
Artificial Intelligence EvolutionVolume 2 Issue 2|2021| 107

Research Article

Uniform Parallel Machines Scheduling with Setup Time, Learning
Effect, Machine Idle Time, and Processing Set Restrictions to Minimize
Earliness/Tardiness Costs
Javad Rezaeian* , Keyvan Shokoufi, Reza Alizadeh Foroutan

Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran
Email: j.rezaeian@ustmb.ac.ir

Received: 16 June 2021; Revised: 01 November 2021; Accepted: 04 November 2021

Abstract: Inspired by a real industrial case, this study deals with the problem of scheduling jobs on uniform parallel
machines with past-sequence-dependent setup times to minimize the total earliness and tardiness costs. The paper
contributes to the existing literature of uniform parallel machines problems by the novel idea of considering position-
based learning effects along with processing set restrictions. The presented problem is formulated as a Mixed Integer
linear programming (MILP) model. Then, an exact method is introduced to calculate the accurate objective function
in the just-in-time (JIT) environments for a given sequence of jobs. Furthermore, three meta-heuristic approaches, (1)
a genetic algorithm (GA), (2) a simulated annealing algorithm (SA), and (3) a particle swarm optimization algorithm
(PSO) are proposed to solve large size problems in reasonable computational time. Finally, computational results of the
proposed meta-heuristic algorithms are evaluated through extensive experiments and tested using ANOVA followed by
t-tests to identify the most effective meta-heuristic.

Keywords: earliness-tardiness scheduling, uniform parallel machine, heuristic algorithm, setup time, learning effect,
processing set restrictions

1. Introduction
 Production scheduling is one of the main sectors of supply chain management and has always been one of the

most important issues for manufacturers, especially in the Just-In-Time (JIT) production system [1]. Considering setup
time usually happens in industrial settings when various types of jobs are processed on machines. There are two types
of setup time: sequence-independent and sequence-dependent. In the first type, the setup time is usually added to the
job processing time while in the second type, the setup time depends not only on the job currently being scheduled
but also on the last scheduled job. Allahverdi et al. provided an extensive review of scheduling problems with setup
times, including the parallel machines cases [2]. Considering sequence-dependent setup times, Ying et al. investigated
unrelated machine scheduling problems. They presented a restricted simulated annealing (RSA) algorithm to minimize
makespan [3]. Rezaeian et al. dealt with unrelated parallel machine scheduling problems with sequence-dependent setup
times under a fully fuzzy environment to minimize total weighted fuzzy earliness and tardiness penalties [4]. Ramezani
et al. studied a no-wait scheduling problem in a flexible flow shop environment with uniform parallel machines
considering anticipatory sequence-dependent setup times to minimize makespan and developed a hybrid meta-heuristic
to tackle the problem [5]. Cota et al. investigated unrelated parallel machine scheduling problems with sequence-

Copyright ©2021 Javad Rezaeian, et al.
DOI: https://doi.org/10.37256/aie.222021994
This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Artificial Intelligence Evolution
http://ojs.wiserpub.com/index.php/AIE/

https://orcid.org/0000-0003-4538-0126
https://orcid.org/0000-0002-6927-7249
http://www.wiserpub.com/
http://ojs.wiserpub.com/index.php/AIE/

Artificial Intelligence Evolution 108 | Javad Rezaeian, et al.

dependent setup times to minimize makespan and total consumption of electricity [6]. They considered independent and
non-preemptible jobs and employed a novel meta-heuristic algorithm, named multi-objective smart pool search meta-
heuristic to find near-Pareto solutions. Ahmadizar et al. dealt with an unrelated parallel machine scheduling problem
with machine eligibility to minimize the total earliness and tardiness [7]. Setup times are both sequence-dependent and
machine-dependent. Vallada and Ruiz proposed a Mixed Integer Programming (MIP) model formulation and a genetic
algorithm to minimize makespan on unrelated parallel machine scheduling problems with sequence-dependent setup
times [8]. Rezaeian et al. studied unrelated parallel machine scheduling problems with sequence-dependent setup time
to minimize the sum of weighted earliness and tardiness costs and developed a mathematical formulation and a Pareto-
based algorithm for the regarded problem [9]. Kim and Lee addressed a uniform parallel dedicated machine scheduling
problem with machine eligibility, job splitting, sequence-dependent setup times, and limited setup servers and proposed
a heuristic algorithm to tackle the problem [10].

During the last two decades, the topic of learning effects which is very popular in scheduling problems has been
occasionally studied together with the topic of setup time. Biskup prepared a comprehensive review of scheduling
problems with learning effects [11]. He categorized the models in the literature into two diverse classes: (1) the position-
based learning problems, and (2) the sum of processing-time-based learning problems. Azzouz et al. employed an
adaptive genetic algorithm to solve a flexible job-shop problem with sequence-dependent setup times and the learning
effects to minimize makespan [12]. Shokoufi et al. addressed uniform parallel machine scheduling problems with
time-dependent learning effect, release date, and allowable preemption to minimize the total weighted of earliness
and tardiness penalties [13]. Azadeh et al. studied stochastic flexible flow shop with sequence-dependent setup times,
job deterioration, and learning effects [14]. They presented an integrated approach based on artificial neural network
(ANN), genetic algorithm (GA), and computer simulation to minimize the total tardiness of jobs in the sequences. Kuo
et al. considered the total absolute deviation of job completion times and the total load on all machines as scheduling
measures [15]. They studied unrelated parallel machine problems with past-sequence-dependent setup time and learning
effects; showed that the proposed problem remains polynomial solvable. Liao et al. dealt with a two-competing group
scheduling problem on serial-batching machines to minimize the makespan with some specific considerations [16].
Setup times and truncated job-dependent learning effects are taken into account, some structural properties and a greedy
algorithm were proposed.

In addition to the above, many manufacturing constraints are caused by situations where machines have different
capabilities and proficiency levels when facing tasks to be processed. These constraints may be due to limited speed, and
lack of specific constituents which only some of the machines are equipped with. Li et al. proposed a hybrid differential
evolution (HDE) algorithm embedded with chaos theory and two local search algorithms to minimize the total tardiness
of a parallel machine scheduling problem with different color families, sequence-dependent setup times, and machine
eligibility restriction [17]. Huo and Leung considered a scheduling problem of parallel machines in which each job
can only be scheduled on a subset of machines [18]. They proposed an improved algorithm to minimize the makespan.
Gokhale and Mathirajan addressed parallel machines with sequence-dependent setup times, unequal release times, and
machine eligibility restrictions to minimize total weighted flow time [19]. Perez-Gonzalez et al. modeled unrelated
parallel machines with machine eligibility and sequence-dependent setup times to minimize the total tardiness [20].
They selected and adapted some existing heuristics and a metaheuristic from related problems, as well as proposed a set
of heuristics with novel repair and improvement phases as solution approaches.

One of the important objective functions in the literature is to minimize the sum of earliness and tardiness (E/T).
JIT scheduling has emerged as a response to the necessity of fulfilling each customer’s order at their most desired time
[21]. In a JIT scheduling environment, the objective is to complete each job as close to its due date as possible [22].
Many research papers on scheduling problems have been published with both earliness and tardiness penalties. Based on
the study of the literature, and to the best of the authors’ knowledge, the uniform parallel machines scheduling problem
which considers scheduling problem which considers, position-based learning effect, and processing set restrictions
have not yet been investigated. Hence, this problem is addressed in this study to minimize the sum of earliness and
tardiness. Following the notation system introduced by Graham et al. [23], the proposed problem is denoted as Q|Mj, Sij,
LE|ΣEj + Tj that is known to be strongly NP-hard because the simpler case of the E/T problem is an NP-hard problem [24].
To obtain the exact solution of the problem, a mathematical programming model is proposed. Also, three meta-heuristic
algorithms for solving large-sized problems are presented. Furthermore, a heuristic algorithm is proposed to compute

Artificial Intelligence EvolutionVolume 2 Issue 2|2021| 109

the objective function of a given sequence.
The rest of the study is organized as follows: In Section 2, the problem under study is defined. The proposed

mathematical model is presented in Section 3. In Section 4, a heuristic algorithm and three meta-heuristic algorithms
are proposed and used to solve the sample problems. The experimental results and evaluations are given in Section 5.
Finally, Section 6 provides conclusions of the study and suggests some directions for future researches.

