 1
n=3

δ  η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.1  (146.3, 130.4) (147.1, 131.2)  (149.6, 133.7) (153.7, 137.8) (165.8, 150.0) (208.2, 192.7)

0.2 (56.4, 42.0) (56.9, 42.4) (58.1, 43.6) (60.2, 45.5) (66.6, 51.7) (93.4, 77.8)

0.3 (31.0, 19.0) (31.2, 19.2) (31.9, 19.8) (33.0, 20.7) (36.5, 23.7) (51.7, 37.6)

0.5 (14.9, 8.1) (15.0, 8.1) (15.3, 8.3) (15.8, 8.7) (17.5, 9.7) (24.6, 14.0)

0.7 (9.0, 4.6) (9.1, 4.7) (9.3, 4.8) (9.6, 5.0) (10.6, 5.6) (15.1, 8.2)

1.0 (5.2, 2.5) (5.3, 2.6) (5.4, 2.6) (5.6, 2.7) (6.2, 3.1) (8.8, 4.6)

1.5 (2.8, 1.3) (2.9, 1.3) (2.9, 1.4) (3.0, 1.4) (3.4, 1.6) (4.8, 2.3)

2.0 (1.8, 0.9) (1.8, 0.9) (1.9, 0.9) (1.9, 1.0) (2.2, 1.0) (3.1, 1.4)

n=5
δ  η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.1 (110.5, 94.6) (111.2, 95.4) (113.4, 97.5) (116.9, 101.1) (127.6, 111.7) (167.8, 152.0)

0.2  (40.5, 27.3)  (40.8, 27.5)  (41.7, 28.3)  (43.1, 29.7)  (47.8, 33.9)  (67.7, 52.7)

0.3 (22.6, 12.8)  (22.7, 12.9)  (23.2, 13.2)  (24.0, 13.7)  (26.4, 15.2) (37.1, 24.3)

0.5  (10.6, 5.6)  (10.7, 5.6)  (11.0, 5.8)  (11.4, 6.0) (12.6, 6.7)  (17.8, 9.8)

0.7  (6.4, 3.2)  (6.5, 3.2) (6.6, 3.3)  (6.8, 3.4)  (7.6, 3.8)  (10.8, 5.7)

1.0  (3.7, 1.7)  (3.8, 1.8) (3.8, 1.8) (4.0, 1.9) (4.4, 2.1)  (6.3, 3.1)

1.5 (2.0, 1.0) (2.0, 1.0) (2.1, 1.0) (2.1, 1.0)  (2.4, 1.1) (3.4, 1.6)

2.0 (1.3, 0.6) (1.3, 0.6) (1.3, 0.6) (1.4, 0.6)  (1.5, 0.7) (2.2, 1.1)

n=7
δ  η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.1  (89.3, 73.7) (89.9, 74.4) (91.8, 76.2) (94.9, 79.2) (104.2, 88.4) (140.8, 124.9)

0.2  (32.2, 20.1) (32.5, 20.3) (33.2, 20.9) (34.3, 21.9) (38.0, 25.0) (53.8, 39.5)

0.3  (18.0, 10.0) (18.2, 10.1) (18.6, 10.3)  (19.2, 10.7) (21.2, 11.9) (29.6, 17.8)

0.5 (8.4, 4.3) (8.5, 4.4) (8.7, 4.5) (9.0, 4.6) (10.0, 5.2) (14.2, 7.7)

0.7 (5.1, 2.5) (5.1, 2.5) (5.2, 2.5) (5.4, 2.6) (6.0, 3.0) (8.6, 4.4)

1.0 (3.0, 1.4) (3.0, 1.4) (3.0, 1.4) (3.2, 1.5) (3.5, 1.6) (5.0, 2.4)

1.5 (1.6, 0.8) (1.6, 0.8) (1.6, 0.8) (1.7, 0.8) (1.9, 0.9) (2.7, 1.3)

2.0 (1.1, 0.3) (1.1, 0.3) (1.1, 0.3) (1.1, 0.4) (1.2, 0.5) (1.7, 0.8)

n=9
δ  η = 0 η = 0.1 η = 0.2 η = 0.3 η = 0.5 η = 1

0.1 (75.4, 60.1) (75.9, 60.7) (77.5, 62.2) (80.2, 64.8) (88.5, 72.9) (121.6, 105.7)

