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Abstract: Inspired by a real industrial case, this study deals with the problem of scheduling jobs on uniform parallel 
machines with past-sequence-dependent setup times to minimize the total earliness and tardiness costs. The paper 
contributes to the existing literature of uniform parallel machines problems by the novel idea of considering position-
based learning effects along with processing set restrictions. The presented problem is formulated as a Mixed Integer 
linear programming (MILP) model. Then, an exact method is introduced to calculate the accurate objective function 
in the just-in-time (JIT) environments for a given sequence of jobs. Furthermore, three meta-heuristic approaches, (1) 
a genetic algorithm (GA), (2) a simulated annealing algorithm (SA), and (3) a particle swarm optimization algorithm 
(PSO) are proposed to solve large size problems in reasonable computational time. Finally, computational results of the 
proposed meta-heuristic algorithms are evaluated through extensive experiments and tested using ANOVA followed by 
t-tests to identify the most effective meta-heuristic. 

Keywords: earliness-tardiness scheduling, uniform parallel machine, heuristic algorithm, setup time, learning effect, 
processing set restrictions

1. Introduction
 Production scheduling is one of the main sectors of supply chain management and has always been one of the 

most important issues for manufacturers, especially in the Just-In-Time (JIT) production system [1]. Considering setup 
time usually happens in industrial settings when various types of jobs are processed on machines. There are two types 
of setup time: sequence-independent and sequence-dependent. In the first type, the setup time is usually added to the 
job processing time while in the second type, the setup time depends not only on the job currently being scheduled 
but also on the last scheduled job. Allahverdi et al. provided an extensive review of scheduling problems with setup 
times, including the parallel machines cases [2]. Considering sequence-dependent setup times, Ying et al. investigated 
unrelated machine scheduling problems. They presented a restricted simulated annealing (RSA) algorithm to minimize 
makespan [3]. Rezaeian et al. dealt with unrelated parallel machine scheduling problems with sequence-dependent setup 
times under a fully fuzzy environment to minimize total weighted fuzzy earliness and tardiness penalties [4]. Ramezani 
et al. studied a no-wait scheduling problem in a flexible flow shop environment with uniform parallel machines 
considering anticipatory sequence-dependent setup times to minimize makespan and developed a hybrid meta-heuristic 
to tackle the problem [5]. Cota et al. investigated unrelated parallel machine scheduling problems with sequence-
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dependent setup times to minimize makespan and total consumption of electricity [6]. They considered independent and 
non-preemptible jobs and employed a novel meta-heuristic algorithm, named multi-objective smart pool search meta-
heuristic to find near-Pareto solutions. Ahmadizar et al. dealt with an unrelated parallel machine scheduling problem 
with machine eligibility to minimize the total earliness and tardiness [7]. Setup times are both sequence-dependent and 
machine-dependent. Vallada and Ruiz proposed a Mixed Integer Programming (MIP) model formulation and a genetic 
algorithm to minimize makespan on unrelated parallel machine scheduling problems with sequence-dependent setup 
times [8]. Rezaeian et al. studied unrelated parallel machine scheduling problems with sequence-dependent setup time 
to minimize the sum of weighted earliness and tardiness costs and developed a mathematical formulation and a Pareto-
based algorithm for the regarded problem [9]. Kim and Lee addressed a uniform parallel dedicated machine scheduling 
problem with machine eligibility, job splitting, sequence-dependent setup times, and limited setup servers and proposed 
a heuristic algorithm to tackle the problem [10].

During the last two decades, the topic of learning effects which is very popular in scheduling problems has been 
occasionally studied together with the topic of setup time. Biskup prepared a comprehensive review of scheduling 
problems with learning effects [11]. He categorized the models in the literature into two diverse classes: (1) the position-
based learning problems, and (2) the sum of processing-time-based learning problems. Azzouz et al. employed an 
adaptive genetic algorithm to solve a flexible job-shop problem with sequence-dependent setup times and the learning 
effects to minimize makespan [12]. Shokoufi et al. addressed uniform parallel machine scheduling problems with 
time-dependent learning effect, release date, and allowable preemption to minimize the total weighted of earliness 
and tardiness penalties [13]. Azadeh et al. studied stochastic flexible flow shop with sequence-dependent setup times, 
job deterioration, and learning effects [14]. They presented an integrated approach based on artificial neural network 
(ANN), genetic algorithm (GA), and computer simulation to minimize the total tardiness of jobs in the sequences. Kuo 
et al. considered the total absolute deviation of job completion times and the total load on all machines as scheduling 
measures [15]. They studied unrelated parallel machine problems with past-sequence-dependent setup time and learning 
effects; showed that the proposed problem remains polynomial solvable. Liao et al. dealt with a two-competing group 
scheduling problem on serial-batching machines to minimize the makespan with some specific considerations [16]. 
Setup times and truncated job-dependent learning effects are taken into account, some structural properties and a greedy 
algorithm were proposed. 

In addition to the above, many manufacturing constraints are caused by situations where machines have different 
capabilities and proficiency levels when facing tasks to be processed. These constraints may be due to limited speed, and 
lack of specific constituents which only some of the machines are equipped with. Li et al. proposed a hybrid differential 
evolution (HDE) algorithm embedded with chaos theory and two local search algorithms to minimize the total tardiness 
of a parallel machine scheduling problem with different color families, sequence-dependent setup times, and machine 
eligibility restriction [17]. Huo and Leung considered a scheduling problem of parallel machines in which each job 
can only be scheduled on a subset of machines [18]. They proposed an improved algorithm to minimize the makespan. 
Gokhale and Mathirajan addressed parallel machines with sequence-dependent setup times, unequal release times, and 
machine eligibility restrictions to minimize total weighted flow time [19]. Perez-Gonzalez et al. modeled unrelated 
parallel machines with machine eligibility and sequence-dependent setup times to minimize the total tardiness [20]. 
They selected and adapted some existing heuristics and a metaheuristic from related problems, as well as proposed a set 
of heuristics with novel repair and improvement phases as solution approaches.