2. Problem definitions
The automobile brake system industry is a real example of the considered problem. The brake system is the most

important safety measure for cars. Drivers can safely stop or slow down the vehicle by repetitively actuating the system.
Most brake systems make use of the hydraulic principle to convert pedal movement into braking force. Master cylinder
is a critically important component in the conversion of pedal movement into hydraulic pressure. Master cylinder
assembly is composed of four main parts; a cylinder body, a fluid reservoir, a primary piston, and a secondary piston
made of steel or aluminum alloys. In the manufacturing process of master cylinder assembly, a set of n jobs Jj, j =
1,…, n are available at time zero. Pistons are processed by a set of similar machines M = {M1, M2, …, Mk} which are
used in parallel. These parallel machines are categorized as either identical or uniform. Here, we considered uniform
parallel machines for generality. This means that the processing time pjk of any job j on machine k is equal to pj /vk.
These machines are assumed to be continuously available and breakdown does not occur. Each machine can handle at
most one job at a time, and each job can be processed on at most one machine at a time. Once the piston manufacturing
process begins, the process cannot be stopped and resumed later. So, preemption is not allowed in this process, but idle
time between two jobs is permitted.

Also, there are setup times between two consecutive parts that should be considered. Sij denotes past-sequence-
dependent setup time when job j follows job i. Besides, setup times are entirely separate from the processing times.
On the other hand, parallel machines are mostly semi-automatic in this process, so, operator’s skill affects the number
of products. In this research, Biskup’s position-based learning effect is employed [25]. The learning effects are just
considered on the processing times. The learning effects on setup times are neglected because of short setup times. In
addition, each job Jj can only be processed on a certain subset Mj ⊆ M of the machines called its processing set.

The ultimate goal is to achieve just-in-time (JIT) production, The tardiness of job j is defined as Tj = max(0, Cj -
dj) and the earliness is defined as Ej = max(0, dj - Cj), where Cj and dj denote the completion time and the due date of
job j, respectively. The objective function is to minimize the sum of earliness/tardiness costs for all jobs.

3. The proposed mathematical model
3.1 Indices

i, j	 index for jobs
r	 index for positions
k	 index for machines

3.2 Parameters

n	 number of jobs and number of positions
m	 number of machines
dj	 due date of job Jj
pj	 processing time of job Jj

Vk	 speed of machine k
a	 learning index
F	 a large positive number
Sij	 past-sequence-dependent setup time of job j if job i precedes job j

Artificial Intelligence Evolution 110 | Javad Rezaeian, et al.

3.3 Decision variables

Cj	 completion time of job Jj
Pjrk	 processing time of job j when it is processed on machine k in position r
Ej	 earliness of job Jj, Ej = max(0, dj - Cj)
Tj	 tardiness of job Jj, Tj = max(0, Cj - dj)

1

0jk

if machine k is eligible to process job j
oth se

M
erwi





 1

0

jrk
if job j is scheduled on machine k in position r

other i e
Y

w s




3.4 The proposed mixed-integer linear programming model

Objective function:

1
 ()

n

j j
j

Min Z E T
=

= +∑

Subject to:

(1)

(4)

(2)

(5)

(7)

(3)

(6)

(8)

(9)

()
, 1, , , 1, , , 1, ,

a
j

jrk
k

p r
P j n k m r n

V
= = = =  

1 1
1, 1, ,

m n

jrk
k r

Y j n
= =

= =∑∑ 

1
1, 1, , , 1, ,

n

jrk
j

Y r n k m
=

≤ = =∑  

1
, 1

, 1, , , 1, , , 1, , 1
n

irk jr k
i j i

Y Y j n k m r n+
≠ =

≥ = = = -∑   

, 1, , , 1, , , 1, , jk jrkM Y j n k m r n≥ = = =  

0() , 1, , , 1, , , 1j jrk j jrkC P S Y j n k m r≥ + = … = … =

1 1(2) , 1, , , 1, , , , 1, , 1, , 1j i irk jr k jr k ijC C F Y Y P S i n j n i j k m r n+ +- + - - ≥ + = … = … ≠ = = … -

, 1, , j j jE d C j n≥ - = …

, 1, , j j jT C d j n≥ - = …

Artificial Intelligence EvolutionVolume 2 Issue 2|2021| 111

(10)

(11)

, , 0, 1, , j j jE T C j n≥ = …

{0, 1}, 1, , , 1, , 1, , irkY i n k m r n∈ = … = = …

The objective function seeks to minimize the sum of E/T costs over all jobs. Constraint (1) is used to calculate the
actual processing time of a job j if it is scheduled on machine k in position r. Constraint (2) ensures that each job can
only take one position on one machine. Constraint (3) guarantees that each position on each machine can be assigned
to at most one job. Constraint (4) ensures that there are no empty positions before a filled position. If a given job j is
processed on a given machine k in position r + 1, a predecessor i must be processed on the same machine in position
r. If job j is assigned to machine k in any position, constraint (5) guarantees machine k should be able to process job j.
Constraint (6) ensures that completion time of job j is greater than or equal to the processing time of job j on machine k
in the first position.

Constraint (7) establishes the relationship between the completion times of jobs i and j as long as both jobs are
assigned to the same machine. Using the binary variables Yirk and Yjr+1k, and the large number F, this constraint enforces
that there is sufficient time between the completion of jobs i and j based on the order of job precedence. Also, this
restriction can consider the machine idle time if jobs i and j are assigned to machine k in positions r and r + 1, i.e., Yirk = 1,
Yjr+1k = 1, the completion time of job j(Cj) must be greater than or equal to the completion time of job i plus the setup
time between jobs i and j and the processing time of job j in position r + 1. Constraints (8) and (9) calculate earliness
and tardiness costs for each job, respectively. Finally, constraints (10) and (11) specify the range of decision variables.

4. Heuristic algorithms
Due to the NP-hardness of the proposed problem, developing efficient heuristic algorithms would be a good

approach to achieve near-optimal solutions in a reasonable computational time. Hence, three meta-heuristics are
employed in this paper; namely, genetic algorithm (GA), simulated annealing (SA), and particle swarm optimization
(PSO).

The reason for using these algorithms is because of their special and strong features which made them become
popular algorithms in scheduling problems. GA is a powerful and extensive applicable stochastic search and
optimization technique guided by the principles of evolution and natural genetics. GA is an efficient, adaptive, and
robust search process. Similar to GA, PSO is also a population-based optimizer. Although PSO does not use the
crossover and mutation operators as GA does, it finds the optimum solution through individual improvement plus
population cooperation and competition to form robust exploration and exploitation of the solution space in a short
time. Finally, SA is an intelligent method that uses a repetitive improvement approach, but it probabilistically permits
deteriorating movements to escape from local optimum solutions. This algorithm is fast and very easy to code. In
addition, to find the minimum objective function for a given sequence, a heuristic algorithm named the ‘JIT objective
heuristic algorithm’ is proposed which is used by the three proposed meta-heuristic algorithms as an objective calculator.

