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Abstract: Construction risk management has evolved significantly by integrating artificial intelligence (AI) 
technologies, particularly machine learning (ML), to enhance predictive capabilities. Transfer learning (TL), a 
promising subfield of ML, has the potential to further revolutionize construction safety by enabling models trained in 
one domain to be adapted for related tasks in construction risk scenarios. This systematic review explores the current 
trends in applying TL to construction risk management, identifies key challenges, and highlights future opportunities 
for advancement. The review first assesses TL’s ability to mitigate common issues such as data scarcity, overfitting, and 
lengthy model training times, which often hinder traditional ML approaches. Key challenges include the complexity of 
domain adaptation, the lack of standardized datasets, and the need for robust validation methods. Despite these barriers, 
the potential for TL to improve predictive accuracy, efficiency, and cross-project learning makes it a transformative tool. 
Finally, future research directions are proposed to optimize TL techniques for real-time, intelligent construction risk 
management systems.
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1. Introduction
In construction projects’ complex and hazardous environments, effective risk management is critical to 

safeguarding workers, minimizing financial losses, and ensuring projects are completed on time [1]. Traditional 
construction risk management methods have evolved significantly with the advent of artificial intelligence (AI) 
technologies, particularly machine learning (ML), providing advanced capabilities for identifying, assessing, and 
mitigating risks [2]. However, one of the main limitations of traditional ML models is their reliance on large datasets 
specific to their application domain [3]. In the construction industry, collecting enough data to train robust models can 
be challenging due to the fragmented nature of the industry, the variability of projects, and the unique risk factors that 
can arise at different sites [4]. As a result, machine learning models often encounter problems such as overfitting, poor 
cross-project generalization, and long training times [5]. In response to these limitations, transfer learning (TL) has 
emerged as a powerful tool to improve the performance of machine learning models in construction risk management 
by transferring knowledge gained from one domain to another [6]. As shown in Figure 1, it is a subfield of machine 
learning that focuses on exploiting pre-trained models from one task or domain and applying them to related tasks, 
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usually with less training data. The main advantage of TL is that it reduces the need for large domain-specific datasets, 
which are often difficult to obtain in the construction field. By leveraging relevant domain knowledge, TL can speed 
up the development of predictive models while improving their accuracy and robustness across different projects [7]. 
Applying knowledge already available in related domains (e.g., civil engineering, safety engineering, or even industrial 
processes in general) is significant in construction risk management [8]. Construction projects are highly variable, with 
different risks associated with location, project type, and level of stakeholder involvement [9]. Traditional ML models 
often require significant retraining or customization to accommodate these differences, leading to inefficiency and 
reduced applicability [10].
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Train TrainTrain
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CNN ontology 
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Figure 1. The principle of transfer learning

Increasing attention has been paid to TL’s ability to utilize knowledge already available in related fields. For 
example, Choi et al. [11] used a migration learning-based object detection model, where the model’s performance was 
improved by data augmentation and migration learning despite the limited training data available. Zhao et al. [12] 
trained a special dataset by labelling helmets and colored vests to detect these two features among construction workers. 
Specifically, Kalman filtering and Hungarian matching algorithms track pedestrian trajectories. The test experiments 
were run on an NVIDIA GeForce GTX 1080Ti with a detection rate of 18 frames/second. When the parallel set 
intersection is set to 0.5, an average accuracy of 0.89 can be achieved. However, it has not been fully explored for 
specific applications in the construction industry. Therefore, we provide a systematic review of the application of TL 
in construction risk management, identifying the trends, challenges, and future potential of this emerging approach. 
Previous reviews of AI and machine learning integration in the construction industry have focused on broader 
applications such as automation, process optimization, and general safety enhancements [13]. While these studies 
have provided valuable insights into the potential of AI technologies in the construction industry, they have typically 
viewed risk management as one component among many [14]. In addition, most reviews center on traditional ML 
techniques, where each model is trained from scratch using project-specific data [15, 16]. While effective in controlled 
environments, this approach does not fully address the unique challenges of the construction industry, where data 
availability, inter-project variability, and the need for real-time risk assessment pose significant barriers. This review 
differs in focusing specifically on transfer learning and its potential to address these challenges in construction risk 
management. The paper synthesizes the latest research on TL in construction risk management, provides a more focused 
discussion of the strengths and limitations of transfer learning, and offers practical insights on how to implement it 
effectively. In addition, this review critically analyzed the most prominent challenges faced in applying TL in the 
construction domain, such as the need for domain adaptation, the lack of standardized datasets, and the complexity of 
validating migration models. This depth and specificity are lacking in previous AI-based reviews, making this paper a 
new contribution to the field.