One of the important objective functions in the literature is to minimize the sum of earliness and tardiness (E/T). 
JIT scheduling has emerged as a response to the necessity of fulfilling each customer’s order at their most desired time 
[21]. In a JIT scheduling environment, the objective is to complete each job as close to its due date as possible [22]. 
Many research papers on scheduling problems have been published with both earliness and tardiness penalties. Based on 
the study of the literature, and to the best of the authors’ knowledge, the uniform parallel machines scheduling problem 
which considers scheduling problem which considers, position-based learning effect, and processing set restrictions 
have not yet been investigated. Hence, this problem is addressed in this study to minimize the sum of earliness and 
tardiness. Following the notation system introduced by Graham et al. [23], the proposed problem is denoted as Q|Mj, Sij, 
LE|ΣEj + Tj that is known to be strongly NP-hard because the simpler case of the E/T problem is an NP-hard problem [24]. 
To obtain the exact solution of the problem, a mathematical programming model is proposed. Also, three meta-heuristic 
algorithms for solving large-sized problems are presented. Furthermore, a heuristic algorithm is proposed to compute 
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the objective function of a given sequence.
The rest of the study is organized as follows: In Section 2, the problem under study is defined. The proposed 

mathematical model is presented in Section 3. In Section 4, a heuristic algorithm and three meta-heuristic algorithms 
are proposed and used to solve the sample problems. The experimental results and evaluations are given in Section 5. 
Finally, Section 6 provides conclusions of the study and suggests some directions for future researches.

2. Problem definitions
The automobile brake system industry is a real example of the considered problem. The brake system is the most 

important safety measure for cars. Drivers can safely stop or slow down the vehicle by repetitively actuating the system. 
Most brake systems make use of the hydraulic principle to convert pedal movement into braking force. Master cylinder 
is a critically important component in the conversion of pedal movement into hydraulic pressure. Master cylinder 
assembly is composed of four main parts; a cylinder body, a fluid reservoir, a primary piston, and a secondary piston 
made of steel or aluminum alloys. In the manufacturing process of master cylinder assembly, a set of n jobs Jj, j = 
1,…, n are available at time zero. Pistons are processed by a set of similar machines M = {M1, M2, …, Mk} which are 
used in parallel. These parallel machines are categorized as either identical or uniform. Here, we considered uniform 
parallel machines for generality. This means that the processing time pjk of any job j on machine k is equal to pj /vk. 
These machines are assumed to be continuously available and breakdown does not occur. Each machine can handle at 
most one job at a time, and each job can be processed on at most one machine at a time. Once the piston manufacturing 
process begins, the process cannot be stopped and resumed later. So, preemption is not allowed in this process, but idle 
time between two jobs is permitted.

Also, there are setup times between two consecutive parts that should be considered. Sij denotes past-sequence-
dependent setup time when job j follows job i. Besides, setup times are entirely separate from the processing times. 
On the other hand, parallel machines are mostly semi-automatic in this process, so, operator’s skill affects the number 
of products. In this research, Biskup’s position-based learning effect is employed [25]. The learning effects are just 
considered on the processing times. The learning effects on setup times are neglected because of short setup times. In 
addition, each job Jj can only be processed on a certain subset Mj ⊆ M of the machines called its processing set.

The ultimate goal is to achieve just-in-time (JIT) production, The tardiness of job j is defined as Tj = max(0, Cj - 
dj) and the earliness is defined as Ej = max(0, dj - Cj), where Cj and dj denote the completion time and the due date of 
job j, respectively. The objective function is to minimize the sum of earliness/tardiness costs for all jobs.

3. The proposed mathematical model
3.1 Indices

i, j    index for jobs
r    index for positions
k    index for machines

3.2 Parameters

n    number of jobs and number of positions
m    number of machines
dj    due date of job Jj
pj    processing time of job Jj

Vk    speed of machine k
a    learning index
F    a large positive number
Sij    past-sequence-dependent setup time of job j if job i precedes job j
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3.3 Decision variables

Cj    completion time of job Jj 
Pjrk    processing time of job j when it is processed on machine k in position r
Ej    earliness of job Jj, Ej = max(0, dj - Cj)
Tj    tardiness of job Jj, Tj = max(0, Cj - dj) 
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The objective function seeks to minimize the sum of E/T costs over all jobs. Constraint (1) is used to calculate the 
actual processing time of a job j if it is scheduled on machine k in position r. Constraint (2) ensures that each job can 
only take one position on one machine. Constraint (3) guarantees that each position on each machine can be assigned 
to at most one job. Constraint (4) ensures that there are no empty positions before a filled position. If a given job j is 
processed on a given machine k in position r + 1, a predecessor i must be processed on the same machine in position 
r. If job j is assigned to machine k in any position, constraint (5) guarantees machine k should be able to process job j. 
Constraint (6) ensures that completion time of job j is greater than or equal to the processing time of job j on machine k 
in the first position.

Constraint (7) establishes the relationship between the completion times of jobs i and j as long as both jobs are 
assigned to the same machine. Using the binary variables Yirk and Yjr+1k, and the large number F, this constraint enforces 
that there is sufficient time between the completion of jobs i and j based on the order of job precedence. Also, this 
restriction can consider the machine idle time if jobs i and j are assigned to machine k in positions r and r + 1, i.e., Yirk = 1, 
Yjr+1k = 1, the completion time of job j(Cj) must be greater than or equal to the completion time of job i plus the setup 
time between jobs i and j and the processing time of job j in position r + 1. Constraints (8) and (9) calculate earliness 
and tardiness costs for each job, respectively. Finally, constraints (10) and (11) specify the range of decision variables.

4. Heuristic algorithms
Due to the NP-hardness of the proposed problem, developing efficient heuristic algorithms would be a good 

approach to achieve near-optimal solutions in a reasonable computational time. Hence, three meta-heuristics are 
employed in this paper; namely, genetic algorithm (GA), simulated annealing (SA), and particle swarm optimization 
(PSO). 

The reason for using these algorithms is because of their special and strong features which made them become 
popular algorithms in scheduling problems. GA is a powerful and extensive applicable stochastic search and 
optimization technique guided by the principles of evolution and natural genetics. GA is an efficient, adaptive, and 
robust search process. Similar to GA, PSO is also a population-based optimizer. Although PSO does not use the 
crossover and mutation operators as GA does, it finds the optimum solution through individual improvement plus 
population cooperation and competition to form robust exploration and exploitation of the solution space in a short 
time. Finally, SA is an intelligent method that uses a repetitive improvement approach, but it probabilistically permits 
deteriorating movements to escape from local optimum solutions. This algorithm is fast and very easy to code. In 
addition, to find the minimum objective function for a given sequence, a heuristic algorithm named the ‘JIT objective 
heuristic algorithm’ is proposed which is used by the three proposed meta-heuristic algorithms as an objective calculator. 