0.2 (27.2, 15.9) (27.4, 16.0) (28.0, 16.5) (28.9, 17.3) (31.9, 19.8) (45.1, 31.5)

0.3 (15.2, 8.3) (15.3, 8.3) (15.6, 8.5) (16.2, 8.9) (17.9, 9.9) (25.0, 14.3)

0.5 (7.0, 3.5) (7.1, 3.6) (7.3, 3.7) (7.5, 3.8) (8.3, 4.3) (11.9, 6.3)

0.7 (4.2, 2.0) (4.3, 2.0) (4.4, 2.1) (4.5, 2.2) (5.0, 2.4) (7.2, 3.6)

1.0 (2.5, 1.2) (2.5, 1.2) (2.5, 1.2) (2.6, 1.2) (2.9, 1.4) (4.2, 2.0)

1.5 (1.3, 0.6) (1.3, 0.6) (1.3, 0.6) (1.4, 0.6) (1.5, 0.8) (2.2, 1.1)

2.0 (1.0, 0.2) (1.0, 0.2) (1.0, 0.2) (1.0, 0.2) (1.1, 0.3) (1.4, 0.7)

The obtained results show that, given the value of n, δ, m = 1 and B = 1, the smaller the precision error ratio η, 
the faster the control chart in the detection of the out-of-control condition, demonstrating the negative effect of the 
measurement error on the EWMA- X ’s performance. For instance, when n = 5, B = 1, m = 1 and δ = 0.2, we have ARL= 
40.5 and SDRL=27.3 for η = 0 (process is free of measurement error) and ARL = 41.7 and SDRL = 28.3 for η = 0.2 (see 
Table 3).
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Table 4. ARL and SDRL values of the EWMA- X control chart in the presence of measurement error for different values 
of B, δ, n, η = 0.28, m = 1

n=3
δ B = 1 B = 2 B = 3 B = 4 B = 5

0.1  (152.8, 136.9) (147.9, 132.0) (147.0, 131.1) (146.7, 130.8)  (146.5, 130.6)

0.2  (59.7, 45.1)  (57.3, 42.8) (56.8, 42.3)  (56.6, 42.2)  (56.6, 42.1)

0.3 (32.8, 20.5)  (31.5, 19.4)  (31.2, 19.2) (31.1, 19.1)  (31.1, 19.1)

0.5 (15.7, 8.6) (15.1, 8.2) (15.0, 8.1) (14.9, 8.1) (14.9, 8.1)

0.7  (9.5, 4.9) (9.1, 4.7) (9.0, 4.7) (9.0, 4.7) (9.0, 4.6)

1.0 (5.5, 2.7)  (5.3, 2.6)  (5.3, 2.6)  (5.3, 2.6) (5.2, 2.5)

1.5 (3.0, 1.4) (2.9, 1.3)  (2.9, 1.3) (2.9, 1.3) (2.8, 1.3)

2.0 (1.9, 0.9) (1.8, 0.9)  (1.8, 0.9)  (1.8, 0.9) (1.8, 0.9)

n=5
δ B = 1 B = 2 B = 3 B = 4 B = 5

0.1 (116.1, 100.2) (111.9, 96.1)  (111.1, 95.3) (110.8, 95.0) (110.7, 94.9)

0.2 (42.8, 29.4) (41.0, 27.8) (40.7, 27.5) (40.6, 27.4) (40.6, 27.4)

0.3 (23.8, 13.6) (22.9, 13.0) (22.7, 12.9) (22.6, 12.8) (22.6, 12.8)

0.5 (11.3, 5.9) (10.8, 5.7) (10.7, 5.6) (10.7, 5.6) (10.7, 5.6)

0.7 (6.8, 3.4) (6.5, 3.2) (6.4, 3.2) (6.4, 3.2) (6.4, 3.2)

1.0 (3.9, 1.9) (3.8, 1.8) (3.8, 1.8) (3.7, 1.8) (3.7, 1.8)

1.5 (2.1, 1.0) (2.0, 1.0) (2.0, 1.0) (2.0, 1.0) (2.0, 1.0)