4.1 JIT objective heuristic algorithm

An algorithm is introduced here for the calculation of the total weighted earliness and tardiness penalties. The
objective function of the proposed model (sum of earliness and tardiness penalties) is a subclass of the presented
algorithm. The steps of the proposed heuristic algorithm are as follows:

1. At first, process jobs without any idle time based on the given sequence.
2. Calculate the E/T value of each job. Consider the E/T penalty of each job by the following conditions.
2.1 If a processed job has earliness, regard its earliness penalty as a positive number.
2.2 If a processed job has tardiness, regard its tardiness penalty as a negative number.
2.3 If a job is processed at its due date, regard its tardiness penalty as a negative number.
Therefore, until now, the procedures of steps 1, 2, and 3 are shown in the following table:

Artificial Intelligence Evolution 112 | Javad Rezaeian, et al.

Table 1. The primitive calculations and positions of values

Sequence J2 J5 J1 J3 J4

Status γ2 γ5 γ1 γ3 γ4

Penalty β2 β6 β1 β3 β4

Where the ‘sequence’ row shows a given sequence of jobs (here, this sequence is hypothetical); the ‘status’ row
indicates the E/T value of jobs, and the ‘penalty’ row demonstrates the E/T penalty of jobs.

In step 1, calculate the completion time of each job for the given sequence without considering any idle time
between jobs using the following equation:

(12)[] ,i k
k

C P i k= ∀∑

In step 2, calculate the E/T value for each job using the following equation:

(13)[] ,i i k
k

d P i kγ = - ∀∑

Where p[k] denotes the normal processing time of the job scheduled in the kth position in the sequence and di

denotes the due date of job i. For example, γ5 = d5 - (p2 + p5), γ1 = d1 - (p2 + p5 + p1), and γ3 = d3 - (p2 + p5 + p1 + p3).
3. Validation test: In the status row of the remained jobs, select the first job with earliness value and add its penalty

to the penalty of the next jobs. This procedure continues until the summation reaches the first zero value or the first
negative value. If at any stage of the summation operation, the sum of penalties remains positive until the last job, this
set is a valid set, then go to step 3.2; otherwise, it is called ‘invalid set’, then go to step 3.1. Therefore, an invalid set
starts with a first selected job having earliness value and ends with a job that sum of the E/T penalties of jobs until then
reaches the first zero value or the first negative value.

3.1 Exclude the invalid set from algorithm calculation. If any job with earliness value exists after the invalid set,
then go to step 3; otherwise, go to step 4.

3.2 In the condition row of the valid set, select the minimum earliness value and then subtract this value from all
the values of the valid set. Then, update the penalty row for each job by rules of 2.1, 2.2, and 2.3. If another earliness
value still exists in the remained jobs, then go to step 3; otherwise, go to step 4.

4. Calculate the completion time of each job and the total cost using the following equations.

(14)i i iC d γ= -

(15)
1Total cost = n

i ii γ β= ×∑

Where n, Ci, and γi refer to the number of jobs, the completion time of each job, and E/T of each job, respectively.
5. End of the algorithm
The proposed heuristic algorithm is depicted in Figure 1.

Artificial Intelligence EvolutionVolume 2 Issue 2|2021| 113

Valid

Yes

Yes No

No

A given sequence Calculate the E/T
for each job Validation test

Select the minimum
earliness value in the

validate set

Subtract the selected
value from all numbers

of the validate set

Whether any earliness
value exists after the

invalid set?

Eliminate the
invalid set

Whether any earliness
value exists after the

invalid set?

Calculate the
completion times and
the objective function

End of the algorithm

Figure 1. The proposed JIT objective heuristic algorithm

For clarification, an instance is investigated. Assume that a given sequence of 6 jobs is selected by a selection
strategy which a meta-heuristic may apply in iterations. The selected sequence of jobs is equal to J3, J6, J2, J4, J1, J5.
Also, the values of the parameters are shown in Table 2. Furthermore, Figure 2 shows the scheduling of the given
sequence based on the proposed heuristic algorithm.

Table 2. Problem parameters

jobi pi di αi βi

J1 6 29 2 1

J2 7 11 2 3

J3 2 4 4 3

J4 3 23 4 2

J5 4 30 1 1

J6 8 9 3 2

Step 1.
Based on the given sequence, jobs are processed without any idle time.

Artificial Intelligence Evolution 114 | Javad Rezaeian, et al.

17

4

10

3

2

2

0

1

26

6

20

5

30

Time

J3 J6 J2 J4 J1 J5

Figure 2. Jobs scheduled without any idle time

Step 2.
Based on the jobs processed at the previous step, the E/T is calculated for each job and the results are listed in

Table 3.

Table 3. Results of jobs scheduled in step 1

Jobs J3 J6 J2 J4 J1 J5

Condition 2 -1 -6 2 3 0

Penalty 4 -2 -3 4 2 -1

In Table 3, it can be seen that for example, J4 has 2 units of earliness with the weight of 4; or for J2, the number
(-6) shows that J2 has 6 units of tardiness and (-3) is the weight of its tardiness that is denoted as a negative value as
mentioned in step 2.2. Also, the value of the condition row of J5 is equal to zero which means this job is processed on its
due date, and the tardiness weight for it is considered as mentioned in step 2.3.

Step 3.
The first job with earliness is J3. So, the sum of the penalties of J3 to J5 is calculated. As shown in Table 4, it can be

observed that the sum of the penalties of J3, J6, and J2 are equal to 4 - 2 - 3 = -1 which means this set is invalid. Thus,
go to step 3.1.

Step 3.1.
The invalid set is excluded from the algorithm because this set doesn’t assure to improve the objective function.

Thus, as displayed in Table 5, the remaining jobs are J4, J1, and J5. Also, there is at least one job with earliness. So, go to
step 3 again.

Table 4. The first invalid set

Jobs J3 J6 J2

Condition 2 -1 -6

Penalty 4 -2 -3

Table 5. Remained jobs

Jobs J4 J1 J5

Condition 2 3 0

Penalty 4 2 -1

Artificial Intelligence EvolutionVolume 2 Issue 2|2021| 115

Step 3.
J4 is the first job with earliness. So, the sum of the penalties of J4 to J5 is calculated. The sum of the penalties of J4,

J1, and J5 is equal to 4 + 2 - 1 = 5 which means this set is valid (see Table 6). Thus, go to step 3.2.

Table 6. The first valid set

Jobs J4 J1 J5

Condition 2 3 0

Penalty 4 2 -1

Step 3.2.
In the valid set as it can be seen in Table 7, the minimum positive value is 2 that belongs to J4. So, this value is

subtracted from all of the condition values of the valid set. With regards to the changes of the condition value for each
job, the earliness or tardiness penalty is returned. The Table 7 is updated as follows:

Table 7. The updated first valid set

Jobs J4 J1 J5

Condition 0 1 -2

Penalty -2 2 -1

Since at least a positive value still exists, return to step 3.
Step 3.
Here, the first and only positive value is 1 that belongs to J1. So, the validation of the set of J1 to J5 is examined.

The sum of the penalties of J1 and J5 is equal to 2 - 1 = 1 which means this set is valid (see Table 8). Thus, go to step 3.2.
Furthermore, the value of the condition row of J4 is equal to zero. So, this job is also excluded from the algorithm (see
Table 9). Because this job doesn’t improve the objective value anymore.

Table 8. The second valid set

Jobs J1 J5

Condition 1 -2

Penalty 2 -1

Table 9. The excluded job

Jobs J4

Condition 0

Penalty -2

Artificial Intelligence Evolution 116 | Javad Rezaeian, et al.

Step 3.2
So, this value is subtracted from all of the condition values of the valid set. Thus, the updated valid set is shown in

Table 10.

Table 10. The second updated valid set

Jobs J1 J5

Condition 0 -3

Penalty -1 -1

It can be seen, there is no more positive value. So, we go to step 4. In this step, the completion time of each job and
the total cost are calculated. Also, the final values are shown in Table 11. The final table is composed of Tables 4, 9, and
10.