4.1 JIT objective heuristic algorithm

An algorithm is introduced here for the calculation of the total weighted earliness and tardiness penalties. The 
objective function of the proposed model (sum of earliness and tardiness penalties) is a subclass of the presented 
algorithm. The steps of the proposed heuristic algorithm are as follows: 

1. At first, process jobs without any idle time based on the given sequence. 
2. Calculate the E/T value of each job. Consider the E/T penalty of each job by the following conditions.
2.1 If a processed job has earliness, regard its earliness penalty as a positive number.
2.2 If a processed job has tardiness, regard its tardiness penalty as a negative number.
2.3 If a job is processed at its due date, regard its tardiness penalty as a negative number.
Therefore, until now, the procedures of steps 1, 2, and 3 are shown in the following table: 
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Table 1. The primitive calculations and positions of values

Sequence J2 J5 J1 J3 J4

Status γ2 γ5 γ1 γ3 γ4

Penalty β2 β6 β1 β3 β4

Where the ‘sequence’ row shows a given sequence of jobs (here, this sequence is hypothetical); the ‘status’ row 
indicates the E/T value of jobs, and the ‘penalty’ row demonstrates the E/T penalty of jobs. 

In step 1, calculate the completion time of each job for the given sequence without considering any idle time 
between jobs using the following equation:

(12)[ ]   ,i k
k

C P i k= ∀∑

In step 2, calculate the E/T value for each job using the following equation:

(13)[ ]   ,i i k
k

d P i kγ = - ∀∑

Where p[k] denotes the normal processing time of the job scheduled in the kth position in the sequence and di 

denotes the due date of job i. For example, γ5 = d5 - (p2 + p5), γ1 = d1 - (p2 + p5 + p1), and γ3 = d3 - (p2 + p5 + p1 + p3).
3. Validation test: In the status row of the remained jobs, select the first job with earliness value and add its penalty 

to the penalty of the next jobs. This procedure continues until the summation reaches the first zero value or the first 
negative value. If at any stage of the summation operation, the sum of penalties remains positive until the last job, this 
set is a valid set, then go to step 3.2; otherwise, it is called ‘invalid set’, then go to step 3.1. Therefore, an invalid set 
starts with a first selected job having earliness value and ends with a job that sum of the E/T penalties of jobs until then 
reaches the first zero value or the first negative value.

3.1 Exclude the invalid set from algorithm calculation. If any job with earliness value exists after the invalid set, 
then go to step 3; otherwise, go to step 4.

3.2 In the condition row of the valid set, select the minimum earliness value and then subtract this value from all 
the values of the valid set. Then, update the penalty row for each job by rules of 2.1, 2.2, and 2.3. If another earliness 
value still exists in the remained jobs, then go to step 3; otherwise, go to step 4.

4. Calculate the completion time of each job and the total cost using the following equations. 

(14)i i iC d γ= -

(15)
1Total cost = n

i ii γ β= ×∑

Where n, Ci, and γi refer to the number of jobs, the completion time of each job, and E/T of each job, respectively.
5. End of the algorithm
The proposed heuristic algorithm is depicted in Figure 1.
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Figure 1. The proposed JIT objective heuristic algorithm

For clarification, an instance is investigated. Assume that a given sequence of 6 jobs is selected by a selection 
strategy which a meta-heuristic may apply in iterations. The selected sequence of jobs is equal to J3, J6, J2, J4, J1, J5. 
Also, the values of the parameters are shown in Table 2. Furthermore, Figure 2 shows the scheduling of the given 
sequence based on the proposed heuristic algorithm.

Table 2. Problem parameters

jobi pi di αi βi

J1 6 29 2 1

J2 7 11 2 3

J3 2 4 4 3

J4 3 23 4 2

J5 4 30 1 1

J6 8 9 3 2

Step 1. 
Based on the given sequence, jobs are processed without any idle time.
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Figure 2. Jobs scheduled without any idle time

Step 2. 
Based on the jobs processed at the previous step, the E/T is calculated for each job and the results are listed in 

Table 3.

Table 3. Results of jobs scheduled in step 1

Jobs J3 J6 J2 J4 J1 J5

Condition 2 -1 -6 2 3 0

Penalty 4 -2 -3 4 2 -1

In Table 3, it can be seen that for example, J4 has 2 units of earliness with the weight of 4; or for J2, the number 
(-6) shows that J2 has 6 units of tardiness and (-3) is the weight of its tardiness that is denoted as a negative value as 
mentioned in step 2.2. Also, the value of the condition row of J5 is equal to zero which means this job is processed on its 
due date, and the tardiness weight for it is considered as mentioned in step 2.3. 

Step 3. 
The first job with earliness is J3. So, the sum of the penalties of J3 to J5 is calculated. As shown in Table 4, it can be 

observed that the sum of the penalties of J3, J6, and J2 are equal to 4 - 2 - 3 = -1 which means this set is invalid. Thus, 
go to step 3.1.

Step 3.1. 
The invalid set is excluded from the algorithm because this set doesn’t assure to improve the objective function. 

Thus, as displayed in Table 5, the remaining jobs are J4, J1, and J5. Also, there is at least one job with earliness. So, go to 
step 3 again.

Table 4. The first invalid set

Jobs J3 J6 J2

Condition 2 -1 -6

Penalty 4 -2 -3

Table 5. Remained jobs

Jobs J4 J1 J5

Condition 2 3 0

Penalty 4 2 -1
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Step 3. 
J4 is the first job with earliness. So, the sum of the penalties of J4 to J5 is calculated. The sum of the penalties of J4, 

J1, and J5 is equal to 4 + 2 - 1 = 5 which means this set is valid (see Table 6). Thus, go to step 3.2.

Table 6. The first valid set

Jobs J4 J1 J5

Condition 2 3 0

Penalty 4 2 -1

Step 3.2.
In the valid set as it can be seen in Table 7, the minimum positive value is 2 that belongs to J4. So, this value is 

subtracted from all of the condition values of the valid set. With regards to the changes of the condition value for each 
job, the earliness or tardiness penalty is returned. The Table 7 is updated as follows:

Table 7. The updated first valid set 

Jobs J4 J1 J5

Condition 0 1 -2

Penalty -2 2 -1

Since at least a positive value still exists, return to step 3. 
Step 3.
Here, the first and only positive value is 1 that belongs to J1. So, the validation of the set of J1 to J5 is examined. 

The sum of the penalties of J1 and J5 is equal to 2 - 1 = 1 which means this set is valid (see Table 8). Thus, go to step 3.2. 
Furthermore, the value of the condition row of J4 is equal to zero. So, this job is also excluded from the algorithm (see 
Table 9). Because this job doesn’t improve the objective value anymore.

