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Abstract: Nanotechnology is an interdisciplinary science developed since the 1970s and has found tremendous 
commercial applications owing to their unique properties. Nanoscale materials are of the order of 1-100 nm and offer 
extremely advantageous optical, electronic and structural properties that are characteristic due to size-controlled features 
than their bulk materials. Biological methods are alternative sources of nanoparticle synthesis compared to physical and 
chemical techniques. Microorganisms can be used for production of different kinds of nanoparticles which are highly 
suitable for many industrial applications. This review provides an overview of nanotechnology, with a brief discussion 
of the development of nanotechnology since the ancient world and highlights the biogenic approaches of mono- and 
bi-metallic nanoparticle biosynthesis by different microorganisms. The mechanisms of intracellular and extracellular 
biosynthesis of metal nanoparticles by microorganisms is illustrated. The classical microscopic and spectroscopic 
techniques used for investigating the nanoparticle characteristics are also described in detail with hints for practical 
analysis. Meanwhile, the applications of metal nanoparticles as antimicrobial agents are summarized. In conclusion, this 
review includes a final outlook in the field of Microbial Nanotechnology. 
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1. Introduction
The 20th century has witnessed the early beginnings and rapid development of a new and emerging field of science 

known as Nanotechnology, which has revolutionized the technology advancements in materials science, physical and 
chemical sciences, medical and pharmaceutical sciences and disease biology. Physical and chemical techniques have 
been employed for the synthesis of nanoparticles but these methods are energy-intensive, costly and are detrimental 
to the environment. Microorganisms are particularly useful resources as they are cheap, safe and can be scaled up 
for large-scale production, and result in non-toxic byproducts which are beneficial in many ways to the environment. 
Microorganisms are viable sources and offer a favorable environment for nanoparticle synthesis [1]. Microbial 
Nanotechnology is an emerging science for green synthesis of metallic nanoparticles with promising applications in 
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agricultural, clinical, engineering, energy and environment sectors [2]. The desired size and shape of nanoparticles can 
be obtained through optimum production in a minimal culture time. Improved stability of nanoparticles and optimization 
of specific microorganisms for suitable applications still remain as challenges to be addressed in the future [3]. This 
review is aimed to briefly describe the milestones in Nanotechnology evolution since ancient years and to discuss the 
potentials of a number of microorganisms such as bacteria, fungi, yeasts and microalgae in the biogenic production 
of metal nanoparticles. The review also highlights the classical characterization techniques of nanoparticles used to 
evaluate their therapeutic actions and includes the applications of metal nanoparticles in antimicrobial treatment. The 
review, therefore, consolidates the biogenic production of nanoparticles and the promising applications of Microbial 
Nanotechnology for pursuit of novel therapeutic and commercial potentials of the microbial world.

2. Nanotechnology
In the recent years, Nanotechnology has become the most significant area of research, which deals with 

the manufacturing of new materials, creating new processes and novel applications [4]. Nanotechnology is an 
interdisciplinary science related to biological and engineering technologies, for the synthesis of environment-friendly 
biogenic nanoparticles. Nanotechnology combines knowledge from diverse dimensions of science with a plethora of 
applications in physics, chemistry, biology, and medicine. 

Nanoparticles are materials of one or more dimensions in the order of 100 nm or less and have attracted great 
attention due to their unusual and fascinating properties and applications. Recently, nanotechnology has focused on 
the development of “clean” and “green” technologies which have various significant environmental benefits and has 
been known as “green technology”. The nanoparticles made from green innovations are eco-friendly, energy-efficient, 
minimize waste, and curtail greenhouse gas emissions. These nanoparticles have several advantages because of their 
unique size and shape properties. Green synthesis of nanoparticles removes harmful chemicals and pollutants from the 
environment and does not disturb the ecosystem with conservation of natural resources [5-6].

3. Nanotechnology in ancient world
Nanoparticles and structures have been used by humans since the fourth century AD. Some of the examples of 

nanotechnology in ancient world are:
• In the 4th century, Roman glass cage cup made of a dichroic glass named Lycurgus cup is considered one of the 

famous examples of ancient glass industry, consisting of nanoparticles of 50-100 nm diameter with Silver (Ag): Gold (Au) 
in the ratio 7:3 containing in addition about 10% copper (Cu) dispersed in a glass matrix [7-8].

• During the 7th-19th centuries, glowing, glittering “luster” ceramic glazes (Islamic glass, Metallic luster and Luster 
ceramics) used in the Middle East, and later in Europe, contained Ag or copper (Cu) or other nanoparticles and stained-
glass windows in medieval church [9].

• In 13th-18th century, “Damascus” saber blades, cementite nanowires and carbon nanotubes were used to provide 
strength, resilience, and the ability to hold a keen edge [10].

The Italians employed nanoparticles in creating Renaissance pottery during 16th century [11].
These colors and material properties were produced intentionally for hundreds of years. Medieval artists and 

forgers, however did not know the cause of these surprising effects.