Table 11. The final results

Jobs J3 J6 J2 J4 J1 J5

Condition 2 -1 -6 0 0 -3

Penalty 4 -2 -3 -2 -1 -1

Step 4.
According to formulas (14) and (15), the completion time of each job and total cost are calculated.

C3 = 4 - 2 = 2, C6 = 9 - (-1) = 10, C2 = 11 - (-6) = 17, C4 = 23 - 0 = 23, C1 = 29 - 0 = 29 and C5 = 30 - (-3) = 33

 Total coast = 2 × 4 + (-1) × (-2) + (-6) × (-3) + 0 × (-2) + 0 × (-1) + (-3) × (-1) = 31

Step 5.
End of the algorithm
In section 5, 24 small size test problems are defined in Table 12 to validate the presented JIT objective heuristic

algorithm in obtaining optimum solutions.

4.2 Genetic algorithm

GAs are intelligent random search strategies with the ability to find near-optimal solutions in complex search
spaces without derivative information. The basic concepts of GA have been described by the investigation carried out by
Holland [26]. The components of the GA applied to solve the proposed problem are described as follows.

4.2.1 Chromosome representation and the initial population

Chromosome representation has a crucial impact on GA’s performance. A good representation scheme is necessary
to describe the specific characteristics of a given problem in detail. Here, each chromosome is a matrix with (m, n)
dimensions which m and n refer to the number of machines and the number of jobs, respectively. So, each chromosome
is divided into n × m positions. An example is presented to illustrate the procedure. Four jobs on 2 machines are
considered. The processing set of J1 is {M1}, for J2 is {M2} and the processing set of J3 and J4 are {M1, M2}. Figure

Artificial Intelligence EvolutionVolume 2 Issue 2|2021| 117

3 shows several feasible chromosomes. The empty positions are shown by a value of zero. Furthermore, according
to constraints (4) and (5) in the proposed mathematical model, chromosome representation in Figures 4 and 5 is not
correct. The GA is formed by a population of Psize individuals, where each individual consists of m rows (machines) and
n columns (jobs).

1 0 0 0

3 2 4 0

1 3 0 0

 2 4 0 0

1 3 4 0

2 0 0 0

Figure 3. Feasible chromosomes

0 0 1 0

3 0 4 2

Figure 4. Infeasible chromosome

1 2 0 0

3 4 0 0

Figure 5. Infeasible chromosome

In a genetic algorithm, it is also common to randomly generate the initial population. The same way is employed in
this study to generate individual chromosomes.

4.2.2 Fitness function

The objective here is to minimize the sum of E/T. By calculating the completion time, earliness and tardiness of
each job are obtained applying equations (16) and (17), respectively.

max(0,)i i iE d c= - (16)

max(0,)i i iT c d= - (17)

Thus, the fitness function of each chromosome can be calculated as follows:

(18)
1

()
n

i i
i

F E T
=

= +∑

Artificial Intelligence Evolution 118 | Javad Rezaeian, et al.

4.2.3 Selection strategies

In selection strategies, it is important to prevent the algorithm from converging quickly to a local minimum. The
roulette-wheel method uses a probability distribution for selection in which the selection probability of a given string is
proportional to its fitness. Thus, a more fitted string is more likely to be selected, but a bad string still has its chance. In
this paper, the roulette-wheel method is applied to select the parents for crossover and mutation. The probability pi of
selecting a particular individual i in the minimization problem is given by:

(19)

1

1

1
i

i N
j

j

f
p

f=

=
∑

Where fi is the fitness of individual i and N is the size of the population.

4.2.4 Crossover

The crossover operator is an important component of GA. A crossover operation is employed to generate new
offspring from randomly selected pairs of parents by uniting them. One of the most used crossover operators is the
One Point Order Crossover adapted to the parallel machine case; such that, for each machine, one-point p is randomly
selected from parent 1, and jobs from the 1st position to the pth position are copied to the offspring. In Figure 6, an
example of 8 jobs and two machines is given. Two parents are shown and for each machine, a point p is selected. Point
p1 (machine 1) is set to 2 and point p2 (machine 2) is set to 3. At first, the offspring is formed with the genes (jobs) of
parent A from position 1 to 2 on machine 1, and from position 1 to 3 on machine 2. Then, the genes of parent B which
do not exist in the offspring, are inserted in the next positions of the offspring on the same machine. If a position with
the value of zero is selected for point p, then another selection must be done until a non-zero position is found.

1 3 6 0 0 0 0 0

2 4 7 5 8 0 0 0

5 3 7 8 2 0 0 0

1 4 6 0 0 0 0 0

1 3 5 8 0 0 0 0

2 4 7 6 0 0 0 0

p1 = 2

Parent A

Parent B

Offspring

p2 = 3

Figure 6. Crossover operator

4.2.5 Mutation and reproduction

The purpose of the mutation is to ensure that diversity is maintained in the population. It creates a new
chromosome by altering the place of the genes. The mutation operator is applied individually to each chromosome. In

Artificial Intelligence EvolutionVolume 2 Issue 2|2021| 119

this paper, the swapping method is used. In this method, two random genes are selected and their positions are swapped.
The procedure is as follows. Searching space for selecting the first gene is the interval [1, n] on each machine that n
refers to the number of jobs scheduled on that machine, and the second gene is selected from [1, n + 1]. These rules
improve the performance of the mutation operator by searching the effective space. Also, the searching spaces of the
first gene and the second gene are shown in Figure 7 and Figure 8, respectively. Therefore, based on the defined rule,
one random gene is selected and is kept as a first gene, then another gene is selected randomly. If two genes are capable
of being exchanged under processing set restrictions, then these two genes are swapped; otherwise, another second
gene is selected randomly. This procedure will continue until the first selected gene can swap with another gene. Figure
9 shows this procedure. In this method, if the second gene is a filled position by a job, then the mutated chromosome
remains feasible. But, if the second gene is in an empty position, then the mutated chromosome is infeasible. So, in the
second case, the procedure is as follows. The first gene is inserted in the second gene’s position. The jobs after the first
gene will be shifted one position to the left at the same machine and the second gene will be inserted after the scheduled
jobs on that machine. This procedure is depicted by two examples in Figure 10.

6 3 5

2 4 7

8 1

Figure 7. Searching space for the first gene

6 3 5 0

2 4 7 0

8 1 0

Figure 8. Searching space for the second gene

Before mutation

1 3 5 0 0 0 0 0

2 4 7 0 0 0 0 0

8 6 0 0 0 0 0 0

After mutation

6 3 5 0 0 0 0 0

2 4 7 0 0 0 0 0

8 1 0 0 0 0 0

First gene

Second gene

Figure 9. The first case of the mutation operator

Reproduction plays an important role in the successful convergence of the algorithm. It is performed by the
elitism procedure. In this strategy, the best individuals which have minimum fitness are kept and passed on to the next
generation. Here, the number of best individuals kept is a parameter of the algorithm.

Artificial Intelligence Evolution 120 | Javad Rezaeian, et al.

Before mutation

1 3 5 0 0 0 0 0

2 4 7 0 0 0 0 0

8 6 0 0 0 0 0 0

After mutation

1 3 5 4 0 0 0 0

2 7 0 0 0 0 0 0

8 6 0 0 0 0 0

Before mutation

1 3 5 0 0 0 0 0

2 4 7 0 0 0 0 0

8 6 0 0 0 0 0 0

After mutation

3 5 0 0 0 0 0 0

2 4 7 1 0 0 0 0

8 1 0 0 0 0 0

Second gene

First gene

First gene

Second gene

Figure 10. The second case of the mutation operator

4.3 Simulated annealing (SA) algorithm

Simulated annealing (SA) provides a mechanism to escape from local optima by allowing hill-climbing moves. Its
ease of implementation and convergence properties have made it a popular approach over the past two decades [27].
A standard SA begins with an initial random solution and an appropriate high temperature (T0). This temperature is
periodically reduced by some temperature functions until the temperature becomes near to zero as the method progress
(Tf). The main components of SA for implementation are as follows.