Table 8. The second valid set

Jobs J1 J5

Condition 1 -2

Penalty 2 -1

Table 9. The excluded job

Jobs J4

Condition 0

Penalty -2
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Step 3.2
So, this value is subtracted from all of the condition values of the valid set. Thus, the updated valid set is shown in 

Table 10.

Table 10. The second updated valid set

Jobs J1 J5

Condition 0 -3

Penalty -1 -1

It can be seen, there is no more positive value. So, we go to step 4. In this step, the completion time of each job and 
the total cost are calculated. Also, the final values are shown in Table 11. The final table is composed of Tables 4, 9, and 
10.

Table 11. The final results

Jobs J3 J6 J2 J4 J1 J5

Condition 2 -1 -6 0 0 -3

Penalty 4 -2 -3 -2 -1 -1

Step 4. 
According to formulas (14) and (15), the completion time of each job and total cost are calculated.

C3 = 4 - 2 = 2, C6 = 9 - (-1) = 10, C2 = 11 - (-6) = 17, C4 = 23 - 0 = 23, C1 = 29 - 0 = 29 and C5 = 30 - (-3) = 33

    Total coast = 2 × 4 + (-1) × (-2) + (-6) × (-3) + 0 × (-2) + 0 × (-1) + (-3) × (-1) = 31

Step 5. 
End of the algorithm
In section 5, 24 small size test problems are defined in Table 12 to validate the presented JIT objective heuristic 

algorithm in obtaining optimum solutions.

4.2 Genetic algorithm

GAs are intelligent random search strategies with the ability to find near-optimal solutions in complex search 
spaces without derivative information. The basic concepts of GA have been described by the investigation carried out by 
Holland [26]. The components of the GA applied to solve the proposed problem are described as follows.

4.2.1 Chromosome representation and the initial population

Chromosome representation has a crucial impact on GA’s performance. A good representation scheme is necessary 
to describe the specific characteristics of a given problem in detail. Here, each chromosome is a matrix with (m, n) 
dimensions which m and n refer to the number of machines and the number of jobs, respectively. So, each chromosome 
is divided into n × m positions. An example is presented to illustrate the procedure. Four jobs on 2 machines are 
considered. The processing set of J1 is {M1}, for J2 is {M2} and the processing set of J3 and J4 are {M1, M2}. Figure 
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3 shows several feasible chromosomes. The empty positions are shown by a value of zero. Furthermore, according 
to constraints (4) and (5) in the proposed mathematical model, chromosome representation in Figures 4 and 5 is not 
correct. The GA is formed by a population of Psize individuals, where each individual consists of m rows (machines) and 
n columns (jobs). 

1 0 0 0

3 2 4 0

1 3 0 0

 2 4 0 0

1 3 4 0

2 0 0 0

Figure 3. Feasible chromosomes

0 0 1 0

3 0 4 2

Figure 4. Infeasible chromosome

1 2 0 0

3 4 0 0

Figure 5. Infeasible chromosome

In a genetic algorithm, it is also common to randomly generate the initial population. The same way is employed in 
this study to generate individual chromosomes.

4.2.2 Fitness function

The objective here is to minimize the sum of E/T. By calculating the completion time, earliness and tardiness of 
each job are obtained applying equations (16) and (17), respectively. 

max(0,  )i i iE d c= - (16)

max(0,  )i i iT c d= - (17)

Thus, the fitness function of each chromosome can be calculated as follows:

(18)
1

( )
n

i i
i

F E T
=

= +∑
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4.2.3 Selection strategies

In selection strategies, it is important to prevent the algorithm from converging quickly to a local minimum. The 
roulette-wheel method uses a probability distribution for selection in which the selection probability of a given string is 
proportional to its fitness. Thus, a more fitted string is more likely to be selected, but a bad string still has its chance. In 
this paper, the roulette-wheel method is applied to select the parents for crossover and mutation. The probability pi of 
selecting a particular individual i in the minimization problem is given by:

(19)

1

1

1
i

i N
j

j

f
p

f=

=
∑

Where fi is the fitness of individual i and N is the size of the population. 

4.2.4 Crossover

The crossover operator is an important component of GA. A crossover operation is employed to generate new 
offspring from randomly selected pairs of parents by uniting them. One of the most used crossover operators is the 
One Point Order Crossover adapted to the parallel machine case; such that, for each machine, one-point p is randomly 
selected from parent 1, and jobs from the 1st position to the pth position are copied to the offspring. In Figure 6, an 
example of 8 jobs and two machines is given. Two parents are shown and for each machine, a point p is selected. Point 
p1 (machine 1) is set to 2 and point p2 (machine 2) is set to 3. At first, the offspring is formed with the genes (jobs) of 
parent A from position 1 to 2 on machine 1, and from position 1 to 3 on machine 2. Then, the genes of parent B which 
do not exist in the offspring, are inserted in the next positions of the offspring on the same machine. If a position with 
the value of zero is selected for point p, then another selection must be done until a non-zero position is found.

                 

1 3 6 0 0 0 0 0

2 4 7 5 8 0 0 0

5 3 7 8 2 0 0 0

1 4 6 0 0 0 0 0

1 3 5 8 0 0 0 0

2 4 7 6 0 0 0 0

p1 = 2

Parent A

Parent B

Offspring

p2 = 3

Figure 6. Crossover operator

4.2.5 Mutation and reproduction

The purpose of the mutation is to ensure that diversity is maintained in the population. It creates a new 
chromosome by altering the place of the genes. The mutation operator is applied individually to each chromosome. In 
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this paper, the swapping method is used. In this method, two random genes are selected and their positions are swapped. 
The procedure is as follows. Searching space for selecting the first gene is the interval [1, n] on each machine that n 
refers to the number of jobs scheduled on that machine, and the second gene is selected from [1, n + 1]. These rules 
improve the performance of the mutation operator by searching the effective space. Also, the searching spaces of the 
first gene and the second gene are shown in Figure 7 and Figure 8, respectively. Therefore, based on the defined rule, 
one random gene is selected and is kept as a first gene, then another gene is selected randomly. If two genes are capable 
of being exchanged under processing set restrictions, then these two genes are swapped; otherwise, another second 
gene is selected randomly. This procedure will continue until the first selected gene can swap with another gene. Figure 
9 shows this procedure. In this method, if the second gene is a filled position by a job, then the mutated chromosome 
remains feasible. But, if the second gene is in an empty position, then the mutated chromosome is infeasible. So, in the 
second case, the procedure is as follows. The first gene is inserted in the second gene’s position. The jobs after the first 
gene will be shifted one position to the left at the same machine and the second gene will be inserted after the scheduled 
jobs on that machine. This procedure is depicted by two examples in Figure 10.