4. The nano revolution
Nanotechnology is not evolution, but, a revolution in science, medicine and technology. It can be distinguished 

from all other scientific and industrial revolutions in many ways. In fact, for the first time in human history, man has 
been able to change the fundamental properties of matter, such as band gaps and luminescence as well as customize 
materials with desirable attributes, manipulate nanoscale objects such as atoms and molecules and fabricate and build 
nanodevices. These are the fundamental characteristics of nano revolution [12]. The first characteristic is due to the 
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quantum size effects, by which the properties of a material change with its size in the nanometer regime. The second 
characteristic is made possible by the invention of high-resolution transmission electron microscopy (HR-TEM), 
scanning probe microscopy (SPM), scanning tunneling microscopy (STM) and atomic force microscopy (AFM) 
techniques [13]. The third characteristic is a result of the developments of various nanofabrication techniques such as 
nanoimprint lithography (NIL) using electron beams or X-rays and due to a physical phenomenon known as ‘‘quantum 
confinement’’ effect [14]. 

Table 1. Ingenious founders of Nanotechnology

Year Scientist Discovery Ref.

1857 Michael Faraday Colloidal nanoparticles [16] 

1908 Gustav Mie Light scattering nanoparticles [17] 

1928 Edward Synge Near field optical microscope [18] 

1931 Max Knoll and Ernest Ruska TEM [19] 

1936 Erwin Muller Field electron microscope [20] 

1947 William Shockley, Walter Brattain, John Bardeen Semiconductor transistor [21] 

1951 Erwin Muller Field-ion microscope [22] 

1953 James Watson and Francis Crick DNA [23] 

1956 Arthur Von Hippel Molecular Engineering [24] 

1958 Leo Esaki Electron tunneling [25] 

1959 Richard Feynman Introduction of the concept of Nanotechnology-“There’s Plenty of Room at 
the Bottom: An Invitation to Enter a New Field of Physics” [26] 

1960 Charles Plank and Edward Rosinski Zeolites and catalysis [27] 

1963 Stephen Papell Ferrofluids [28] 

1965 Gordon Moore Moore’s law- The number of transistors on a microchip doubles every two 
years, though the cost of computers is halved [29] 

1970 Eiji Osawa Existence of C60 molecule in icosahedron form [30] 

1974 Norio Taniguchi First coined the term Nanotechnology [31] 

1974 Mark A. Ratner and Arieh Aviram Molecular electronics [32] 

1977 Richard P. Van Duyne Surface Enhanced Raman Spectroscopy (SERS) [33] 

1980 Jacop Sagiv Self-Assembly Monolayers (SAMs) [34] 

1981 Gerd Binnig and Heinrich Rohrer Scanning Tunneling Microscope (STM) [35] 

1981 Alexey Ekimov Nanocrystalline Quantum Dots in a glass matrix [36] 

1981 Eric Drexler Molecular Engineering [37] 

1982 Nadrian Seeman The concept of DNA Nanotechnology [38-39]
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Table 1. (cont.)

Year Scientist Discovery Ref.

1983 Louis Brus Colloidal Quantum Dots [40, 41]

1985 Richard Smalley, Robert Curl and Harold Kroto Discovery of Buckminsterfullerenes C-60 [42] 

1986 Gerd Binnig, Christoph Gerber and Calvin F. 
Quate Atomic Force Microscope (AFM) [43] 

1987 Dimitri Averin and Konstantin Likharev Single-Electron Tunneling (SET) transistor [44] 

1992 Charles T. Kresge Mesoporous silica MCM-41 [45-46]

1993 Sumio Iijima and Donald Bethune Carbon nanotubes [47-48]

1996 Chad Mirkin and Robert Letsinger S-Adenosyl Methylation (SAM) of DNA + gold colloids [49] 

1997 Zyvex Foundation of the first molecular Nanotechnology company [50] 

1998 Cees Dekker Transistor using carbon nanotubes [51] 

1999 Chad Mirkin Dip-pen Nanolithography (DPN) [52] 

2000 Mark Hersam and Joseph Lyding Feedback-Controlled Lithography (FCL) [53] 

2001 Carlo Montemagno Molecular nanomachines: molecular motor (rotor) with nanoscale 
silicon devices [54] 

2002 Cees Dekker Carbon nanotubes functionalized with DNA [55] 

2003 Naomi Halas Gold nanoshells [56-57]

2004 Andre Geim and Konstantin Novoselov Graphene [58-59]

2004 Xu et al. Fluorescent Carbon dots [60] 

2005 James Tour Nanocar with turning buckyball wheels [59, 61]

2006 Paul Rothemund DNA origami [62] 

2007 J. Fraser Stoddart Artificial molecular machines: pH-triggered muscle-like [63] 

2008 Osamu Shimomura, Martin Chalfie and Roger Y. 
Tsien

Nobel Prize in Chemistry for the discovery and development of the green 
fluorescent protein, GFP [64] 