4.3.1 Creating the initial answer and neighborhood search

Based on the given explanation in section 4.2.1, a random answer is created. To generate a neighborhood of the
current solution, one machine is randomly selected, then the scheduled job with the worsening E/T is selected at the
same machine and then swapped with a random place under defined considerations in section 4.2.5. The randomly
generated neighbor solution becomes a new solution if it improves the objective function; else, the neighborhood

solution becomes a new solution with an appropriate probability based on
()

exp
E

Tp
-∆

= , where ΔE is a measure to
which neighbor solution becomes worse than the current solution, and T is the temperature parameter of the current
iteration. A random number between 0 and 1 is generated through a uniform distribution. If p > rand (0, 1), then the
answer has deteriorated. Otherwise, another neighborhood will be chosen.

Artificial Intelligence EvolutionVolume 2 Issue 2|2021| 121

4.3.2 Initial and final temperature

Temperature as a parameter plays an important role in rejecting or accepting the objective function. It should be
high enough to make an equal chance for all points of the search space and simultaneously, it should not be very too
high to avoid carrying out a lot of unnecessary searches in high temperatures. In this paper, the initial temperature is
determined experimentally and the final temperature is obtained by Tf = βT0.

4.3.3 Cooling ratio

The fundamental purpose of employing the annealing schedule is to control the behavior of SA. There are
distinctive cooling ratios used in the SA literature. In this paper, the annealing schedule is calculated as follows:

(20)0()(1)NT T N
A

N
- +

=

(21)0()B T A= -

(22)
1i

AT B
i

= +
+

Where N is the number of iterations to meet the final temperature, TN is the temperature in the final iteration that is
equal to Tf and Ti is the temperature in iteration i.

4.4 Particle swarm optimization (PSO)

Introduced by Kennedy and Eberhart [28], PSO is a stochastic global optimization technique inspired by the social
behavior of bird flocking. In PSO, every single solution is a particle in the search space and the set of particles forms the
swarm. The position of ith particle in d-dimensional search space is represented by a d-dimensional vector Xi = (xi1, xi2, …,
xid)(i = 1, 2, …, m). Also, the ith particle’s velocity is a d-dimensional vector, denoted by Vi = (vi1, vi2, …, vid)(i = 1, 2, …,
m). The best position of the particle i obtained up to iteration t is denoted by Pi = (pi1(t), pi2(t), …, pid(t)), and the best
position of the swarm in iteration t is denoted by Pg = (pg1(t), pg2(t), …, pgd(t)), respectively. In any iteration, positions
and velocities are updated by the equations (23) and (24):

1 1 2 2((1) () () ()) () ()()id id id id gd idV t WV t C R P t X t C R P t X t+ = + - + - (23)

(24)(1) () (1)id id idX t X t V t++ = +

Where W is the inertia weight that controls the influence of the previous velocity of the particle. C1 and C2 are
acceleration constants that drive particles towards local and global best positions. R1 and R2 are two random numbers
within the range of [0, 1]. Eq. (23) is used to calculate the new velocities for particles and Eq. (24) updates each
particle’s position in the search space. This process is repeated until a user-defined stopping criterion is reached. In this
paper, a linear function is used to set the inertia weight. This function is as follows:

(25)max min
max

max

W W
W W t

t
-

= -

Where Wmax and Wmin are set to 1 and 0, respectively. In addition, t shows the current iteration number and tmax
shows the maximum iteration number.

Generally, to control the excessive roaming of particles outside the search space, the velocity of each particle

Artificial Intelligence Evolution 122 | Javad Rezaeian, et al.

can be restricted to the interval [VminVmax]. Within the scope of this paper, the Vmin and the Vmax are equal to 0 and 1,
respectively. Also, random particles are generated based on the given explanation in section 4.2.1. The overall structure
of the proposed algorithm is shown in Algorithm 1.

Algorithm 1. The process of particle swarm optimization
Initialize a population of particles with random positions and velocities
Begin
repeat
for each particle i do
Update the position and the velocity of particle i
Evaluate the fitness value of particle i
If the current value of particle i is better than the pid
Then set pid to the current value
If pid is better than the global best position
Then set pgd to the current particle value
end for
until a termination criterion is met

5. Experimental results

Table 12. Name of generated test problems

na mb
t = 0.2 t = 0.4

R = 0.6 R = 0.8 R = 1 R = 0.6 R = 0.8 R = 1

6 2 Num01 Num02 Num03 Num04 Num05 Num06

6 4 Num07 Num08 Num09 Num10 Num11 Num12

8 2 Num13 Num14 Num15 Num16 Num17 Num18

8 4 Num19 Num20 Num21 Num22 Num23 Num24

14 4 Num25 Num26 Num27 Num28 Num29 Num30

14 5 Num31 Num32 Num33 Num34 Num35 Num36

16 4 Num37 Num38 Num39 Num40 Num41 Num42

16 5 Num43 Num44 Num45 Num46 Num47 Num48

30 5 Num49 Num50 Num51 Num52 Num53 Num54

30 6 Num55 Num56 Num57 Num58 Num59 Num60

40 5 Num61 Num62 Num63 Num64 Num65 Num66

40 6 Num67 Num68 Num69 Num70 Num71 Num72

 na = number of jobs, mb = number of machines

The objective of the computational experiments described in this section is to evaluate the performance of the
proposed algorithms. Therefore, a set of test problems is needed for comparing the results of the proposed meta-
heuristic algorithms. To present the efficiency of the proposed approaches, problems with different sizes are considered.
Small, medium and large size problems consist of 6, 8 jobs on 2, 4 machines, 14, 16 jobs on 4, 5 machines, and 30, 40
jobs on 5, 6 machines, respectively. Each job ji(i = 1, 2, …, n) has a randomly set of machines bi = U(1, m) to which
it can be assigned. Speeds of machines are selected from the set {1, 0.6, 0.8}. Processing times are generated from the

Artificial Intelligence EvolutionVolume 2 Issue 2|2021| 123

discrete uniform distribution [1, 25] and setup times are uniformly distributed, ranging from 20% to 40% of the mean
of the processing times. Setup time matrices are asymmetric. It is seen that in manufacturing systems and especially in
assembly lines, the learning rate fits the 80% learning curve. In this paper, the same rate is also used as a learning rate.

Due dates of jobs are generated from a uniform distribution [(1), (1)]
2 2max max
R RC t C t- - - + as suggested by Potts and

Wassenhove [29], where max 1, ,n
ii

P nsC P p
m =
+

= ∑ n and m refer to the number of jobs and machines, respectively. s

is the average setup time ()
2

min maxs s+
, Smin and Smax are equal to the lower and upper bound of the setup times interval,

respectively. This method is controlled by two parameters, t and R. t is the priority factor that takes the values {0.2,
0.4}, and R is the due date range factor that takes the values {0.6, 0.8, 1}. So, there are six instances considered for
each problem size. Each problem runs 10 times. Thus, for each meta-heuristic, there are 720 runs in total. The name of
generated test problems with variable parameters is given in Table 12. The mathematical formulation (MILP) is solved
using the global solver of LINGO 9.0. The proposed meta-heuristic algorithms are coded and run using MATLAB 7.11.
All experimental tests are carried out on a computer Intel (R) core i5 (2.67 GHz CPU) with 512 MB RAM.