6 3 5

2 4 7

8 1

Figure 7. Searching space for the first gene

6 3 5 0

2 4 7 0

8 1 0

Figure 8. Searching space for the second gene

                                  

Before mutation

1 3 5 0 0 0 0 0

2 4 7 0 0 0 0 0

8 6 0 0 0 0 0 0

After mutation

6 3 5 0 0 0 0 0

2 4 7 0 0 0 0 0

8 1 0 0 0 0 0

First gene

Second gene

Figure 9. The first case of the mutation operator

Reproduction plays an important role in the successful convergence of the algorithm. It is performed by the 
elitism procedure. In this strategy, the best individuals which have minimum fitness are kept and passed on to the next 
generation. Here, the number of best individuals kept is a parameter of the algorithm.
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Before mutation

1 3 5 0 0 0 0 0

2 4 7 0 0 0 0 0

8 6 0 0 0 0 0 0

After mutation

1 3 5 4 0 0 0 0

2 7 0 0 0 0 0 0

8 6 0 0 0 0 0

Before mutation

1 3 5 0 0 0 0 0

2 4 7 0 0 0 0 0

8 6 0 0 0 0 0 0

After mutation

3 5 0 0 0 0 0 0

2 4 7 1 0 0 0 0

8 1 0 0 0 0 0

Second gene

First gene

First gene

Second gene

Figure 10. The second case of the mutation operator 

4.3 Simulated annealing (SA) algorithm

Simulated annealing (SA) provides a mechanism to escape from local optima by allowing hill-climbing moves. Its 
ease of implementation and convergence properties have made it a popular approach over the past two decades [27]. 
A standard SA begins with an initial random solution and an appropriate high temperature (T0). This temperature is 
periodically reduced by some temperature functions until the temperature becomes near to zero as the method progress 
(Tf). The main components of SA for implementation are as follows.

4.3.1 Creating the initial answer and neighborhood search

Based on the given explanation in section 4.2.1, a random answer is created. To generate a neighborhood of the 
current solution, one machine is randomly selected, then the scheduled job with the worsening E/T is selected at the 
same machine and then swapped with a random place under defined considerations in section 4.2.5. The randomly 
generated neighbor solution becomes a new solution if it improves the objective function; else, the neighborhood 

solution becomes a new solution with an appropriate probability based on 
( )

exp
E

Tp
-∆

= , where ΔE is a measure to 
which neighbor solution becomes worse than the current solution, and T is the temperature parameter of the current 
iteration. A random number between 0 and 1 is generated through a uniform distribution. If p > rand (0, 1), then the 
answer has deteriorated. Otherwise, another neighborhood will be chosen.
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4.3.2 Initial and final temperature

Temperature as a parameter plays an important role in rejecting or accepting the objective function. It should be 
high enough to make an equal chance for all points of the search space and simultaneously, it should not be very too 
high to avoid carrying out a lot of unnecessary searches in high temperatures. In this paper, the initial temperature is 
determined experimentally and the final temperature is obtained by Tf  = βT0.

4.3.3 Cooling ratio

The fundamental purpose of employing the annealing schedule is to control the behavior of SA. There are 
distinctive cooling ratios used in the SA literature. In this paper, the annealing schedule is calculated as follows:

(20)0( )( 1)NT T N
A

N
- +

=

(21)0( )B T A= -

(22)
1i

AT B
i

= +
+

Where N is the number of iterations to meet the final temperature, TN is the temperature in the final iteration that is 
equal to Tf and Ti is the temperature in iteration i.

4.4 Particle swarm optimization (PSO)

Introduced by Kennedy and Eberhart [28], PSO is a stochastic global optimization technique inspired by the social 
behavior of bird flocking. In PSO, every single solution is a particle in the search space and the set of particles forms the 
swarm. The position of ith particle in d-dimensional search space is represented by a d-dimensional vector Xi = (xi1, xi2, …, 
xid)(i = 1, 2, …, m). Also, the ith particle’s velocity is a d-dimensional vector, denoted by Vi = (vi1, vi2, …, vid)(i = 1, 2, …, 
m). The best position of the particle i obtained up to iteration t is denoted by Pi = (pi1(t), pi2(t), …, pid(t)), and the best 
position of the swarm in iteration t is denoted by Pg = (pg1(t), pg2(t), …, pgd(t)), respectively. In any iteration, positions 
and velocities are updated by the equations (23) and (24):

1 1 2 2(( 1) ( ) ( ) ( )) ( ) ( )( )id id id id gd idV t WV t C R P t X t C R P t X t+ = + - + - (23)

(24)( 1) ( ) ( 1)id id idX t X t V t++ = +

Where W is the inertia weight that controls the influence of the previous velocity of the particle. C1 and C2 are 
acceleration constants that drive particles towards local and global best positions. R1 and R2 are two random numbers 
within the range of [0, 1]. Eq. (23) is used to calculate the new velocities for particles and Eq. (24) updates each 
particle’s position in the search space. This process is repeated until a user-defined stopping criterion is reached. In this 
paper, a linear function is used to set the inertia weight. This function is as follows: 

(25)max min
max

max

W W
W W t

t
-

= -

Where Wmax and Wmin are set to 1 and 0, respectively. In addition, t shows the current iteration number and tmax 
shows the maximum iteration number.

Generally, to control the excessive roaming of particles outside the search space, the velocity of each particle 
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can be restricted to the interval [VminVmax]. Within the scope of this paper, the Vmin and the Vmax are equal to 0 and 1, 
respectively. Also, random particles are generated based on the given explanation in section 4.2.1. The overall structure 
of the proposed algorithm is shown in Algorithm 1.