2.0 (1.4, 0.6) (1.3, 0.6) (1.3, 0.6) (1.3, 0.6) (1.3, 0.6)

n=7
δ  B = 1 B = 2 B = 2 B = 4 B = 5

0.1 (94.2, 78.5)  (90.5, 74.9)  (89.9, 74.3) (89.6, 74.0) (89.5, 73.9)

0.2 (34.1, 21.6) (32.7, 20.5)  (32.5, 20.2) (32.4, 20.2) (32.3, 20.1)

0.3 (19.0, 10.6) (18.3, 10.2) (18.1, 10.1) (18.1, 10.0) (18.1, 10.0)

0.5 (8.9, 4.6) (8.6, 4.4) (8.5, 4.4) (8.5, 4.3) (8.4, 4.3)

0.7 (5.4, 2.6) (5.1, 2.5) (5.1, 2.5) (5.1, 2.5) (5.1, 2.5)

1.0 (3.1, 1.4) (3.0, 1.4) (3.0, 1.4) (3.0, 1.4) (3.0, 1.4)

1.5 (1.7, 0.8) (1.6, 0.8)  (1.6, 0.8) (1.6, 0.8) (1.6, 0.8)

2.0 (1.1, 0.4) (1.1, 0.3)  (1.1, 0.3) (1.1, 0.3) (1.1, 0.3)

n=9
δ  B = 1 B = 2 B = 3 B = 4 B = 5

0.1  (79.6, 64.2) (76.4, 61.2) (75.8, 60.6) (75.6, 60.4) (75.5, 60.3)

0.2 (28.7, 17.1) (27.6, 16.2) (27.4, 16.0) (27.3, 15.9) (27.3, 15.9)

0.3 (16.0, 8.8) (15.4, 8.4) (15.3, 8.3) (15.2, 8.3) (15.2, 8.3)

0.5 (7.5, 3.8) (7.1, 3.6) (7.1, 3.6) (7.1, 3.6) (7.1, 3.6)

0.7 (4.5, 2.1) (4.3, 2.0) (4.3, 2.0) (4.2, 2.0) (4.2, 2.0)

1.0 (2.6, 1.2) (2.5, 1.2) (2.5, 1.2) (2.5, 1.2) (2.5, 1.2)

1.5 (1.4, 0.6) (1.3, 0.6) (1.3, 0.6) (1.3, 0.6) (1.3, 0.6)

2.0 (1.0, 0.2) (1.0, 0.2) (1.0, 0.2) (1.0, 0.2) (1.0, 0.2)

Table 4 presents the performance of the EWMA- X chart with linear covariate error model under the effect of B ∈ {1, 2, 
3, 4, 5} for η = 0.28 and m = 1 and different combinations of δ ∈  {0, 0.1, 0.2, 0.3, 0.5, 0.7, 1.0, 1.5, 2.0} and n ∈  {3, 5, 7, 9}. 
As can be seen from this table, when B increases, given n, δ, η and m, the negative effect of the measurement error on the 
performance of the EWMA- X chart decreases. For instance, when n = 5, η = 0.28, m = 1 and δ = 0.2, we have ARL = 42.8 
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and SDRL = 29.4 for B = 1 and ARL = 40.6 and SDRL = 27.4 for B = 4 (see Table 4).
In order to compensate for the effect of measurement error, Linna and Woodall [18] recommended to take multiple 

measurements per item in each sample.

Table 5. ARL and SDRL values of the EWMA- X control chart in the presence of measurement error for different values of 
m, δ, n, η = 0.28, B = 1

n=3
δ m = 1 m = 3 m = 5 m = 7 m = 10

0.1 (152.8, 136.9) (148.5, 132.6) (147.6, 131.7) (147.2, 131.3) (146.9, 131.0)

0.2 (59.7, 45.1) (57.5, 43.0) (57.1, 42.6) (56.9, 42.4) (56.8, 42.3)

0.3 (32.8, 20.5) (31.6, 19.5) (31.4, 19.3) (31.3, 19.2) (31.2, 19.2)

0.5 (15.7, 8.6) (15.1, 8.2) (15.0, 8.2) (15.0, 8.1) (14.9, 8.1)

0.7 (9.5, 4.9) (9.2, 4.7) (9.1, 4.7) (9.1, 4.7) (9.0, 4.7)

1.0 (5.5, 2.7) (5.3, 2.6) (5.3, 2.6) (5.3, 2.6) (5.3, 2.6)