2009 Nadrian Seeman DNA structures fold into 3D rhombohedral crystals [65] 

2010 IBM Ultra-fast lithography to create 3D nanoscale textured surface [66] 

2011 Leonhard Grill Scanning tunneling microscope (STM) describes the electronic and 
mechanical properties of individual molecules and the polymer chains [67] 

2016 Jean-Pierre Sauvage, Sir J. Fraser Stoddart and 
Bernard L. Feringa

Nobel Prize in Chemistry for the design and synthesis of molecular 
machines [68] 

The developments in nanotechnology research have progressively increased, mainly due to new and desirable 
properties of nanomaterials. The nano revolution is expected to impact every aspect of human activities other than 
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science and industrial technology. The applications of nanomaterials in biotechnology, agriculture, environment and 
biomedicine unites the fields of biology and material science. Nanoparticles are essentially beneficial with unique 
properties leading to a wide-range of applications [15]. Table 1 lists the cascade of developments in Nanotechnology 
and its ingenious founders from its early years.

5. Biogenic approach towards nanoparticle synthesis
Nanoparticles can be synthesized by various physical, chemical, biological and other hybrid methods [69]. The 

physical and chemical methods require cost-intensive equipments and high energy conditions [70]. The nanoparticles 
synthesized by means of biogenic approach present good polydispersity, nanoregime dimensions and improved stability. 
It also facilitates synthesis at physiological pH, ambient temperature and pressure, and low-costs of production. Several 
microorganisms are capable of nanoparticles synthesis both intracellularly or extracellularly. 

Biological synthesis of Nanoparticles from microbial sources is advantageous, because of rapid synthesis, 
controlled toxicity, control of size characteristics and ecofriendly approach. A large number of microbial sources are 
available for nanoparticle synthesis from fungi, yeast and bacteria. The biological process is an acceptable green route 
and does not require high energy and is environment friendly. The main interest is the production of nanoparticles from 
a cheap resource with a facile approach, ease of production, increased biomass and size uniformity. Though numerous 
chemical methods are available for nanoparticle production, huge problems are often experienced with product stability, 
control of the crystal growth and aggregation of particles upon long term exposure [71]. Microbial sources are mostly 
utilized among various bio-methods of nanoparticle production [72-75]. Bio-based synthesis of nanoparticles using 
microorganisms has been recently discussed by Hossain et al. [76] for silver nanoparticles. Bacteria, fungi, yeasts and 
algae transport metals from their culture environment and convert them into elemental nanoparticles which may be 
accumulated intracellularly or secreted extracellularly into the culture medium. By biogenic synthesis, the presence of 
capping agents on the surface of nanoparticles enable reduction in further purification steps largely [77]. 

Metallic nanoparticles have been synthesized from different microorganisms in varying sizes and shapes either 
intracellularly or extracellularly. Silver nanoparticles have been synthesized by A.flavus [78], A.fumigatus [79], B.cereus 
[80], B.licheniformis [81] and Fusarium oxysporum [82] in spherical shapes upto 50 nm and by Phaenerochaete 
chrysosporium [83] in pyramid forms upto 200 nm. Other metallic nanoparticles of mercury, palladium, uranium, 
cadmium telluride and selenium have also been synthesized from Enterobacter sp [84], Desulfovibrio desulfuricans 
[85], Pyrobaculum islandicum [86], E.coli [87] and Shewanella sp. [88] respectively in spherical shapes. Bullet-
shaped, rectangular, Rhombic and hexagonal shaped metal oxide nanoparticles of Fe3O4, FePO4 nanopowder, spherical 
and tetragonal BaTiO3 have been synthesized from different bacterial, fungal and yeast strains in intracellular and 
extracellular fractions [89-94]. The third type of sulfide nanoparticles, such as CdS, FeS and ZnS have been synthesized 
from bacteria such as E.coli [95], Lactobacillus [96], Rhodobacter sphaeroides [97], fungi such as Fusarium 
oxysporum [98] and yeasts such as Schizosaccharomyces pombe and Candida glabrata [99]. Table 2 indicates the 
nanoparticle production from various bacteria. Table 3 represents nanoparticle production from fungi and Table 4 shows 
nanoparticles produced by yeasts, molds and algae as cited from literature. Figure 1 illustrates the biosynthesis pathways 
of Nanoparticle production by microorganisms.
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Table 2. Nanoparticles produced by bacteria

Nanoparticle Size (nm) Morphology Bacteria Synthesis pattern Ref.