Algorithm 1. The process of particle swarm optimization
Initialize a population of particles with random positions and velocities
Begin
repeat
for each particle i do
Update the position and the velocity of particle i
Evaluate the fitness value of particle i
If the current value of particle i is better than the pid
Then set pid to the current value
If pid is better than the global best position
Then set pgd to the current particle value
end for
until a termination criterion is met

5. Experimental results

Table 12. Name of generated test problems

na mb
t = 0.2 t = 0.4

R = 0.6 R = 0.8 R = 1 R = 0.6 R = 0.8 R = 1

6 2 Num01 Num02 Num03 Num04 Num05 Num06

6 4 Num07 Num08 Num09 Num10 Num11 Num12

8 2 Num13 Num14 Num15 Num16 Num17 Num18

8 4 Num19 Num20 Num21 Num22 Num23 Num24

14 4 Num25 Num26 Num27 Num28 Num29 Num30

14 5 Num31 Num32 Num33 Num34 Num35 Num36

16 4 Num37 Num38 Num39 Num40 Num41 Num42

16 5 Num43 Num44 Num45 Num46 Num47 Num48

30 5 Num49 Num50 Num51 Num52 Num53 Num54

30 6 Num55 Num56 Num57 Num58 Num59 Num60

40 5 Num61 Num62 Num63 Num64 Num65 Num66

40 6 Num67 Num68 Num69 Num70 Num71 Num72

                                      na = number of jobs, mb = number of machines

The objective of the computational experiments described in this section is to evaluate the performance of the 
proposed algorithms. Therefore, a set of test problems is needed for comparing the results of the proposed meta-
heuristic algorithms. To present the efficiency of the proposed approaches, problems with different sizes are considered. 
Small, medium and large size problems consist of 6, 8 jobs on 2, 4 machines, 14, 16 jobs on 4, 5 machines, and 30, 40 
jobs on 5, 6 machines, respectively. Each job  ji(i = 1, 2, …, n) has a randomly set of machines bi = U(1, m) to which 
it can be assigned. Speeds of machines are selected from the set {1, 0.6, 0.8}. Processing times are generated from the 
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discrete uniform distribution [1, 25] and setup times are uniformly distributed, ranging from 20% to 40% of the mean 
of the processing times. Setup time matrices are asymmetric. It is seen that in manufacturing systems and especially in 
assembly lines, the learning rate fits the 80% learning curve. In this paper, the same rate is also used as a learning rate. 

Due dates of jobs are generated from a uniform distribution [ (1 ),  (1 )]
2 2max max
R RC t C t- - - +  as suggested by Potts and 

Wassenhove [29], where max 1,  ,n
ii

P nsC P p
m =
+

= ∑  n and m refer to the number of jobs and machines, respectively. s 

is the average setup time ( )
2

min maxs s+
, Smin and Smax are equal to the lower and upper bound of the setup times interval, 

respectively. This method is controlled by two parameters, t and R. t is the priority factor that takes the values {0.2, 
0.4}, and R is the due date range factor that takes the values {0.6, 0.8, 1}. So, there are six instances considered for 
each problem size. Each problem runs 10 times. Thus, for each meta-heuristic, there are 720 runs in total. The name of 
generated test problems with variable parameters is given in Table 12. The mathematical formulation (MILP) is solved 
using the global solver of LINGO 9.0. The proposed meta-heuristic algorithms are coded and run using MATLAB 7.11. 
All experimental tests are carried out on a computer Intel (R) core i5 (2.67 GHz CPU) with 512 MB RAM.

Table 13. The computational results of the proposed algorithms for small-sized problems

PSOSAGALINGO
Num

WMBWMBWMBOPT

19.0819.0819.0819.0819.0819.0819.0819.0819.0819.0801

10.4410.4410.4410.4410.4410.4410.4410.4410.4410.4402

16.7216.7216.7216.7216.7216.7216.7216.7216.7216.7203

33.3333.3333.3333.3333.3333.3333.3333.3333.3333.3304

30.8430.8430.8430.8430.8430.8430.8430.8430.8430.8405

16.6316.6316.6316.6316.6316.6316.6316.6316.6316.6306

9.366.966.3612.038.626.369.367.566.366.3607

13.9611.509.7613.9613.069.7612.9111.829.769.7608

26.1123.3222.7626.1123.3222.7626.1123.0922.7622.7609

0.560.340.000.560.280.000.830.370.000.0010

16.555.884.5616.556.164.5616.317.384.564.5611

19.4816.6615.9615.9615.9615.9622.7218.0115.9615.9612

49.7547.1146.1656.1749.8546.1649.7547.5046.1646.1613

54.9154.9154.9157.4855.5654.9154.9154.9154.9154.9114

46.1338.3934.1646.1339.3234.1651.2039.0134.1634.1615

38.9634.7632.9240.2337.4532.9238.9635.1932.9232.9216

26.7325.8723.2826.7323.7123.2826.7326.3023.2823.2817

74.6274.6274.6294.6282.5174.6274.6274.6274.6274.6218

19.5511.408.4021.1212.938.4019.5511.608.408.4019

22.0512.6410.5223.9213.8210.5222.4312.5110.5210.5220

7.701.830.9912.482.450.994.721.950.990.9921

16.2514.0113.2416.7014.2313.2418.2014.7913.2413.2422

17.4910.018.9917.0710.218.9919.1811.168.998.9923

15.3611.2310.4418.3111.6110.4416.9411.3610.4410.4424

25.1022.0221.0426.8022.8421.0425.5222.3421.0421.04mean
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The results of the small, medium and large size problems solved by the proposed methods are presented in Tables 
13, 14, and 15, respectively. For each test case, the best, mean, and worst solutions of the proposed meta-heuristics are 
given, where B denotes the best solution, M represents the mean solutions and W indicates the worst solutions.

Table 14.The computational results of the proposed algorithms for medium-sized problems

PSOSAGALINGO
Num

WMBWMBWMBOPT

31.3527.2625.0434.5329.6625.0443.2230.1725.04-25

44.0728.9225.2440.4829.2426.1646.4630.1625.24-26

20.7513.8512.3326.6418.4516.0621.9014.2212.33-27

39.5834.2631.640.7938.3335.2341.0835.5931.60-28

21.4014.8813.5225.7116.7715.0121.4020.1818.12-29

39.2427.5225.4840.2928.0124.7348.9230.2225.48-30

55.7947.6944.1656.4250.1145.9760.9850.6246.02-31

34.2624.4422.6338.3331.4027.7938.5636.1433.47-32

14.1312.9312.3817.3213.6411.9915.6611.6210.32-33

48.8635.7131.0551.3934.0729.8957.4945.6034.23-34

23.9218.6317.2531.8821.3618.2625.9720.0218.54-35

38.5534.9032.0242.6137.7832.0237.7634.5832.02-36

62.2154.7751.1982.2178.1969.2074.0170.7464.90-37

42.2237.8035.0050.8943.6338.2742.2239.0135.47-38

31.2523.7221.7638.4227.6624.7033.2426.5924.40-39

47.3642.4438.9451.3346.6242.0048.2546.3244.12-40

55.7445.7941.2650.0744.1840.0758.3146.2342.81-41

60.0355.8951.2863.2556.0450.9459.6252.1048.70-42

72.1967.3863.5780.7974.4766.4975.5369.2963.57-43

57.1055.9353.7864.0961.9056.5556.5355.3953.78-44

38.0633.6530.5950.2336.7130.5940.4834.5730.59-45

63.6152.4247.2966.9453.4347.2973.4757.5153.75-46

63.2949.9745.4365.2950.7745.7468.7249.0645.43-47

28.4422.2020.0036.4124.0120.0031.4922.0620.00-48

43.0635.9633.0347.7639.4335.0046.7238.6735.00-mean
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Table 15. The computational results of the proposed algorithms for large-sized problems