1.5 (3.0, 1.4) (2.9, 1.3) (2.9, 1.3) (2.9, 1.3) (2.9, 1.3)

2.0 (1.9, 0.9) (1.9, 0.9) (1.8, 0.9) (1.8, 0.9) (1.8, 0.9)

n=5
δ m = 1 m = 3 m = 5 m = 7 m = 10

0.1  (116.1, 100.2) (112.4, 96.5) (111.6, 95.8) (111.3, 95.5) (111.1, 95.2)

0.2 (42.8, 29.4) (41.2, 28.0) (40.9, 27.7) (40.8, 27.6) (40.7, 27.5)

0.3 (23.8, 13.6) (23.0, 13.0) (22.8, 12.9) (22.7, 12.9) (22.7, 12.9)

0.5 (11.3, 5.9) (10.9, 5.7) (10.8, 5.7) (10.7, 5.6) (10.7, 5.6)

0.7 (6.8, 3.4) (6.5, 3.3) (6.5, 3.2) (6.5, 3.2) (6.4, 3.2)

1.0 (3.9, 1.9) (3.8, 1.8) (3.8, 1.8) (3.8, 1.8) (3.8, 1.8)

1.5 (2.1, 1.0) (2.1, 1.0) (2.1, 1.0) (2.1, 1.0) (2.1, 1.0)

2.0 (1.4, 0.6) (1.3, 0.6) (1.3, 0.6) (1.3, 0.6) (1.3, 0.6)

n=7
δ  m = 1 m = 3 m = 5 m = 7 m = 10

0.1  (94.2, 78.5) (91.0, 75.3) (90.3, 74.7) (90.0, 74.4) (89.8, 74.2)

0.2 (34.1, 21.6) (32.9, 20.6) (32.6, 20.4) (32.5, 20.3) (32.4, 20.2)

0.3 (19.0, 10.6) (18.4, 10.2) (18.2, 10.1) (18.2, 10.1) (18.1, 10.1)

0.5 (8.9, 4.6) (8.6, 4.4) (8.5, 4.4) (8.5, 4.4) (8.5, 4.3)

0.7 (5.4, 2.6) (5.2, 2.5) (5.1, 2.5) (5.1, 2.5) (5.1, 2.5)

1.0 (3.1, 1.4) (3.0, 1.4) (3.0, 1.4) (3.0, 1.4) (3.0, 1.4)

1.5 (1.7, 0.8) (1.6, 0.8) (1.6, 0.8) (1.6, 0.8) (1.6, 0.8)

2.0 (1.1, 0.4) (1.1, 0.3) (1.1, 0.3) (1.1, 0.3) (1.1, 0.3)

n=9
δ  m = 1 m = 3 m = 5 m = 7 m = 10

0.1 (79.6, 64.2) (76.8, 61.5) (76.2, 61.0) (76.0, 60.7) (75.8, 60.5)

0.2 (28.7, 17.1) (27.7, 16.3) (27.5, 16.1) (27.4, 16.0) (27.4, 16.0)

0.3 (16.0, 8.8) (15.4, 8.4) (15.3, 8.4) (15.3, 8.3) (15.2, 8.3)

0.5 (7.5, 3.8) (7.2, 3.6) (7.1, 3.6) (7.1, 3.6) (7.1, 3.6)

0.7 (4.5, 2.1) (4.3, 2.1) (4.3, 2.0) (4.3, 2.0) (4.3, 2.0)

1.0 (2.6, 1.2) (2.5, 1.2) (2.5, 1.2) (2.5, 1.2) (2.5, 1.2)

1.5 (1.4, 0.6) (1.3, 0.6) (1.3, 0.6) (1.3, 0.6) (1.3, 0.6)

2.0 (1.0, 0.2) (1.0, 0.2) (1.0, 0.2) (1.0, 0.2) (1.0, 0.2)
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In this study, we suppose that the number m of multiple measurement per item takes the values in {1, 3, 5, 7, 10}. 
Table 5 demonstrates the effect of m on the values of ARL for the case η = 0.28, B = 1, n ∈  {3, 5, 7, 9} and δ ∈  {0, 0.1, 0.2, 
0.3, 0.5, 0.7, 1.0, 1.5, 2.0}. The obtained results show that when m increases, both ARL and SDRL decrease, demonstrating 
the positive effect of the number of repeated measurements m per item on the EWMA- X chart’s performance. For 
instance, when n = 5, η = 0.28 and δ = 0.2, we have ARL = 42.8 and SDRL = 29.4 for m = 1 and ARL = 40.9 and SDRL = 
27.7 for m = 5 (see Table 5).