The remaining sections of this study are as follows: Section 2 describes the research framework and methodology, 
Section 3 describes the results, Section 4 discusses future directions for improvement, and Section 5 concludes the 
research and points out the study’s limitations.
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2. Method
This systematic review follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

(PRISMA) protocol to ensure a transparent and comprehensive approach [17]. Adherence to the PRISMA protocol 
ensures a transparent and reproducible systematic review process, making research results more reliable and scientific. It 
helps standardize the process of screening, evaluating, and reporting literature, reducing bias and improving the quality 
of research [18]. The review begins with a structured literature search across multiple academic databases, including 
Web of Science, Scopus, and IEEE Xplore, to identify relevant studies published between 2015 and 2024. Search 
keywords “Transfer Learning” and “Construction Risk” were used to retrieve pertinent studies.
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Figure 2. Research flowchart

In line with the PRISMA framework, the search process was documented and visualized in a flow diagram (Figure 
2), highlighting the identification, screening, eligibility, and inclusion stages. After removing duplicates, articles were 
screened based on title and abstract and assessed in full-text form against predefined inclusion criteria. These criteria 
included relevance to the construction risk domain, the use of transfer learning methodologies, and empirical evidence 
of practical applications. Studies that lacked sufficient methodological detail or focused solely on theoretical aspects 
without application were excluded. A final pool of papers (n = 43) was selected for systematic review and qualitative 
analysis.

3. Results
3.1 Overview of transfer learning

The techniques used in transfer learning can be categorized into the following four classes: instance-based transfer 
learning, mapping-based transfer learning, network-based transfer learning, and adversarial-based transfer learning. 
Table 1 summarizes the main methods of deep transfer learning in terms of instances, mapping, network structure, and 
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adversarial learning according to the different transfer learning techniques. Each type of method has a different focus 
and is suitable for various application scenarios.

Table 1. Classification of transfer learning

Types Description. Technical methods Application scenarios

Example-based 
transfer learning

Adjusting the weights or selective use of source 
domain samples to fit the target domain by 

weighing or selecting source domain instances 
and using them directly for target domain 

learning.

Sample reweighting, important 
sampling, and other methods.

Applicable to cases where the data 
distribution of the source and target domains 
are different, but the tasks are similar, such as 
text categorization, image recognition, and so 

on [19].

Mapping-based 
transfer learning

Mapping data from source and target 
domains to a shared feature space reduces 

their distributional differences and facilitates 
knowledge migration.

Adversarial feature learning, 
maximum mean difference 

(MMD) optimization, principal 
component analysis (PCA), etc.

Applicable to cases where the feature spaces 
of the source and target domains are different, 

but a common feature space can be found, 
such as image classification, sentiment 

analysis, etc [20].

Network-based 
transfer learning

Applying pre-trained neural network models 
(e.g., conv olutional neural networks) to the 

target task and migrating some or all network 
parameters to accelerate target task learning.

Fine-tuning (Fine-tuning), 
freezing layer weights, cross-layer 

weight sharing, etc.

Applicable to scenarios where the source 
and target domain tasks are similar, but the 

data are different, such as image recognition, 
natural language processing, and other tasks 

[21].

Adversarial-based 
transfer learning

Introduce an adversarial loss function to 
enhance the model’s generalization ability. 

This will enable the model to learn the target 
task while counteracting the difference in data 

distribution between the source and target 
domains.

Adversarial Generative Networks 
(GAN), Domain Adversarial 
Neural Networks (DANN), 

Adversarial Loss Optimization, 
etc.

Applicable to scenarios where the source and 
target domains have significant distributional 

differences but want to maintain high 
robustness and generalization ability, such 

as cross-domain image recognition and style 
migration [22].

3.1.1 Example-based transfer learning

Example-based transfer learning refers to selecting some instances from the source domain by using a specific 
weight-tuning strategy and assigning appropriate weight values as a complement to the training set of the target domain 
[23]. The method assumes that “although there are differences between the two domains, some of the instances in the 
source domain can be utilized by the target domain using appropriate weights.” A schematic of example-based transfer 
learning is shown in Figure 3.