PSOSAGALINGO
Num

WMBWMBWMBOPT

136.62111.48105.17140.87120.26112.41136.62117.86112.41-49

58.1844.0141.1364.2350.2145.3260.5848.6745.13-50

28.2324.1622.4527.7323.0921.7630.2427.3324.49-51

100.2789.1483.31115.12106.82100.34110.1193.9286.96-52

107.2894.5188.33110.3597.5690.33104.4394.1288.79-53

31.3728.7127.2930.6226.7325.2035.9031.7729.18-54

143.82130.26124.06145.16133.35124.63150.22134.28124.33-55

44.4936.6533.6251.5345.9640.9057.2448.6143.59-56

33.5829.8528.1338.5532.4428.4433.5829.0926.94-57

173.74158.07150.52186.96170.49161.92180.68174.95171.11-58

60.1548.7645.1568.2156.1651.3568.2157.0352.25-59

22.4019.1917.7726.2023.4421.5126.6722.0119.18-60

256.82246.79239.60301.44291.09282.60283.25271.12260.69-61

125.87108.39102.21140.27122.20115.62125.87114.48107.85-62

88.2677.1173.6686.2473.2469.5890.6382.43476.20-63

236.92202.89191.41244.91226.44209.67253.22243.50217.41-64

65.0256.6153.8660.6254.9351.6864.6356.4453.55-65

100.8785.4379.6294.2287.3481.6398.5492.8084.36-66

225.18207.37200.12218.10203.24193.62230.24211.36198.02-67

115.3786.4780.81120.4795.4587.57115.3798.0887.57-68

68.2356.8753.4472.2657.0853.1868.2355.4951.86-69

151.88136.83130.47175.44155.00139.64198.95180.03163.66-70

75.1468.0463.8375.1468.3963.3287.9186.7278.13-71

27.1125.9825.0136.7332.1927.5733.4228.3826.04-72

103.290.5685.87109.6498.0491.65110.19100.0292.90-mean

5.1 Parameter setting

In this paper, the Taguchi method is utilized to determine the values of the parameters of GA, PSO, and SA. After 
several pretests, each of these parameters is set at three levels. Test problems are made of a variable number of jobs 
and machines. Each experiment is implemented five times. After completing the tests, Taguchi analysis is applied for 



Artificial Intelligence Evolution 126 | Javad Rezaeian, et al.

different values of parameters. The best values of the parameters of GA, PSO, and SA are listed in Table 16.

Table 16. Parameter settings of GA, PSO, and SA

GA PSO SA

The iteration number is 85 The iteration number is 80 The maximum iteration number is 100

The population size is 80 The particle number is 50 The final temperature coefficient of determination (β) is 0.01

The crossover rate is 0.6 The cognition learning factor: 
c1 = 2, c2 = 2 The iteration number in each temperature is 10

The mutation rate is 0.15 - The number of neighbors to determine the initial temperature is 90

5.2 Performance evaluation

According to Tables 13, 14, and 15, medium and large size problems cannot be solved using LINGO in a 
reasonable computational time. In order to find optimum or near-optimal solutions for medium and large-size problems 
in a reasonable time, heuristic algorithms are employed and two metrics are applied to evaluate the performance of the 
proposed algorithms. Since small size problems can be solved optimally by LINGO, the percentage relative error (PRE) 
is employed to assess the performance of the algorithms for small size problems. PRE is as follows:

  100
 

Heuristic solution Optimal solutionPRE
Optimal solution

-
= × (26)

For medium and large size problems, the relative percentage deviation (RPD) is employed to compare the 
efficiency of three proposed meta-heuristics. The RPD is computed as follows:

   100
  

Heuristic solution Best heuristic solutionRPD
Best heuristic solution

-
= × (27)

The average errors of these meta-heuristic methods and their computational times for the small, medium, and large 
size problems are given in Tables 17, 18, and 19, respectively. In addition, the average computational time, the average 
PREavg, and RPDavg for each job group are summarized in Table 20. Furthermore, after computing RPD, in order to 
make better comparisons between the proposed meta-heuristics, the analysis of variance (ANOVA) is conducted and 
relative percentage deviation means plot with least significant difference (LSD) intervals at a 95% confidence level are 
tested. Results are shown in Figure11. The LSD test consists of two phases. In the first phase, it uses the F statistic for 
testing overall equality (H0: µi = µj, for all i ≠ j). If the null hypothesis (H0) is not rejected (p - value > 0.05), then all 
means are expressed to be equal and the LSD test is finished. If the null hypothesis (H0) is rejected (p - value ≤ 0.05), 
then the experimenter proceeds to phase 2, where all pairs of means (µi and µj) are separately tested for equality using 
α-level t-tests. If any of these t-tests rejects the null hypothesis, then the two corresponding means are expressed to be 
unequal.

Table 13 shows that the three proposed meta-heuristics are efficient and able to reach optimum solutions in small-
sized instances. Hence, results prove that the proposed JIT objective heuristic algorithm which is applied as an objective 
calculator in GA, SA, and PSO is valid because in the first 24 test problems (small size problems), all the three proposed 
meta-heuristics obtain the same optimum solutions calculated by LINGO. According to Table17, the average PREavg of 
PSO is 12.24% that is less than the other two algorithms. Also, the computational times of the proposed meta-heuristic 
algorithms are so short that they can be neglected. Furthermore, according to the summarized results in Table 20, the 
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comparison of the average RPDavg of job groups between GA, SA, and PSO is illustrated in Figure 12.