Silver (Ag)

2-4 Ribbon-shaped Acetobacter xylinum Extracellular [100] 

6.4 ND Aeromonas sp SH10 Extracellular [101] 

50 ND Bacillus licheniformis Extracellular [102] 

5-15 Spherical Bacillus sp. Intracellular/Periplasmic space [103] 

20-50 Hexagonal Lactobacillus sp. Intracellular [104] 

20 Spherical Morganella sp. Extracellular [105] 

Gold (Au)

1.9 ± 0.8 Spherical Bacillus megatherium D01 Extracellular [106] 

ND Spherical Escherichia coli DH5α Intracellular/Cell surface [107] 

> 100 ND Lactobacillus sp. Intracellular [104]

10 Cubic Plectonema boryanum UTEX485 Intracellular/Membrane vesicles [108] 

10-20 Spherical

Rhodopseudomonas capsulate Extracellular [109] 50-400 Triangular nanoplate

50-60 Spherical nanowires

5-15 ND Rhodococcus sp. Intracellular [110] 

< 10 ND Sulfate-reducing bacteria Intracellular/Cell envelope [111] 

Selenium (Se) 300 Nanospheres Sulfurospirillum barnesii, Bacillus selen-
itireducens, Extracellular [112]

Tellurium (Te) 10 Nanorods Bacillus selenitireducens Extracellular [113] 

Titanium (Ti) 40-60 Spherical Lactobacillus sp. Extracellular [114] 

Magnetite
10-50 

Fine grained super 
paramagnetic 

magnetite crystals
Geobacter metallireducens GS-15 Extracellular/anaerobic condition [115] 

10-40 Quasi-spherical Actinobacter sp. Extracellular [116] 

Fe3O4

40-50 Octahedral prism Aquaspirillum magnetotacticum Intracellular [117] 

40 × 40 × 60 Parallel Magnetotactic bacterium MV-1 Intracellular [118] 

47.1 Cubo-octohedrons Magnetospirillum magnetotacticum Intracellular/Membrane bound [119] 

50 Cubo-octahedral Magnetospirillum magnetotacticum (MS-1) Intracellular [120] 

Fe3S4, FeS2 7.5 ND Magnetotactic bacterium Intracellular [121] 

FeS
2 Octahedral/

Cubo-octahedral Sulfate-reducing Bacteria Intracellular/Cell surface [122] 

5-200 ND Klebsiella pneumonia Intracellular/Cell surface [123] 
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Table 3. Nanoparticles produced by fungi.

Nanoparticle Size Morphology Fungi Synthesis pattern Ref.

Silver (Ag)

20-60 Polydisperse/spherical Alternaria alternata Extracellular [124] 

5-27 Spherical Amylomyces rouxii ND [125] 

20 Spherical Aspergillus niger Extracellular [126] 

1-20 Spherical Aspergillus terreus Extracellular [127] 

2.5 Spherical Aspergillus terreus CZR-1 Extracellular [128] 

10-100 Spherical Cladosporium cladosporioides ND [129] 

25-75; 444-491 Spherical/ellipsoidal Coriolus versicolor Intra- and extracellular [130] 

5-50 Spherical Fusarium oxysporum Extracellular [131] 

10-80 Spherical Fusarium semitectum Extracellular [132] 

16.23 Spherical Fusarium solani (USM-3799) ND [133] 

5-40 Spherical Macrophomina phaseolina Cell-free filtrate [134] 

58.35 ± 17.88 ND Penicillium brevicompactum 
WA2315 ND [135] 

25 ± 2.8 Spherical Penicillium nagiovense AJ12 Cell-free filtrate [136] 

5-25 Spherical Penicillium fellutanum Extracellular [137] 

10-100 Mostly spherical Penicillium strain J3 ND [138] 

5-200 Pyramidal Phanerochaete chrysosporium ND [139] 

60-80 Spherical Phoma glomerata ND [140] 

35-48 Polydisperse and spherical Rhizopus nigricans ND [141] 

25-30 Quasi-spherical Rhizopus stolonifer ND [142] 

5-50 ND Trichoderma reesei Extracellular [143] 

5-40 ND Trichoderma viride Extracellular [144] 

13-18 Nanocrystalline Trichoderma asperellum Extracellular [145] 
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Table 3. (cont.)

Nanoparticle Size Morphology Fungi Synthesis pattern Ref.

Gold (Au)

12 ± 5 Spherical, triangular, hexagonal Alternaria alternate Extracellular [146] 

24.4 ± 11 Triangular, spherical and hexagonal Aspergillus clavatus Extracellular [147] 

50-500 Spherical, Nanoplates, Nanowalls, 
spiral plates, aggregates

Aspergillus niger Extracellular [148] 10-20 Polydispersed

12.8 ± 5.6 Spherical, Elliptical

10-60 Various shapes, mostly spherical Aspergillus oryzae var. viridis cell-free filtrate (biomass), 
Mycelial surface [149] 

8.7-15.6 Spherical Aspergillus sydowii Extracellular [150] 

29 ± 6 Spherical Aureobasidium pullulans Intracellular [151] 

60-80 Non spherical Candida albicans Cell-free extract [152] 

10-60 Spherical, triangular and hexagonal Penicillium brevicompactum Extracellular [153] 

20-80 Spherical, triangular, hexagonal Penicillium rugulosum ND [154] 

30-50 Spherical Penicillium sp Cell filtrate [155] 

15 Spherical Saccharomyces cerevisiae Cell wall, Cytoplasm [156] 

Gold/Silver 
(Au/Ag) 8-14 Quasi-spherical Fusarium oxyporum Extracellular [157] 