Source domain Target domain

Figure 3. Schematic of example-based transfer learning

Instances with light blue meanings in the source domain that differ from the target domain are excluded from the 
training dataset; instances with dark blue colors in the source domain that have similar meanings to the target domain 
are included in the training dataset with appropriate weights. It migrates instances from the source domain directly to 
the target domain for training, usually requiring rebellion or filtering techniques to select cases like the target domain [24]. 
This type of transfer learning is one of the most intuitive and widely used methods. Instance, selection transfer learning, 
selects instances like the target domain for migration by selecting cases from the source domain to avoid migrating 
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unwanted instances. This approach reduces data overfitting and increases the model’s generalization ability. Adaptive 
transfer learning selects the most appropriate migration instances by adaptively selecting source and target domain data 
to improve migration effectiveness [25]. This approach is typically used with other migration learning methods, such as 
feature extraction or mapping construction.

3.1.2 Mapping-based transfer learning

Mapping-based transfer learning refers to mapping instances in the source and target domains into a new data space 
[26]. In this latest data space, instances from both domains are similar and fit into a joint neural network. The underlying 
assumption is that “although there are differences between the original two domains, they can be more similar in a well-
designed new data space”. A schematic of mapping-based transfer learning is shown in Figure 4.

Concurrently, the mapping of instances from the source and target domains to the new data space exhibits 
a greater degree of similarity. The most recent data space is employed as the training set for the neural network, 
comprising all instances within that space. Migration learning establishes a mapping between the source and target 
domains by reconstructing the source and target domains’ feature representations, thereby facilitating the training 
of the target domain’s model [27]. The mapping thus enables a more nuanced comprehension of the similarities and 
differences between the source and target domains by the target domain model. Maximum Likelihood Estimation-
based Mapping Migration Learning employs a maximum likelihood estimation method to estimate the mapping 
between the distributions of the source and target domains, thereby assisting the training of a target domain model 
[28]. This approach is predicated on assuming that the data distributions between the source and target domains exhibit 
some similar or probabilistic relationship. Adaptive Mapping Migration Learning is a method that establishes the 
most appropriate mapping by adaptively selecting the data in the source and target domains to improve migration. 
This approach is typically employed with other migration learning methods, such as neural networks or adversarial 
generative networks.

Source domain

Target domain

New data space

Mapping

Figure 4. Schematic of mapping-based transfer learning

3.1.3 Network-based transfer learning

Network-based transfer learning refers to reusing part of a network that has been pre-trained in the source domain, 
including its network structure and connection parameters, and migrating it as part of a deep neural network used in the 
target domain [29]. It assumes that “neural networks are like the processing mechanism of the human brain, which is 
an iterative and continuous abstraction process. The network’s front layer can be considered a feature extractor, and the 
extracted features are generalizable”. A schematic of network-based transfer learning can be seen in Figure 5.

A comprehensive training data set initially facilitates the network’s development within the source domain. 
Secondly, a proportion of the network pre-trained for the source domain is transferred to a proportion of a new network 
designed for the target domain. Subsequently, the transferred sub-networks may be updated by implementing a fine-
tuning strategy. Neural network-based mapping and migration learning: the utilization of neural networks enables 
the creation of a mapping between the source and target domains, thereby facilitating the training of a model for the 
target domain [30]. This approach typically employs a pre-trained neural network as a feature extractor or encoder to 
map data from the source domain to the data space of the target domain. Feature extraction-based mapping migration 
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learning establishes a mapping between the source and target domains by using a neural network to extract feature 
representations of the source and target domains, thereby aiding the training of models in the target domain [31]. 
This approach typically employs a pre-trained neural network as a feature extractor, whereby high-level feature 
representations are extracted from instances of the source domain and subsequently applied to model training in the 
target domain. Adaptive Neural Network Migration Learning is a method that builds the most appropriate neural 
network by adaptively selecting source and target domain data to improve the migration effect. This approach is 
frequently employed with other migration learning techniques, such as Adversarial Generative Networks or Minimizing 
Reconstruction Error.

Source domain

Target domain

Transfer learning

Figure 5. Schematic diagram of web-based transfer learning

3.1.4 Adversarial-based transfer learning

Adversarial-based transfer learning refers to the introduction of Generative Adversarial Network (GAN)-inspired 
adversarial techniques to find transferable representations that apply to both the source and target domains [32]. This 
assumes that “for effective transfer, a good representation should be discriminative for the main learning task and not 
differentiated between the source and target domains”. A schematic of adversarial-based transfer learning is shown in 
Figure 6.