Table 13. The computational results of the proposed algorithms for small-sized problems

PSOSAGALINGO
Num

WMBWMBWMBOPT

19.0819.0819.0819.0819.0819.0819.0819.0819.0819.0801

10.4410.4410.4410.4410.4410.4410.4410.4410.4410.4402

16.7216.7216.7216.7216.7216.7216.7216.7216.7216.7203

33.3333.3333.3333.3333.3333.3333.3333.3333.3333.3304

30.8430.8430.8430.8430.8430.8430.8430.8430.8430.8405

16.6316.6316.6316.6316.6316.6316.6316.6316.6316.6306

9.366.966.3612.038.626.369.367.566.366.3607

13.9611.509.7613.9613.069.7612.9111.829.769.7608

26.1123.3222.7626.1123.3222.7626.1123.0922.7622.7609

0.560.340.000.560.280.000.830.370.000.0010

16.555.884.5616.556.164.5616.317.384.564.5611

19.4816.6615.9615.9615.9615.9622.7218.0115.9615.9612

49.7547.1146.1656.1749.8546.1649.7547.5046.1646.1613

54.9154.9154.9157.4855.5654.9154.9154.9154.9154.9114

46.1338.3934.1646.1339.3234.1651.2039.0134.1634.1615

38.9634.7632.9240.2337.4532.9238.9635.1932.9232.9216

26.7325.8723.2826.7323.7123.2826.7326.3023.2823.2817

74.6274.6274.6294.6282.5174.6274.6274.6274.6274.6218

19.5511.408.4021.1212.938.4019.5511.608.408.4019

22.0512.6410.5223.9213.8210.5222.4312.5110.5210.5220

7.701.830.9912.482.450.994.721.950.990.9921

16.2514.0113.2416.7014.2313.2418.2014.7913.2413.2422

17.4910.018.9917.0710.218.9919.1811.168.998.9923

15.3611.2310.4418.3111.6110.4416.9411.3610.4410.4424

25.1022.0221.0426.8022.8421.0425.5222.3421.0421.04mean

Artificial Intelligence Evolution 124 | Javad Rezaeian, et al.

The results of the small, medium and large size problems solved by the proposed methods are presented in Tables
13, 14, and 15, respectively. For each test case, the best, mean, and worst solutions of the proposed meta-heuristics are
given, where B denotes the best solution, M represents the mean solutions and W indicates the worst solutions.

Table 14.The computational results of the proposed algorithms for medium-sized problems

PSOSAGALINGO
Num

WMBWMBWMBOPT

31.3527.2625.0434.5329.6625.0443.2230.1725.04-25

44.0728.9225.2440.4829.2426.1646.4630.1625.24-26

20.7513.8512.3326.6418.4516.0621.9014.2212.33-27

39.5834.2631.640.7938.3335.2341.0835.5931.60-28

21.4014.8813.5225.7116.7715.0121.4020.1818.12-29

39.2427.5225.4840.2928.0124.7348.9230.2225.48-30

55.7947.6944.1656.4250.1145.9760.9850.6246.02-31

34.2624.4422.6338.3331.4027.7938.5636.1433.47-32

14.1312.9312.3817.3213.6411.9915.6611.6210.32-33

48.8635.7131.0551.3934.0729.8957.4945.6034.23-34

23.9218.6317.2531.8821.3618.2625.9720.0218.54-35

38.5534.9032.0242.6137.7832.0237.7634.5832.02-36

62.2154.7751.1982.2178.1969.2074.0170.7464.90-37

42.2237.8035.0050.8943.6338.2742.2239.0135.47-38

31.2523.7221.7638.4227.6624.7033.2426.5924.40-39

47.3642.4438.9451.3346.6242.0048.2546.3244.12-40

55.7445.7941.2650.0744.1840.0758.3146.2342.81-41

60.0355.8951.2863.2556.0450.9459.6252.1048.70-42

72.1967.3863.5780.7974.4766.4975.5369.2963.57-43

57.1055.9353.7864.0961.9056.5556.5355.3953.78-44

38.0633.6530.5950.2336.7130.5940.4834.5730.59-45

63.6152.4247.2966.9453.4347.2973.4757.5153.75-46

63.2949.9745.4365.2950.7745.7468.7249.0645.43-47

28.4422.2020.0036.4124.0120.0031.4922.0620.00-48

43.0635.9633.0347.7639.4335.0046.7238.6735.00-mean

Artificial Intelligence EvolutionVolume 2 Issue 2|2021| 125

Table 15. The computational results of the proposed algorithms for large-sized problems

PSOSAGALINGO
Num

WMBWMBWMBOPT

136.62111.48105.17140.87120.26112.41136.62117.86112.41-49

58.1844.0141.1364.2350.2145.3260.5848.6745.13-50

28.2324.1622.4527.7323.0921.7630.2427.3324.49-51

100.2789.1483.31115.12106.82100.34110.1193.9286.96-52

107.2894.5188.33110.3597.5690.33104.4394.1288.79-53

31.3728.7127.2930.6226.7325.2035.9031.7729.18-54

143.82130.26124.06145.16133.35124.63150.22134.28124.33-55

44.4936.6533.6251.5345.9640.9057.2448.6143.59-56

33.5829.8528.1338.5532.4428.4433.5829.0926.94-57

173.74158.07150.52186.96170.49161.92180.68174.95171.11-58

60.1548.7645.1568.2156.1651.3568.2157.0352.25-59

22.4019.1917.7726.2023.4421.5126.6722.0119.18-60

256.82246.79239.60301.44291.09282.60283.25271.12260.69-61

125.87108.39102.21140.27122.20115.62125.87114.48107.85-62

88.2677.1173.6686.2473.2469.5890.6382.43476.20-63

236.92202.89191.41244.91226.44209.67253.22243.50217.41-64

65.0256.6153.8660.6254.9351.6864.6356.4453.55-65

100.8785.4379.6294.2287.3481.6398.5492.8084.36-66

225.18207.37200.12218.10203.24193.62230.24211.36198.02-67

115.3786.4780.81120.4795.4587.57115.3798.0887.57-68

68.2356.8753.4472.2657.0853.1868.2355.4951.86-69

151.88136.83130.47175.44155.00139.64198.95180.03163.66-70

75.1468.0463.8375.1468.3963.3287.9186.7278.13-71

27.1125.9825.0136.7332.1927.5733.4228.3826.04-72

103.290.5685.87109.6498.0491.65110.19100.0292.90-mean

5.1 Parameter setting

In this paper, the Taguchi method is utilized to determine the values of the parameters of GA, PSO, and SA. After
several pretests, each of these parameters is set at three levels. Test problems are made of a variable number of jobs
and machines. Each experiment is implemented five times. After completing the tests, Taguchi analysis is applied for

Artificial Intelligence Evolution 126 | Javad Rezaeian, et al.

different values of parameters. The best values of the parameters of GA, PSO, and SA are listed in Table 16.

Table 16. Parameter settings of GA, PSO, and SA

GA PSO SA

The iteration number is 85 The iteration number is 80 The maximum iteration number is 100

The population size is 80 The particle number is 50 The final temperature coefficient of determination (β) is 0.01

The crossover rate is 0.6 The cognition learning factor:
c1 = 2, c2 = 2 The iteration number in each temperature is 10

The mutation rate is 0.15 - The number of neighbors to determine the initial temperature is 90

5.2 Performance evaluation

According to Tables 13, 14, and 15, medium and large size problems cannot be solved using LINGO in a
reasonable computational time. In order to find optimum or near-optimal solutions for medium and large-size problems
in a reasonable time, heuristic algorithms are employed and two metrics are applied to evaluate the performance of the
proposed algorithms. Since small size problems can be solved optimally by LINGO, the percentage relative error (PRE)
is employed to assess the performance of the algorithms for small size problems. PRE is as follows:

 100

Heuristic solution Optimal solutionPRE
Optimal solution

-
= × (26)

For medium and large size problems, the relative percentage deviation (RPD) is employed to compare the
efficiency of three proposed meta-heuristics. The RPD is computed as follows:

 100

Heuristic solution Best heuristic solutionRPD
Best heuristic solution

-
= × (27)

The average errors of these meta-heuristic methods and their computational times for the small, medium, and large
size problems are given in Tables 17, 18, and 19, respectively. In addition, the average computational time, the average
PREavg, and RPDavg for each job group are summarized in Table 20. Furthermore, after computing RPD, in order to
make better comparisons between the proposed meta-heuristics, the analysis of variance (ANOVA) is conducted and
relative percentage deviation means plot with least significant difference (LSD) intervals at a 95% confidence level are
tested. Results are shown in Figure11. The LSD test consists of two phases. In the first phase, it uses the F statistic for
testing overall equality (H0: µi = µj, for all i ≠ j). If the null hypothesis (H0) is not rejected (p - value > 0.05), then all
means are expressed to be equal and the LSD test is finished. If the null hypothesis (H0) is rejected (p - value ≤ 0.05),
then the experimenter proceeds to phase 2, where all pairs of means (µi and µj) are separately tested for equality using
α-level t-tests. If any of these t-tests rejects the null hypothesis, then the two corresponding means are expressed to be
unequal.