In practice, the quality practitioners often have the interest to detect a range of shifts δ ∈  Ω = [a, b], but no preference 
for any particular size of the process shift, the use of the uniform distribution has been proposed to account for the 
unknown shift size in several papers (for instance, see [9, 8] ) and the statistical performance of the corresponding chart can 
be evaluated through the EARL (Expected Average Run Length) defined as

( )EARL ARL f dδ δ δ
Ω

= ×∫                       ,                                                                                  (22)

with ( ) 1f
b aδ δ =
−  for δ ∈  Ω = [a, b] and ARL is defined as in (18). In the following section, we will consider the specific 

range of shifts Ω = [0.1, 2]. 

The values of EARL of the EWMA- X chart with measurement error are plotted in Figure 1, for different combinations 
of measure precision error ratio η ∈ [0, 1], Ω = [0.1, 2], n ∈  {3, 5, 7, 9}, m ∈  {1, 5} and B = 1.

    
 
 
 
 

Figure 1. The effect of η on the overall performance of the EWMA- X control chart in the presence of measurement error for r n = 3 (-□�-) , 
n = 5 (-■-), n = 7 (--), n = 9 (-•-), ARL0 = 370.4, B = 1, m ∈ {1, 5, }, Ω = [0.1, 2] 

The EARL values in Figure 1 show a similar tendency as for the deterministic shift size results discussed above. When 
the precision error ratio η increases, the overall performance of the EWMA- X chart deteriorates. For instance, when n = 
3, B = 1 and m = 1, we have EARL = 18.02 for η = 0 (process is free of measurement error) and EARL = 18.46 for η = 0.2 
(see Figure 1). Furthermore, with m = 5, the values of EARL in presence of measurement error are approximately the same 
as the values of EARL without measurement error(i.e. η = 0) when η ≤ 0.28. For example, when n = 3, B = 1 and m = 5, we 
have EARL = 18.02 for η = 0 (process is free of measurement error) and EARL = 18.10 for η = 0.2 (see Figure 1). We can 
conclude that the precision error does not significantly affect the overall performance of the EWMA- X control chart for 
the usual levels of accuracy error provided by calibrated gauges for the case of m = 5 measurements per item.

Figure 2 displays the effect of B on the values of EARL of the EWMA- X chart with measurement error for different 
combinations of B ∈  [1, 5], Ω = [0.1, 2], n ∈  {3, 5, 7, 9}, m ∈  {1, 5} and η = 0.28. Similar to the case of deterministic 
shift size, an increase of the coefficient B in the linear covariate model can reduce the negative effect of measurement 
errors on the overall performance of EWMA- X chart. For instance, when n = 3, η = 0.28, m = 1, we have EARL = 18.87 
for B = 1 and EARL = 18.07 for B = 4 (see Figure 3).
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Figure 2. The effect of B on the overall performance of the EWMA- X control chart in the presence of measurement error for n = 3 (-□�-), 
n = 5 (-■-), n = 7 (--), n = 9 (-•-), ARL0 = 370.4, B = 1, m ∈ {1, 5, }, Ω = [0.1, 2]

Finally, the effect of multiple measurements on the EWMA- X chart performance is presented in Figure 3 for different 
combinations of m ∈  {1, 3, 5, 7, 10}, n ∈  {1, 3, 5, 7}, B = 1, Ω = [0.1, 2] and η = 0.28. When m increases, the values of 
EARL decrease slightly. For example, when n = 3, η = 0.28, we have EARL = 18.31 for m = 3 and EARL = 18.10 for m 
= 10 (see Figure 3). These findings in Figure 3 allow to reaffirm that, taking multiple measurements per item is a good 
strategy to compensate for the effect of measurement error.