Table 17. Average PRE errors and computational times of the proposed meta-heuristics for the small cases

PSOSAGA
Num

CPUa
avgPREavgCPUa

avgPREavgCPUa
avgPREavg

0.270.000.140.000.280.0001

0.250.000.140.000.270.0002

0.250.000.140.000.260.0003

0.240.000.590.000.650.0004

0.290.000.140.000.330.0005

0.280.000.140.000.300.0006

1.009.430.5535.531.3018.8707

0.5517.830.3133.810.7521.1108

0.272.460.192.460.301.4509

0.2734.000.1628.000.3237.0010

0.7428.950.6835.091.3061.8411

0.264.390.160.000.3012.8412

1.002.030.587.991.302.9013

0.680.000.241.181.100.0014

0.4112.380.3115.100.4314.2015

0.445.590.5213.760.586.9016

1.3511.120.261.841.3712.9717

1.430.001.2310.571.670.0018

1.4035.711.3453.921.5638.0919

1.1720.151.0831.371.2818.9220

1.2084.851.00147.471.5596.9721

1.125.811.087.481.3111.7022

1.7211.350.6313.571.6324.1423

1.527.570.9011.211.708.8124

0.7512.240.5218.770.9116.20mean

                                                  aComputational time (second).
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Table 18. Average RPD errors and computational times of the proposed meta-heuristics for the medium cases

PSOSAGA
Num

CPUa
avgRPDavgCPUa

avgRPDavgCPUa
avgRPDavg

9.328.875.0118.459.9720.4925

8.5514.585.1115.858.8019.4926

8.3112.335.2849.648.8415.3327

8.018.424.9221.308.5112.6328

7.8310.064.9824.048.5049.2629

7.8411.285.7513.268.5722.2030

7.167.995.4713.478.5914.6331

7.888.004.9938.758.4359.6732

7.0525.295.3232.177.7412.6033

6.2619.475.2113.987.0752.5634

6.298.005.0123.836.8416.0735

6.428.994.8117.997.457.9936

10.266.995.2052.7411.5338.1937

11.108.005.1024.6612.0111.4838

8.009.015.2227.1112.0022.2039

10.018.995.9119.7213.2518.9540

9.6614.275.4410.2612.5015.3741

10.7514.765.3215.0712.196.9842

8.685.995.7117.159.868.9943

9.113.995.9815.1011.002.9944

9.3810.005.9420.0110.5513.0145

9.5710.845.8112.9810.3021.6146

9.029.755.8911.519.557.7547

8.6611.005.6020.0510.7610.3048

8.5510.705.3722.059.7820.03mean

                                                  aComputational time (second).
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Table 19. Average RPD errors and computational times of the proposed meta-heuristics for the large cases

PSOSAGA
Num

CPUa
avgRPDavgCPUa

avgRPDavgCPUa
avgRPDavg

19.745.999.2414.3523.9712.0749

15.966.569.0821.5724.0517.8450

17.4511.039.476.1121.1225.6051

15.716.999.8128.2220.6112.7352

15.316.999.1110.4520.656.5653

15.4613.9310.086.0720.4326.0754

15.884.999.727.4923.908.2455

15.919.019.4636.7023.3644.5956

16.0510.808.9820.4522.147.9857

15.985.029.1313.2723.7616.2358

15.747.9910.0124.3822.3826.3159

15.757.999.6731.9122.6623.8660

17.923.0010.1121.4923.4613.1661

19.456.0410.5519.5624.3212.0062

19.5910.8210.425.2623.2718.4763

19.555.9910.3418.3023.6127.2164

19.489.5310.866.2923.409.2165

19.007.3010.919.7023.6216.5666

18.227.1011.724.9725.499.1667

18.707.0011.0818.1226.5121.3768

18.699.6610.6110.0725.316.9969

18.824.8712.0118.8025.2637.9870

19.927.4511.238.0125.3436.9671

17.883.8811.0828.7124.8613.4772

17.597.5010.2016.2623.4818.78mean

                                                  aComputational time (second).
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Table 20. Average RPDavg and PREavg errors and computational times for each job group

PSOSAGAJob

Avg CPUa
avgAvg RPDavgAvg PREavgAvg CPUa

avgAvg RPDavgAvg PREavgAvg CPUa
avgAvg RPDavgAvg PREavggroup

0.39*8.080.28*11.240.53*12.766

1.12*16.380.76*26.291.29*19.638

7.5811.94*5.1623.56*8.2825.24*14

9.379.47*5.5920.53*11.1514.82*16

16.258.11*9.4818.42*22.4219.01*30

18.916.89*10.9114.11*24.5418.55*40

aComputational time (second).
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Figure 11. Relative percentage deviation means plot

It can be observed from Figure 12 that by increasing the number of jobs, the quality of PSO and SA solutions 
enhance while GA does not follow such a constant improvement. Also, it is clear that in each job group, the obtained 
solution by PSO is completely better than the SA and GA. PSO starts with nearly 12% average RPDavg and becomes 
less and less until it ends at nearly 7%. In addition, from the obtained results presented in Figure 11, it can be seen that 
PSO significantly outperforms GA and SA in terms of total E/T. Also, it can be stated that the SA and GA algorithms are 
not statistically different which means the t-test does not reject the null hypothesis of the equality of SA and GA. So, 
the results indicate that the performance of the proposed PSO is consistently better than the suggested GA and SA in all 
conducted experimental tests. Thus, PSO is recommended for solving the proposed problem.
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Figure 12. The comparison of the average RPDavg for job groups

6. Conclusions and future work
This paper discussed the problem of scheduling uniform parallel machines with past-sequence-dependent setup 

time, position-based learning effect, and processing set restrictions to minimize the total earliness/tardiness costs. The 
idea of the considered problem has arisen from several industries such as the automotive brake systems industry. A new 
mixed-integer linear programming has been presented to model this problem. Since the problem is strongly NP-hard, the 
proposed mathematical model just finds optimal solutions for the small-sized problems in a reasonable computational 
time. Therefore, to find the near-optimal solution for large-sized problems within reasonable times, three meta-heuristic 
algorithms, genetic algorithm, simulated annealing, and particle swarm optimization algorithm are presented. Also, 
a heuristic algorithm is proposed for calculating the best JIT objective function based on a given sequence of jobs. 
The three proposed meta-heuristic algorithms benefit from this exact method. All the proposed algorithms can find 
optimal solutions for small-sized instances in a very short time. Furthermore, through quite extensive computational 
experiments, it has been found that the proposed PSO outperforms the other two algorithms, and thus it is recommended 
as the best solution approach. Developing the model with other objective functions, considering the sum of processing-
time-based learning effect instead of position-based learning effect and release date instead of processing set restrictions 
can be investigated for future research.
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