Table 13 shows that the three proposed meta-heuristics are efficient and able to reach optimum solutions in small-
sized instances. Hence, results prove that the proposed JIT objective heuristic algorithm which is applied as an objective
calculator in GA, SA, and PSO is valid because in the first 24 test problems (small size problems), all the three proposed
meta-heuristics obtain the same optimum solutions calculated by LINGO. According to Table17, the average PREavg of
PSO is 12.24% that is less than the other two algorithms. Also, the computational times of the proposed meta-heuristic
algorithms are so short that they can be neglected. Furthermore, according to the summarized results in Table 20, the

Artificial Intelligence EvolutionVolume 2 Issue 2|2021| 127

comparison of the average RPDavg of job groups between GA, SA, and PSO is illustrated in Figure 12.

Table 17. Average PRE errors and computational times of the proposed meta-heuristics for the small cases

PSOSAGA
Num

CPUa
avgPREavgCPUa

avgPREavgCPUa
avgPREavg

0.270.000.140.000.280.0001

0.250.000.140.000.270.0002

0.250.000.140.000.260.0003

0.240.000.590.000.650.0004

0.290.000.140.000.330.0005

0.280.000.140.000.300.0006

1.009.430.5535.531.3018.8707

0.5517.830.3133.810.7521.1108

0.272.460.192.460.301.4509

0.2734.000.1628.000.3237.0010

0.7428.950.6835.091.3061.8411

0.264.390.160.000.3012.8412

1.002.030.587.991.302.9013

0.680.000.241.181.100.0014

0.4112.380.3115.100.4314.2015

0.445.590.5213.760.586.9016

1.3511.120.261.841.3712.9717

1.430.001.2310.571.670.0018

1.4035.711.3453.921.5638.0919

1.1720.151.0831.371.2818.9220

1.2084.851.00147.471.5596.9721

1.125.811.087.481.3111.7022

1.7211.350.6313.571.6324.1423

1.527.570.9011.211.708.8124

0.7512.240.5218.770.9116.20mean

 aComputational time (second).

Artificial Intelligence Evolution 128 | Javad Rezaeian, et al.

Table 18. Average RPD errors and computational times of the proposed meta-heuristics for the medium cases

PSOSAGA
Num

CPUa
avgRPDavgCPUa

avgRPDavgCPUa
avgRPDavg

9.328.875.0118.459.9720.4925

8.5514.585.1115.858.8019.4926

8.3112.335.2849.648.8415.3327

8.018.424.9221.308.5112.6328

7.8310.064.9824.048.5049.2629

7.8411.285.7513.268.5722.2030

7.167.995.4713.478.5914.6331

7.888.004.9938.758.4359.6732

7.0525.295.3232.177.7412.6033

6.2619.475.2113.987.0752.5634

6.298.005.0123.836.8416.0735

6.428.994.8117.997.457.9936

10.266.995.2052.7411.5338.1937

11.108.005.1024.6612.0111.4838

8.009.015.2227.1112.0022.2039

10.018.995.9119.7213.2518.9540

9.6614.275.4410.2612.5015.3741

10.7514.765.3215.0712.196.9842

8.685.995.7117.159.868.9943

9.113.995.9815.1011.002.9944

9.3810.005.9420.0110.5513.0145

9.5710.845.8112.9810.3021.6146

9.029.755.8911.519.557.7547

8.6611.005.6020.0510.7610.3048

8.5510.705.3722.059.7820.03mean

 aComputational time (second).

Artificial Intelligence EvolutionVolume 2 Issue 2|2021| 129

Table 19. Average RPD errors and computational times of the proposed meta-heuristics for the large cases

PSOSAGA
Num

CPUa
avgRPDavgCPUa

avgRPDavgCPUa
avgRPDavg

19.745.999.2414.3523.9712.0749

15.966.569.0821.5724.0517.8450

17.4511.039.476.1121.1225.6051

15.716.999.8128.2220.6112.7352

15.316.999.1110.4520.656.5653

15.4613.9310.086.0720.4326.0754

15.884.999.727.4923.908.2455

15.919.019.4636.7023.3644.5956

16.0510.808.9820.4522.147.9857

15.985.029.1313.2723.7616.2358

15.747.9910.0124.3822.3826.3159

15.757.999.6731.9122.6623.8660

17.923.0010.1121.4923.4613.1661

19.456.0410.5519.5624.3212.0062

19.5910.8210.425.2623.2718.4763

19.555.9910.3418.3023.6127.2164

19.489.5310.866.2923.409.2165

19.007.3010.919.7023.6216.5666

18.227.1011.724.9725.499.1667

18.707.0011.0818.1226.5121.3768

18.699.6610.6110.0725.316.9969

18.824.8712.0118.8025.2637.9870

19.927.4511.238.0125.3436.9671

17.883.8811.0828.7124.8613.4772

17.597.5010.2016.2623.4818.78mean

 aComputational time (second).

Artificial Intelligence Evolution 130 | Javad Rezaeian, et al.

Table 20. Average RPDavg and PREavg errors and computational times for each job group

PSOSAGAJob

Avg CPUa
avgAvg RPDavgAvg PREavgAvg CPUa

avgAvg RPDavgAvg PREavgAvg CPUa
avgAvg RPDavgAvg PREavggroup

0.39*8.080.28*11.240.53*12.766

1.12*16.380.76*26.291.29*19.638

7.5811.94*5.1623.56*8.2825.24*14

9.379.47*5.5920.53*11.1514.82*16

16.258.11*9.4818.42*22.4219.01*30

18.916.89*10.9114.11*24.5418.55*40

aComputational time (second).

10

15

20

25

R
PD

GA SA PSO

Figure 11. Relative percentage deviation means plot

It can be observed from Figure 12 that by increasing the number of jobs, the quality of PSO and SA solutions
enhance while GA does not follow such a constant improvement. Also, it is clear that in each job group, the obtained
solution by PSO is completely better than the SA and GA. PSO starts with nearly 12% average RPDavg and becomes
less and less until it ends at nearly 7%. In addition, from the obtained results presented in Figure 11, it can be seen that
PSO significantly outperforms GA and SA in terms of total E/T. Also, it can be stated that the SA and GA algorithms are
not statistically different which means the t-test does not reject the null hypothesis of the equality of SA and GA. So,
the results indicate that the performance of the proposed PSO is consistently better than the suggested GA and SA in all
conducted experimental tests. Thus, PSO is recommended for solving the proposed problem.