In the context of training large-scale datasets in the source domain, the initial layers of the network are employed as 
feature extractors to extract features from both domains and subsequently feed them into the adversarial layer [33]. The 
adversarial layer is tasked with distinguishing between the sources of the features. A decline in the performance of the 
adversarial network indicates a reduction in the distinction between the two types of features, which suggests enhanced 
migration potential [34]. Conversely, improving the adversarial network’s performance implies a more significant 
divergence between the feature types, thereby indicating superior migration ability. Subsequently, the adversarial layer’s 
performance will be considered to prompt the migration network to identify more generic migratory features.
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Figure 6. Schematic diagram of adversarial-based transfer learning

3.2 Application of transfer learning

Transfer learning in construction risk management covers various areas, including computer vision, natural 
language processing, speech recognition, recommender systems, and drone/robot navigation [35]. By migrating 
knowledge from historical projects, these techniques can improve the efficiency of construction risk identification and 
management, helping engineering teams better cope with risks such as safety hazards, quality issues, cost overruns, etc., 
and providing vital support for successful project implementation [36]. Table 2 summarizes 12 studies typical of the last 
five years.

Table 2. Status of the application of transfer learning in intelligent construction risk

Ref. Type Model Contribution Limitation

[6] Mapping-based transfer 
learning

Hybrid deep neural 
networks (MTCNN, 
MobileNet, LSTM)

Save personal image 
information of construction 

workers.

1. Failure to integrate positional data, biosignals, and motion 
data.

2. Insufficient data set size.

[37] Example-based transfer 
learning

Convolutional neural 
network (CNN)

Safety guardrail detection in 
2D images.

1. Unresolved masking issue, assuming that the guardrail is 
always visible.

[38] Example-based transfer 
learning CNN Inspection of construction 

equipment.
1. The baseline data set only includes dump trucks, excavators, 

loaders, concrete mixers, and road rollers.

[39] Adversarial-based 
transfer learning

Generative 
adversarial network

Identification of unsafe lifting 
behavior of tower crane.

1. Inability to recognize different tower crane postures, 
including, for example, flathead tower cranes, jib slewing tower 

cranes, and attached tower cranes.

[40] Network-based transfer 
learning Apriori algorithm Safety risk transfer in metro 

shield construction.
1. The results of the study are only applicable to subway 

construction.

[41] Example-based transfer 
learning

Regionally Fully 
Convolutional 

Networks (R-FCN)
Automatic construction 

helmet detection.
1. Limitations in the structure of the algorithm.

2. Insufficient quality and quantity of learning data.

[42] Adversarial-based 
transfer learning Mask R-CNN Modular integrated structure 

module inspection.
1. Focus only on detecting modules from images or videos.

2. Communication strategies between camera networks are not 
investigated.

[43] Mapping-based transfer 
learning K-BERT

Generate risk response 
measures for metro 

construction.

1. The construction of the semantic knowledge base in the field 
of metro construction is in manual form.

2. Only the extraction of countermeasures in the paragraphs of 
standard specifications for subway construction was realized.

[44] Mapping-based transfer 
learning CNN

Identifying the process of 
installing modules in high-

rise modular buildings.
1. The module installation process is simply categorized into 

hooking, lifting, and positioning.

[45] Network-based transfer 
learning (LinkNet) CNN

Pixel-level identification and 
quantification of underwater 

cracks in dams.

1. Other types of structural damage such as spalling, exposed 
aggregate, and holes were not considered.

2. Temporal information between different frames was ignored.

[46] Network-based transfer 
learning (DenseNet) CNN Detection of helmet wearing 

on construction sites. 1. The types of helmets considered were limited.

[47] Example-based transfer 
learning FCN Detecting semantic regions in 

construction site images. 1. Insufficient accuracy.
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3.2.1 Computer vision

Computer vision is used in construction site risk management to monitor, detect, and recognize potential hazards. 
Transfer learning helps to apply pre-trained vision models to construction projects and improve the accuracy of 
visual recognition by migrating knowledge even if the amount of data in a new project is small. First, the pre-trained 
behavioral recognition model applies to monitor workers’ unsafe behaviors at construction sites, such as failure to wear 
protective equipment and violating safety norms. For example, Zdenek et al. [37] used migration learning to construct a 
neural network for essential feature extraction using a 16-layer Visual Geometric Group Architecture (VGG-16) model, 
obtaining a high accuracy of 96.5%. Second, Transfer learning can be applied to image recognition tasks to learn from 
equipment failure data from other projects and identify potentially problematic equipment, tools, or structural issues in 
new construction projects. For example, Hongjo et al. [38] created a benchmark dataset of five categories, dump trucks, 
excavators, loaders, concrete mixers, and rollers, by migrating knowledge from models trained in other domains with 
large amounts of training data. This benchmark dataset included a variety of shapes and poses for each category with 
an average accuracy of 96.33%. Finally, with camera surveillance, Transfer learning can help learn common safety 
hazard patterns, such as pit collapse and improper material stacking, from other projects and migrate them to real-
time monitoring of the current construction site. For example, Weiguang et al. [39] proposed a transfer learning-based 
recognition framework to identify unsafe lifting behaviors of tower cranes, precisely tilting lifting, sudden braking, and 
sudden unloading. The model architecture was developed through deep adversarial domain adaptation and achieved an 
accuracy of 76.74%.