Platinum (Pt) 10-100 Rectangular, triangular, spherical 
hexagonal, pentagonal and squares

Fusarium oxysporum Extra-and intracellular [158] 

Zinc (Zn) 100-200 Irregular, some spherical Fusarium spp. Intracellular [159]

Mercury (Hg) 20.5 ± 1.82 ND Aspergillus versicolor Surface of mycelia [160] 

Zinc oxide 54.8-82.6 spherical Aspergillus terreus Extracellular [161] 

Fe3O4

20-50 Irregular, quasi-spherical AND Fusarium oxysporum Extracellular [162] 

100-400; 20-50 Cubo-octahedral, quasi-spherical Verticillium sp. Extracellular [162] 

PbCO3,
CdCO3

120-200 Spherical Fusarium oxysporum Extracellular [163] 

SrCO3 10-50 Needlelike Fusarium oxysporum Extracellular [164] 
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Table 4. Nanoparticles synthesized by Yeasts, Molds and Algae.

Nanoparticle Size 
(nm) Morphology Yeast, molds and microalgae Synthesis pattern Ref.

Silver (Ag)

10-30 ND Desmodesmus sp. (KR 261937) Intracellular and extracellular 
synthesis [165] 

5 to 13 Spherical shape, face centered 
cubic crystals Fusarium oxysporum Extracellular [166] 

5-25 spherical shape, face centered 
cubic crystals Humicola sp. Extracellular [167] 

3-35 spherical shape, highly crystalline 
cluster Scenedesmus sp. (IMMTCC-25) Intracellular synthesis and

extracellular synthesis [168] 

Gold (Au)

25-60 spherical Penicillium brevicompactum 
KCCM 60390 Extracellular [153] 

5-35 spherical and triangular shape Tetraselmis kochinensis Intracellular synthesis [169] 

Zirconium (Zr) ND Irregular mesoporous Yeast ND [170] 

Zn3(PO4)2 10-80 Rectangular Yeast Extracellular [171] 

Cadmium 
telluride (CdTe) 2.0-3.6 cubic Saccharomyces cerevisiae Extracellular [172] 

Tellurium (Te) 60.80 oval to spherical shape Aspergillus welwitschiae 
KY766958 ND [173] 

Gold/Silver 
(Au/Ag) 9-25 ND Yeast Extracellular [174] 

Chitosan 90.8 spherical shape, amorphous 
structure

Trichoderma harzianum 
SKCGW008 Extracellular [175] 

ZnS 12-24 spherical Aspergillus flavus Extracellular [176] 

PbS 35-100 cubic crystal Aspergillus flavus Extracellular [177] 
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Figure 1. Intracellular and Extracellular production of Nanoparticles by microorganisms [178]. 

6. Techniques for characterization of nanoparticles
To pre-determine the drug nanoparticle interactions with cell surface receptors and the release properties in vivo, 

characterization techniques by microscopy and spectroscopy are required. There is no standardized procedure for a 
particular order of techniques to characterize nanoparticles. There is also no FDA approved regulatory protocols to 
characterize nanoparticles [179]. Various spectroscopic and microscopic techniques are available to assess suitable 
characteristics and evaluate the potential of the nanoparticles for biological applications. Recently Palani and Elangovan 
[180] have discussed the microbial-mediated synthesis of Cu nanoparticles and have characterized by various techniques 
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for different kinds of applications. We list below some of the classical and recently developed characterization 
techniques which are the basic requirements for any nanoparticle study in the present years.

6.1 Particle size analysis

The nanoparticle size is a critical factor while considering its therapeutic potentials. It has been proposed that the 
nanoparticle-targeted therapeutic delivery can be improved by controlling the size parameter [181] which is primarily 
determined by the preparation technique [182]. Size of the nanoparticle is measured by dynamic light scattering (DLS) 
technique or photon-correlation spectroscopy (PCS). In this technique, the Brownian motion of nanoparticles in colloidal 
suspension is determined which is based on the nanoparticle sizes [183]. When the laser beam from the instrument hits 
a nanoparticle in the dispersion, light is scattered at varying intensities which depend on the different nanoparticle sizes. 
Thereby, size measurements are obtained using the Stokes-Einstein equation. DLS can measure particle sizes from 20-
200 nm [184]. Based on their sizes, the nanoparticles may be classified as monodisperse when the sizes are uniform 
or polydisperse when there are size differences among the nanoparticles. The DLS technique can also measure the 
Polydispersity Index (PDI) which gives specific information on the aggregation behavior of nanoparticles. Lower the 
PDI, the lesser the nanoparticle aggregation [185]. The measurement of Nanoparticle sizes is made usually in water, a 
universal dispersant or in phosphate-buffered saline (PBS) in case of nanoparticles which need to be physiologically 
stable. However, in PBS, nanoparticles tend to aggregate which may reflect an increase in nanoparticle sizes. In the 
dispersant medium, it is necessary to suspend the nanoparticles prior to measurement using a bath or probe sonicator to 
get reasonable accuracy. The nanoparticle size may be displayed as histograms or linear graphs in nanometer scale. 