Artificial Intelligence EvolutionVolume 2 Issue 2|2021| 131

0

5

10

15

20

25

30
RP

D
av

g

PSO
SA
GA

Jobs 14 16 30 40 14 16 30 40

Jobs

PSO

SA

GA

R
PD

av
g

0

15

5

20

10

25

30

Figure 12. The comparison of the average RPDavg for job groups

6. Conclusions and future work
This paper discussed the problem of scheduling uniform parallel machines with past-sequence-dependent setup

time, position-based learning effect, and processing set restrictions to minimize the total earliness/tardiness costs. The
idea of the considered problem has arisen from several industries such as the automotive brake systems industry. A new
mixed-integer linear programming has been presented to model this problem. Since the problem is strongly NP-hard, the
proposed mathematical model just finds optimal solutions for the small-sized problems in a reasonable computational
time. Therefore, to find the near-optimal solution for large-sized problems within reasonable times, three meta-heuristic
algorithms, genetic algorithm, simulated annealing, and particle swarm optimization algorithm are presented. Also,
a heuristic algorithm is proposed for calculating the best JIT objective function based on a given sequence of jobs.
The three proposed meta-heuristic algorithms benefit from this exact method. All the proposed algorithms can find
optimal solutions for small-sized instances in a very short time. Furthermore, through quite extensive computational
experiments, it has been found that the proposed PSO outperforms the other two algorithms, and thus it is recommended
as the best solution approach. Developing the model with other objective functions, considering the sum of processing-
time-based learning effect instead of position-based learning effect and release date instead of processing set restrictions
can be investigated for future research.

Conflict of interest statement
The authors declare no competing financial interest.

References
[1]	 Shokoufi K, Rezaeian J. An exact solution approach using a novel concept for single machine preemptive

scheduling problem in the just-in-time production system. Journal of Industrial and Production Engineering. 2020;

Artificial Intelligence Evolution 132 | Javad Rezaeian, et al.

37(5): 215-228. Available from: https://doi.org/10.1080/21681015.2020.1772384.
[2]	 Allahverdi A, Ng CT, Cheng TE, Kovalyov MY. A survey of scheduling problems with setup times or costs.

European Journal of Operational Research. 2008; 187(3): 985-1032.
[3]	 Ying KC, Lee ZJ, Lin SW. Makespan minimization for scheduling unrelated parallel machines with setup times.

Journal of Intelligent Manufacturing. 2012; 23(5): 1795-1803.
[4]	 Rezaeian J, Mohammad-Hosseini S, Zabihzadeh S, Shokoufi K. Fuzzy scheduling problem on unrelated parallel

machine in JIT production system. Artificial Intelligence Evolution. 2020; 1(1): 17-33.
[5]	 Ramezani P, Rabiee M, Jolai F. No-wait flexible flowshop with uniform parallel machines and sequence-dependent

setup time: A hybrid meta-heuristic approach. Journal of Intelligent Manufacturing. 2015; 26(4): 731-744.
[6]	 Cota LP, Coelho VN, G uimarães FG, Souza MJ. Bi-criteria formulation for green scheduling with unrelated

parallel machines with sequence-dependent setup times. International Transactions in Operational Research. 2021;
28(2): 996-1017.

[7]	 Ahmadizar F, Mahdavi K, Arkat J. Unrelated parallel machine scheduling with processing constraints and sequence
dependent setup times. Advances in Industrial Engineering. 2019; 53(1): 495-507.

[8]	 Vallada E, Ruiz R. A genetic algorithm for the unrelated parallel machine scheduling problem with sequence
dependent setup times. European Journal of Operational Research. 2011; 211(3): 612-622.

[9]	 Rezaeian J, Zarei M, Shokoufi K. Pareto-based multi-criteria evolutionary algorithm for a parallel machines
scheduling problem with sequence-dependent setup times. International Journal of Engineering. 2017; 30(12):
1863-1869.

[10]	Kim HJ, Lee JH. Scheduling uniform parallel dedicated machines with job splitting, sequence-dependent setup
times, and multiple servers. Computers & Operations Research. 2021; 126: 105115.

[11]	Biskup D. A state-of-the-art review on scheduling with learning effects. European Journal of Operational
Research. 2008; 188(2): 315-329.

[12]	Azzouz A, Ennigrou M, Said LB. Solving flexible job-shop problem with sequence dependent setup time and
learning effects using an adaptive genetic algorithm. International Journal of Computational Intelligence Studies.
2020; 9(1-2): 18-32.

[13]	Shokoufi K, Rezaeian J, Shirazi B, Mahdavi I. Preemptive just-in-time scheduling problem on uniform parallel
machines with time-dependent learning effect and release dates. International Journal of Operational Research.
2019; 3: 339-368.

[14]	Azadeh A, Goodarzi AH, Kolaee MH, Jebreili S. An efficient simulation-neural network-genetic algorithm for
flexible flow shops with sequence-dependent setup times, job deterioration and learning effects. Neural Computing
and Applications. 2019; 31(9): 5327-5341.

[15]	Kuo WH, Hsu CJ, Yang DL. Some unrelated parallel machine scheduling problems with past-sequence-dependent
setup time and learning effects. Computers & Industrial Engineering. 2011; 61(1): 179-183.

[16]	Liao B, Wang X, Zhu X, Yang S, Pardalos PM. Less is more approach for competing groups scheduling with
different learning effects. Journal of Combinatorial Optimization. 2020; 39(1): 33-54.

[17]	Li D, Wang J, Qiang R, Chiong R. A hybrid differential evolution algorithm for parallel machine scheduling of lace
dyeing considering colour families, sequence-dependent setup and machine eligibility. International Journal of
Production Research. 2021; 59(9): 2722-2738.

[18]	Huo Y, Leung JYT. Parallel machine scheduling with nested processing set restrictions. European Journal of
Operational Research. 2010; 204(2): 229-236.

[19]	Gokhale R, Mathirajan M. Scheduling identical parallel machines with machine eligibility restrictions to minimize
total weighted flowtime in automobile gear manufacturing. The International Journal of Advanced Manufacturing
Technology. 2012; 60(9): 1099-1110.

[20]	Perez-Gonzalez P, Fernandez-Viagas V, García MZ, Framinan JM. Constructive heuristics for the unrelated parallel
machines scheduling problem with machine eligibility and setup times. Computers & Industrial Engineering. 2019;
131: 131-145.

[21]Rezaeian J, Derakhshan N, Mahdavi I, Alizadeh Foroutan R. Due date assignment and JIT scheduling problem
in blocking hybrid flow shop robotic cells with multiple robots and batch delivery cost‎. International Journal of
Industrial Mathematics. 2021; 13(2): 145-162.

[22]	Baker KR, Trietsch D. Principles of sequencing and scheduling. John Wiley & Sons; 2013.
[23]	Graham RL, Lawler EL, Lenstra JK, Kan AR. Optimization and approximation in deterministic sequencing and

scheduling: A survey. Annals of Discrete Mathematics. 1979; 5: 287-326.
[24]	Hall NG, Posner ME. Earliness-tardiness scheduling problems, I: weighted deviation of completion times about a

common due date. Operations Research. 1991; 39(5): 836-846.

https://doi.org/10.1080/21681015.2020.1772384

Artificial Intelligence EvolutionVolume 2 Issue 2|2021| 133

[25]	Biskup D. Single-machine scheduling with learning considerations. European Journal of Operational Research.
1999; 115(1): 173-178.

[26]	Holland JH. Adaptation in natural and artificial systems. University of Michigan, Ann Arbor; 1975.
[27]	Henderson D, Jacobson SH, Johnson AW. The theory and practice of simulated annealing. Handbook of

metaheuristics. Springer, Boston, MA; 2003. p. 287-319.
[28]	Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN’95-international conference on neural

networks. IEEE; 1995. p. 1942-1948.
[29]	Potts CN, Van Wassenhove LN. A decomposition algorithm for the single machine total tardiness problem.

Operations Research Letters. 1982; 1(5): 177-181.

	OLE_LINK4
	_GoBack
	_Hlk84864804
	_Hlk84864827
	_Hlk84864835
	OLE_LINK3