3.2.2 Natural language processing

Natural language processing (NLP) techniques are widely used in construction risk management tasks such 
as document processing, report analysis, and information extraction. Migration learning can be learned from many 
historical projects and applied to risk identification and assessment of new projects. First, transfer learning can extract 
key risk factors from annotated construction incident reports and migrate this knowledge to new projects, helping to 
automatically analyze and generate construction risk reports and identify potential high-risk areas. For example, Transfer 
learning can analyze complex construction contracts and bidding documents to extract potential project risks and critical 
conditions, avoiding risks buried in the contract. For example, Wu et al. [40] combined text mining, association rules, 
and complex networks to investigate underground construction safety incident reports and explore the risk transfer 
process. Jin et al. [48] designed a new engineering project similarity metric algorithm (PBG-MMD) to guide the 
selection of knowledge transfer source domains by combining engineering data distance distribution and engineering 
project knowledge context. Second, learning from construction regulations and safety standards in different countries 
or regions through migration learning models automatically adapts to new regulatory environments, helping to identify 
construction practices or potential violations that do not meet local standards. Wang et al. [49] addressed the problem 
of automatically constructing a knowledge graph (KG) from unstructured documents with the help of transfer learning. 
Finally, Transfer learning can analyze complex construction contracts and bidding documents to extract potential project 
risks and critical conditions, avoiding risks buried in the contract.

3.2.3 Speech recognition

Speech recognition technology can be used to parse and communicate real-time voice commands at construction 
sites through migration learning to improve construction efficiency and safety. It is especially suitable for speech 
recognition tasks in noisy environments. First, workers usually need to communicate commands by voice at 
construction sites. Through migration learning, pre-trained speech recognition models are applied to construction 
scenarios to ensure that commands can be accurately recognized and executed under complex environmental noise, thus 
reducing construction risks caused by communication errors. For example, the model proposed by Xiong et al. [50] 
combines a convolutional neural network (CNN) to extract features and a recurrent neural network (RNN) to utilize 
contextual information to deal with construction environments with polyphony and noise. Second, transfer learning can 
be used to learn emergency response speech patterns in different scenarios from historical projects, helping to quickly 
recognize speech alarms (e.g., fire, gas leakage, etc.) on the construction site and automatically send out warning signals 
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or activate the emergency response plan. For example, Shin et al. [51] pre-trained with natural images (ImageNet) via 
self-supervised learning; subsequently, fine-tuning was performed on target audio samples. Pre-training using the self-
supervised learning scheme significantly improved sound classification performance after validation on the following 
benchmarks: ESC-50, UrbanSound8k, and GTZAN.

3.2.4 Expert system

Transfer learning helps expert systems learn the best practices from historical projects to provide project managers 
with decision support and risk alerts. First, based on the risk control measures implemented in historical projects, the 
transfer learning recommender system can recommend suitable safety management measures or risk prevention and 
control strategies for current projects. For example, Peng et al. [52] proposed a multi-source transfer learning guided 
integrated LSTM method (MTE-LSTM) for building multi-load prediction, obtaining highly accurate load prediction 
results. Secondly, migration learning can analyze the use of equipment and processes in different projects to recommend 
the most suitable equipment, materials, and construction processes for the current project, optimizing construction 
efficiency and reducing risks. For example, Anam et al. [53] used transfer learning to learn mappings from atypical to 
typical texture scales, and the gap between the transfer and pure learning approaches narrowed as the size of the training 
increased. Finally, based on project types and historical accident data, the recommendation system of migration learning 
can recommend personalized safety training content for different workers, ensuring that all personnel know about risk 
prevention and control related to their positions. For example, Sousa et al. [54] proposed a transfer learning approach 
incorporating data augmentation techniques tested under a tenfold cross-validation scheme. The proposed framework 
can utilize images from more than 35 actual fire events, providing higher variability and allowing the method to be 
evaluated in many real scenarios.