6.2 Surface charge or zetapotential measurement

Zeta potential indicates the charge on the particle surface [186] and the extent of the surface hydrophobicity [183]. 
It determines interactions of nanoparticles with the surrounding physiological environment. Zeta potential indicates of 
the stability of the nanoparticles in colloidal suspension [187]. Zeta potential values predict the aggregation tendency 
of nanoparticles. Nanoparticles showing high positive or negative zeta pontential values are considerably regarded 
as stable without aggregation in solution [183]. Values close to ± 30 mV represent stable nanoparticle suspensions. 
In practical conditions, zeta potential values are usually negative and lower and indicate increased stability of the 
nanoparticles [187-189]. Zeta potential values can be measured using a Zetasizer instrument which evaluates particle 
size, zetapotential and molecular weight of the nanoparticles in suspension. 

6.3 Transmission Electron Microscopy (TEM)

The shape and size of the nanoparticles can be evaluated using a Transmission electron microscope (TEM). 
Recently images can be obtained with a High Resolution (HR)-TEM. TEM provides morphological observation with an 
atomic scale resolution as shown in Figure 2 [3]. Characterization of nanoparticles by TEM has been the ‘gold’ standard 
method for all types of nanomaterials. 

Biological nanoparticles are liable to be destroyed by the high vacuum condition and the strong impact of electrons 
which impinge on cellular structures. Hence, biologically-derived nanoparticle specimens need to be prepared by 
staining with Osmium tetroxide and Uranyl actetate, prior to imaging. Other nanoparticles such as carbon nanotubes or 
nanorods, polymeric and metallic nanoparticles require no pretreatment and can be imaged as such. 



Applied Microbiology: Theory & Technology 84 | Iffath Badsha, et al.

50 nm

500 nm 1 μm

20 nm

(a)

(c)

(b)

(d)

Figure 2. TEM micrographs showing differences in characteristics of (a) bacterial synthesized gold nanoparticles [3]; (b) biogenically synthesized 
silver nanoparticles [190]; (c) hollow TiO2 nanotubes [191] and; (d) hollow TiO2 nanospheres synthesized by electrospinning [191]

6.4 Scanning Electron Microscopy (SEM)/Energy dispersive X-ray analysis (EDX)

SEM is a versatile technique to characterize nanoparticles with respect to morphology, size and shape of 
nanomaterials. Similar to HR-TEM, HR-SEM provides information on the characteristic features of the nanoparticle 
sample by high resolution imaging. SEM images provide surface topological features with high magnification and 
large field depth in correlation with the surface electron density of the nanoparticles as depicted in Figure 3 [192]. 
SEM analysis also offers knowledge about the nanomaterial purity and the degree of aggregation [193]. An electron 
gun, made of Tungsten filament is used for emission of an electrons beam. In the case of a Field emission (FE)-SEM, 
a Field emission gun (FEG) of cold-cathode type Tungsten single crystal emitter is used [194]. In this microscopy 
also, biologically derived nanoparticles need pretreatment by staining with Osmium tetroxide and several steps of 
dehydration with gradient concentrations of alcohol, usually ethanol. After pretreatment, the nanoparticles are sputter-
coated with gold and placed on a stub and imaged at appropriate magnifications. Scanning electron micrographs should 
be in the nanometer scale before acquiring the sample images. 

EDX works in integration with SEM and cannot provide data without the SEM instrument. EDX spectrum is 
obtained from a SEM image and gives an account of the elemental composition of the nanomaterial analysed. This 
provides the accurate element identification and its percent composition present in the nanomaterial. The peaks in the 
EDX spectrum corresponds to the energy levels which receive more X-rays during the electron transfer process from 
the outer shell to the gap formed in the inner shell with lower energy level. The amount of energy released as X-rays are 
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unique to the atoms of an element which enable the identification of the element. The peak length is proportional to the 
concentration of the element in the sample. However, in an EDX spectrum, H-atom cannot be identified as the amount 
of X-rays emitted by the H-atom is very less and it is not within the detectable range [194]. 
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Figure 3. HR-SEM image of nanoparticles (a) and its corresponding EDX spectrum (b) showing different elemental composition (unpublished data).

6.5 Fourier Transform-Infrared (FT-IR) spectroscopy

An FT-IR spectrum can provide information on the molecular structure of the nanomaterial due to vibration 
properties of the molecules. When a molecule is exposed to infrared radiation, it absorbs infrared energy at particular 
frequencies which are characteristic of that molecule. Hence, based on the IR spectrum of percent transmittance againt 
wave number, each frequency band corresponds to a specific molecular or functional group of the nanomaterial. 
Hence, the chemical structure of the molecule can be identified. The IR spectrum is an inverse spectrum or is obtained 
as a reverse peak [194]. From the respective peaks, alkane, alkene, alkyl, phenolic, hydroxyl, benzyl and several 
other chemical bonds can be identified which provide a clear picture about the molecular structure in whole. FT-IR 
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spectroscopy is therefore a valuable tool for the characterization of the nanoparticles.
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Figure 4. FT-IR spectrum of Entada spiralis extract (a) and the silver nanoparticles synthesized from the extract (b) showing differences in 
characteristics of the nanoparticles [195].