Figure 3. The effect of m on the overall performance of the EWMA- X control chart in the presence of measurement error for n = 3 (-□�-), 
n = 5 (-■-), n = 7 (--), n = 9 (-•-), ARL0 = 370.4, η = 0.28, η = 0.28, Ω = [0.1, 2]

5. Illustrative example
To illustrate the use of the EWMA- X chart in the presence of measurement error, let us consider a production 

process of 500ml milk bottles where the quality characteristic X of interest is the weight (in ml) of each bottle. The 
context of the example presented here is similar to the one introduced in [6]. We assume that from a Phase I dataset, the 
following quantities have been estimated: µ0 = 500.023 and σ0 = 0.9616. According to the quality practitioner in charge 
of this process, a shift of 0.5σ0 (i.e. δ = 0.5) in the mean should be interpreted as a signal that something is going wrong 
in the production. For each subgroup, the sample size has been chosen to be n = 5. Concerning the parameters of the two-
component two-component measure-ment error, we assume η = 0.28, B = 1, m = 1. We have the optimal chart parameters 
for the EWMA- X chart are K = 0.1197 and λ = 0.3716.

Based on (10), the control limits of the EWMA- X control chart with measurement error are equal to:

( )22500.023 0.1197 0.9616 0.9616 0.28 499.6649LCL = − × + × =  ,

( )22500.023 0.1197 0.9616 0.9616 0.28 500.3811LCL = + × + × =                                                                                                         .
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A Phase II dataset presented in Table 6. The first 10 subgroups are supposed to be in-control while the last 10 
subgroups are supposed to have a lower milk weight, and thus, to be out-of-control. The corresponding sample median 
values *

i
X and the EWMA sequence *

iZ are presented in the two last columns of Table 6 and plotted in Figure 4, respectively. 
This figure confirms that from sample #13 onward, the process is out-of-control.

Table 6. Illustrative example Phase II datasetx

   
*
,i jX    *

i
X    *

iZ
1 500.46 498.99 500.22 500.41 498.96 500.22 500.047
2 500.06 500.20 499.31 501.07 499.57 500.06 500.048
3 498.82 501.55 499.48 499.20 501.56 499.48 499.980
4 502.64 502.86 500.06 499.08 500.72 500.72 500.069
5 500.06 500.03 500.09 498.88 497.64 500.03 500.064
6 500.50 499.54 499.02 498.09 499.87 499.54 500.001
7 498.89 500.20 501.10 502.01 500.99 500.99 500.120
8 500.37 499.28 500.15 500.87 500.88 500.37 500.150
9 499.81 500.62 500.68 500.67 500.00 500.62 500.206
10 499.79 499.87 500.98 499.12 500.79 499.87 500.166
11 500.28 500.47 500.26 498.60 500.65 500.28 500.179
12 501.00 500.38 500.06 500.81 502.22 500.81 500.255
13 499.92 500.13 501.46 502.29 502.78 501.46 500.399
14 501.22 499.22 500.68 499.81 502.41 500.68 500.490
15 500.68 501.93 499.55 502.51 500.91 500.91 500.490
16 500.45 502.10 502.11 499.35 497.52 500.45 500.485
17 500.51 498.56 498.87 501.05 500.52 500.51 500.488
18 500.94 500.20 500.80 501.36 499.23 500.80 500.525
19 500.15 500.29 500.83 499.91 498.93 500.15 500.480
20 501.14 500.51 499.92 499.28 499.52 499.92 500.413

 
        
       

Figure 4. EWMA- X control chart in the presence of measurement errorcorresponding to the Phase II data set in Table 6.

6. Conclusions
In this paper, we have corrected the distribution of the sample median used in [10] and then studied the effect of 

measurement error on the performance of the EWMA- X control chart using a linear covariate error model. We have 
evaluated the overall performance of the EWMA- X control using the ARL, SDLR and EARL as performance metrics by 
using the Markov Chain-based approach proposed in [3]. Numerical results show that measurement error greatly affect the 
EWMA- X chart’s performance compared to the no measurement error case. With the precision error ratio increasing, the 
values of λ* and K* decrease and the performance of the EWMA- X chart deteriorates. As a result, increasing the coefficient 
B in the linear covariate error model can reduce the negative effect of measurement error on the EWMA- X chart. In order 
to compensate for the effect of measurement error on the EWMA- X chart’s performance, measuring each item several 
times is necessary, but increasing at the same time the cost of control. Future research about X  control charts should be 
focused on the extension to Run Rules type charts, on studying the effect of the parameters estimation on the Run Rules X  
type charts statistical properties.
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