3.2.5 Other areas

In addition to the mainstream techniques described above, transfer learning is used in many other regions to 
support construction risk management. Firstly, transfer learning can be used for autonomous navigation and environment 
awareness for drones and robots, helping them to identify obstacles, risky areas, etc., in construction sites to ensure 
efficient and safe site inspections and monitoring. Yuvaraj et al. [55] used EfficientNet (TL-EN) architecture with 
transfer learning support to develop an effective crack classification model. A vision-enabled Unmanned Aerial Vehicle 
(UAV) was used to study the surface of a high-rise building, and 99% accuracy was obtained. Second, transfer learning 
allows migrating weather or geologic hazard prediction models from other regions to new projects for real-time risk 
warnings. For example, Cai et al. [56] proposed a migration learning-based early warning method for wind farm loss 
rate prediction. The neighboring wind farms are migrated to the target wind farm as the source domain to compensate 
for the lack of sample size due to extreme weather. The theoretical value calculation model and the actual value 
prediction model of wind power are given, respectively, to calculate the loss rate of wind farms under extreme weather. 
Finally, migration learning can extract valuable design and construction information from historical project BIM data 
and apply it to the current project to optimize the BIM model and help identify design flaws, construction conflicts, and 
possible risk points. For example, Wang et al. [57] applied artificial neural networks and transfer learning techniques to 
accelerate the dataset creation process and automate procedures for energy analysis in a BIM environment.

4. Discussion
4.1 The challenges of transfer learning

As indicated in Table 3, the application of transfer learning in the construction risk domain faces challenges such 
as differences in data distribution, task inconsistency, scarcity of labels, and environment complexity, which leads to 
insufficient generalization of the model to new projects. In addition, real-time requirements, data privacy and security 
issues, lack of model interpretability, and excessive consumption of computational resources limit its wide application. 
Difficulties in cross-domain knowledge transfer and insufficient data on target projects exacerbate these issues, making 
it difficult to fully utilize the effectiveness of transfer learning in construction risk management.
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Table 3. The challenges of transfer learning

ID Challenges Description Ref.

1 Label scarcity Data in the construction risk domain usually lacks precise labeling, especially in new projects, and it is 
difficult to obtain enough labeled data for migration learning. [58]

2 Task inconsistency Tasks vary significantly from one construction project to another, e.g., materials, equipment, and 
processes differ, resulting in migration learning that does not apply to new tasks. [59]

3 High real-time requirements Real-time detection and feedback are required in construction risk management, and updating and 
adjusting the migration learning model may not meet the real-time requirements. [60]

4 Environmental complexity Factors in the construction environment, such as weather, geology, equipment, etc., are complex and 
changing, and these dynamic changes can affect the migration learning model’s generalization ability. [61]

5 Data privacy and security Construction project data (e.g., personnel and equipment information) involves privacy and security 
issues, which may limit cross-project data sharing and affect the migration effectiveness of the model. [62]

6 Insufficient model 
interpretability

The “black box” problem of migration learning models is serious, especially in construction risk 
management. It is difficult to explain the decision basis of the model, which affects the trust level. [63]

7 Insufficient data volume When the amount of data from the target project is insufficient, the migration learning model may rely 
too much on the source project data, resulting in overfitting or poor model performance. [64]

8 High consumption of comput-
ing resources

Migration learning requires a lot of computational resources and time, especially during the training and 
fine-tuning of deep learning models, and may not be suitable for real-time applications. [65]

9 Difficulty in cross-domain 
knowledge migration

Knowledge migration between different types of construction projects (e.g., homes, bridges, tunnels, etc.) 
may be ineffective and lead to model failure due to domain differences. [66]

4.2 Strategies to address the challenges

(1) Hybrid modeling strategy
Combine traditional domain knowledge-driven and migration learning-based intelligent models to create a hybrid 

model system. Risk analysis models based on engineering practices tend to have good interpretability in construction 
risk management, while migration learning models can handle large amounts of complex data. Combining the two can 
make up for the shortcomings of migration learning in terms of interpretability and generalizability while enhancing 
the predictive accuracy of the models. For example, the study by Abdolmajid et al. [67] introduces a data-driven risk 
identification framework that uses historical data and artificial intelligence techniques, precisely word embedding 
models. The model matches various risky items from past projects by considering the semantics of words, with an input 
dataset drawn from the risk registers of more than 70 major US transport projects. The model has been tested and has 
a recall rate of over 66% for risk detection on new projects, with an F1 score of 0.59. Xu et al. [68] fused concept drift 
algorithms and constructed knowledge source discrimination rules to automate knowledge source selection and schedule 
updating for dynamic knowledge transfer in construction projects. It is important to try the integration and comparison 
of different models with TL. A study [69] used 12 deep learning models trained on 192 crack images and found that the 
EfficientNetB0 model outperformed other models in classifying cracked surface bricks and normal (undamaged) surface 
bricks of drilled concrete with an accuracy of 91%.