In addition, FT-IR spectroscopy can be used to analyse bacterial biomolecules such as organic functional groups 
of bacterial proteins and further provide information on capping and functionization of the metal oxide nanoparticles, 
presented as an example in Figure 4 [196]. Conventional FT-IR spectrum is obtained from a sample which has 
been derivatized with potassium bromide (KBr). This procedure is replaced in the recent years by Attenuated Total 
Reflectance (ATR-IR) spectroscopy which does not require prior sample preparation. Nanomaterials identified by FT-IR 
offer structural differences in molecular structure of biomolecules [197]. The peaks in a FT-IR spectrum are attributed to 
the biological components present in the synthesis of nanoparticles. The differences in the particle size produce different 
wavenumber and frequencies in the spectrum [198].

6.6 Atomic Force Microscopy (AFM)

AFM also referred as Scanning Probe microscopy (SPM) has been used significantly to study surface morphology 
at nanometer resolution and for force measurements. Since the advent of Nanotechnology in early 1990’s, AFM has 
been used as an important technique for the characterization of nanomaterials to provide information on the size and 
surface morphology of nanoparticles in both 2- and 3-dimensional images. As an example, a three-dimensional AFM 
image of nanoparticles with accurate size measurement is shown in Figure 5. AFM uses a probe tip of atomic scale and 
the attractive or repulsive forces between the tip and the sample surface is measured [198]. AFM provides information 
on topography, sample size, size distribution, shape and aggregation state of nanoparticles, similar to SEM. AFM can 
be operated under various conditions such as air, liquid and vacuum [3]. Sample preparation is an important step for 
imaging by AFM. There are two widely used modes of AFM imaging, namely, contact mode and the tapping mode 
[199]. The most important advantage of AFM is that it is non-destructive and requires no sample treatment for analysis. 
Therefore, biologically derived nanomaterials can be investigated by AFM. Compared to DLS and SEM, AFM gives an 
accurate measurement of the size of the nanoparticle. The advantage of AFM over SEM and TEM is that it analyses 3-D 
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images and can calculate particle height and volume [200]. While DLS, and SEM provide a higher value of nanoparticle 
size, AFM provides exact size value of the sample studied [183]. Considering TEM, the ‘gold’standard for nanoparticle 
analysis, AFM replaces this technique as a more sophisticated tool in the characterization of nanomaterials. 
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Figure 5. The 3-D AFM image of nanoparticles showing accurate size measurement of 51.2 nm (unpublished data).

7. Antimicrobial applications of nanoparticles 
Since 1500 B.C., metals such as copper salts have been used as antibacterial agents [201]. With the advent of 

Nanotechnology, the use of metal and metal oxide nanoparticles in antimicrobial applications in the biomedical and 
industrial fields have gained increased attention. Metallic nanoparticles which are highly ionic are desired candidates 
due to their increased surface areas and a number of reactive sites with unusual crystal morphological structures [202]. 
The significant features of using metallic nanoparticles for antimicrobial applications are an increase in antibacterial and 
antifungal activities [203], functionality [201], extended antimicrobial activity at minimal dosages and broad-spectrum 
inhibitory activity due to specific dimensions and shapes [204]. Metallic and metal oxide nanoparticles represent the 
most studied antimicrobial nanoparticles to date [191]. During the past two decades, different types of metal and metal 
oxide nanoparticles have been tremendously used for antimicrobial applications such as silver, copper, zinc oxide, 
titanium oxide, copper oxide and nickel oxide nanoparticles with differences in antimicrobial activities based on 
composition, methods of surface modification, intrinsic physical and chemical properties and the targeted microbial 
species [205]. Correa et al. [191] have observed that the antimicrobial agents can be classified as bacteriocidal if the 
percent lethality was above 90% at 6h and bacteriostatic if the percent lethality was below 90% at 6 h which can be 
considered as the basis of determining the efficiency of antimicrobial agents.