(2) Domain adaptive mechanism
Adopt more advanced domain adaptive algorithms so that the model can be adjusted according to the differences 

in data distribution in different construction projects. As depicted in Figure 7, facade spraying robots need to work 
in a variety of construction environments, such as complex exterior surfaces, different weather conditions, material 
properties, and different building structure types. The model can automatically detect the differences between the source 
and target projects through adaptive technology and learn the features with the most migration value. For example, 
Lu et al. [70] proposed a novel multi-source migratory learning energy prediction model based on Long Short-Term 
Memory (LSTM) and Multi-Kernel Maximum Mean Difference (MK-MMD) domain adaptation using Dynamic 
Temporal Warping (DTW) to select the source domain. Guo et al. [71] proposed a reconstruction domain adaptation 
transfer network (RDATN) in the industrial application of mechanical fault diagnosis. RDATN mainly consists of health 
condition identification and domain adaptation. The former is used for health condition identification, while the other is 
used to extract domain invariant features.
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Different types of paint: latex paint, real 
stone paint, colorful paint, relief paint. Different types of building: houses, factories, public buildings.

Different types of 
weather: sunny, 
rainy, snowy, etc.

Different facade 
surfaces: inclination, 
flatness, structural 
defects, etc.

Figure 7. Adaptive mechanism for façade robot construction scenarios

(3) Less sample learning and meta-learning
Introduce less-sample learning and meta-learning techniques to improve the learning ability of models in data-

poor situations. These methods allow models to quickly adapt to new environments and make accurate risk predictions 
using only a tiny amount of new project data. For example, in construction risk management, applying a few-sample 
learning to a target project migrates limited high-quality data by pre-training the model, allowing the model to quickly 
adapt to the unique characteristics of the new project through meta-learning. Xu et al. [72] built an external few-sample 
meta-learning module based on different classification tasks (called meta-batches) to produce robust classifiers for new 
damage types, in which a subset of supports and queries, including some of the damage types and a small number of 
samples were randomly drawn from the original image dataset. Tamascelli et al. [73] trained classification algorithms on 
an extensive, generalized accident database to learn the relationship between accident characteristics and the severity of 
consequences from various examples. Subsequently, the knowledge gained is transferred to another domain to predict 
the number of fatalities and injuries in new accidents.

Data enhancement technology BIM simulation scene

Figure 8. BIM simulation platform based on data enhancement technology

(4) Data enhancement and simulation
More high-quality data are generated through data enhancement and simulation techniques to address the problem 

of scarce labels and insufficient data in the construction domain. For example, Matrone et al. [74] used the increasing 
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availability of three-dimensional (3D) data such as Light Detection and Ranging (LiDAR), Mobile Mapping Systems 
(MMS), or point clouds from Unmanned Aerial Vehicles (UAVs), which provide an opportunity for the rapid generation 
of 3D models to support cultural heritage (CH) restoration, preservation and maintenance activities. As indicated in 
Figure 8, using data enhancement techniques (e.g., image flipping, rotating, cropping, etc.) to extend the training data of 
the visual detection model or generating virtual data of environments and risk scenarios based on simulation platforms 
(e.g., BIM simulation) to supplement the insufficient data of the actual project. Gugssa et al. [75] performed PPE glove 
detection based on transfer learning to improve construction safety.

(5) Multi-task migratory learning
Multi-task migration learning is used in the construction risk domain to allow the model to learn multiple related 

construction tasks (e.g., quality control, schedule management, and safety monitoring) at the same time. By sharing 
knowledge between different tasks, the model can utilize the information in the source project more effectively and 
improve the migration effect. For example, a joint learning framework is designed to combine other tasks closely related 
to construction risk (e.g., schedule delay prediction, equipment failure detection, etc.) with the risk prediction task, and 
the multi-task learning model is utilized to enhance the accuracy of risk assessment [76]. An online learning strategy 
allows the model to update itself in a real-time data stream during construction by continuously learning from new data. 
The model can quickly adapt to dynamic changes on the construction site and improve its ability to cope with real-
time risks. For example, in a construction risk monitoring system, an online learning module is deployed to collect data 
from sensors, monitoring equipment, etc., in real time and dynamically update the risk model to cope with real-time 
environmental changes (e.g., weather, equipment status, personnel behavior, etc.) [77].

(6) Model explanatory enhancement
Enhance the explanatory nature of the transfer learning model so that its prediction results can accurately identify 

risks and provide reasonable explanations that are easy for construction managers to understand and apply. By 
integrating explanatory models such as Local Interpretable Model-agnostic Explanations (LIME) or SHapley Additive 
exPlanations (SHAP), the transfer learning model can output explainable risk factors in decision-making, helping 
managers understand potential risk sources [78]. For example, by incorporating explainable AI (XAI) technology, 
an explanatory module can be added to the output of a construction risk transfer learning model to explicitly show 
the features and data on which the model is based, helping the construction team understand the basis of the model’s 
predictions. Build a secure data-sharing mechanism to promote data interoperability between different construction 
projects, and at the same time, introduce technologies such as federated learning to ensure data privacy and security 
[79]. In construction, data between different projects often cannot be shared openly [80]. Federated Learning enables 
models to share knowledge across projects without directly exchanging data. For example, introducing a federated 
learning framework allows construction companies to share knowledge of risk management models without exchanging 
sensitive data, improving the performance of models on different projects while protecting data privacy [81, 82]. In 
addition, visualization techniques and knowledge-driven methods can be combined. On the one hand, techniques such 
as heat map and feature importance analysis are used to visualize the input feature regions that the model focuses on; 
on the other hand, domain knowledge is incorporated to combine the model outputs with the actual logics and rules in 
the construction project to ensure that the model’s inference process is in line with the engineering practice. In addition, 
the attention mechanism or generative adversarial network is introduced to further reveal the key features and potential 
causal relationships behind the model decisions.

5. Conclusion
Applying transfer learning in construction risk has significant potential to effectively utilize data and knowledge 

from historical projects to support risk assessment and management of new projects. Through migration learning, 
models can learn key features from source projects and quickly adapt to new environments, improving the efficiency 
and accuracy of risk identification during construction. However, due to the complexity, variability, and data scarcity of 
construction projects, migration learning faces challenges such as difficulties in transferring cross-domain knowledge, 
insufficient labeling, and differences in data distribution. To better apply migration learning, techniques such as domain 
adaptation, multi-task learning, and online learning need to be adopted, combined with explanatory models and privacy 
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protection mechanisms, to improve the generalization ability, real-time performance, and reliability of the models.
This study combines the actual needs of the construction field and the technological advantages of transfer learning 

to promote the development of construction intelligence and data-driven management. It suggests that future research 
can focus on the following five directions:

(1) Construction safety prediction and management: To improve safety management on construction sites, reduce 
accident rates, and achieve real-time monitoring and decision support through cross-project safety risk prediction and 
less sample learning.

(2) Construction quality monitoring and assessment: Applying transfer learning for heterogeneous data fusion and 
cross-domain defect detection to help improve the accuracy and efficiency of quality monitoring in different projects 
and reduce project training costs.

(3) Intelligent construction equipment optimization: Using transfer learning to optimize equipment scheduling 
and fault prediction, transferring the experience of equipment performance under different working conditions to new 
projects, improving equipment utilization efficiency, and reducing maintenance costs.

(4) Construction schedule management and forecasting: The multi-project schedule forecasting model and dynamic 
adjustment mechanism allow for cross-project construction schedule optimization, reducing schedule deviation and 
improving the project’s overall schedule control capability.

(5) Construction cost control and optimization: Migrate cost forecasting experience from previous projects to new 
projects, especially in data-poor environments, to improve cost control accuracy and optimize construction companies’ 
cost management.

It is worth noting that the effect of transfer learning is affected by various factors. To improve the effectiveness 
of transfer learning, it is necessary to consider these factors comprehensively and make appropriate adjustments and 
optimizations. For example, the effect of transfer learning can be improved by using public and industry features for 
finer differentiation, adopting complex feature engineering techniques, optimizing the neural network architecture 
and training hyperparameters to improve the generalization ability of the model, performing unsupervised and semi-
supervised training, and choosing appropriate loss functions and metrics to optimize the model and tuning.
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