Silver nanoparticles are the most extensively studied metal nanoparticles and are an interesting class of 
antimicrobial nanoparticles for applications in pharmaceutical, medical, food packaging and textile industries and 
water treatment plants [206]. The particle size of nanoparticles is also considered as a significant factor affecting the 
antibacterial activity [207]. Monodispersed and smaller sized CuO nanoparticles showed increased antibacterial activity 
against both Gram-negative and Gram-positive bacterial strains. It has been demonstrated that spherical Cu nanoparticles 
exhibited strong bactericidal activity against Gram negative as well as Gram positive bacteria [208]. Further studies 
showed that irradiation of TiO2 nanospheres with UV-A rays for 60 min increased its antibacterial activity towards 
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methicillin-resistant Staphylococcus aureus strains than the non-irradiated commercial TiO2 nanoparticles [209]. The 
shape of the metallic nanoparticles also affects antimicrobial potential. CuO nanorods showed good antimicrobial 
activity against E.coli, S.flexneri and S.aureus [210]. Cu nanoparticles have demonstrated better antibacterial activity 
than silver and gold nanoparticles [211]. These nanoparticles exhibited broad-spectrum antibacterial activities against 
S.aureus, Salmonella enteric, Campylobacter jejuni, E.coli and Listeria monocytogenes [212]. Silver nanoparticles 
showed high antibacterial activities againt Gram-negative E.coli and Gram-positive Micrococcus luteus bacterial strains 
with zones of inhibition of 5.5 ± 0.2 mm to 6.5 ± 0.3 mm and 7.0 ± 0.4 mm to 7.7 ± 0.5 mm respectively [213]. The 
antimicrobial activity of Cu nanoparticles enhanced in a composite of carbon nanotubes using multi-walled carbon 
nanotubes (MWCNT) which increased the surface area of Cu nanoparticles with a subsequent reduction in bacterial 
colonies of E.coli strain than with Cu nanoparticles alone. The percent kill of bacterial colonies were also 75% ± 0.8 
with Cu-MWCNT nanoparticles while only 52% ± 1.8 was observed for Cu nanoparticles alone [214]. 

The synergistic activities of two metals as bimetallic nanoparticles can be exploited for their cumulative biological 
potentials in antimicrobial applications. These nanoparticles are highly reactive and exert strong interactions [215]. 
In comparison to 25% and 50% antimicrobial efficiencies of gold and silver nanoparticles, about 80% antimicrobial 
efficiency was obtained with bimetallic nanoparticles against Candida albicans, S.aureus and P.aeruginosa [216]. TiO2/
ZnO nanoparticles supported into 4A zeolite possessed optimum antibacterial activities with S.aureus, P.fluorescens, 
Listeria monocytogenes and E.coli O57:H7 bacterial sp. The doping of A4 zeolite forming a nanocomposite with TiO2/
ZnO nanoparticles resulted in controlled release of nanoparticles which increased the antibacterial efficiency against 
E.coli O157:H7 strain with the highest zone of inhibition of 10.73 ± 0.04 mm [217]. A nanocomposite of ZnO-CuO 
containing fluoride ions exhibited good antibacterial activity against S.mutans which could possibly find application for 
preventing bacterial growth in dental implants [218].

Drug resistance of microorganisms to antibacterial agents is of current interest as the number of pathogens 
resistant to several antibiotics has risen over the past years. Metal nanoparticles are the preferred choice to overcome 
drug resistance in microbial organisms due to their unique physical and chemical characteristics [219]. Antimicrobial 
nanoparticles target several metabolites and tend to reduce or eliminate the evolution of drug-resistant microorganisms 
[220]. The common resistance mechanisms of microorganisms that evade the antimicrobial action of antimicrobial 
agents are modification or inactivation of enzymes, decreased membrane permeability and overexpression of efflux 
pumps which efflux out antimicrobial agents. Metal nanoparticles have the ability to overcome these resistance 
mechanisms and promote antimicrobial action [221]. The nanoparticles when conjugated with antibiotics show 
synergistic effects in antibacterial activity by preventing formation of biofilm and elmininating multi-drug resistant 
organisms [222]. 

The antimicrobial actions of metal nanoparticles occur as a result of formation of ROS, membrane permeability, 
metal ion release, inhibition of protein function, DNA damage and changes in expression of metabolic genes of 
different types of microorganisms. Studies have demonstrated that metal nanoparticles exert increased antibacterial 
activity towards Gram-positive bacteria than Gram-negative bacteria because of differences in cell wall structure and 
the negative charges which which cause strong or slight attraction of the nanoparticles and lead to collapse of cell wall 
structure resulting in cell death [191]. However, a study on silver nanoparticles reflected that antimicrobial activity was 
not affected by bacterial cell structure and it showed similar antibacterial effects on both Gram-positive and Gram-
negative bacteria [213]. In the case of Zirconium nanoparticles, direct contact of nanoparticles by adhesion to bacterial 
cell membrane resulted in penetration of the nanoparticles into the cells followed by ion-mediated killing of the bacterial 
cells [223].

8. Conclusions
Nanoparticles are endowed with unique characteristics than their bulk counterparts due to the increased surface 

area and improved electrical, electronic and optical properties which make them ideal candidates for varied applications. 
Biological synthesis of nanoparticles is often desired from plants and microorganisms as these processes are less energy 
consuming, produce reduced harzardous wastes and are environmentally friendly. In this review, we have discussed 
the historical aspects of Nanotechnology and its early developments and have focused on the different microorganisms 
which produce nanoparticles by ‘green’ technology. The important characteristics of the nanoparticles produced 
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by the bacterial and fungal microorganisms have been tabulated from previous literature. In addition, the different 
characterization techniques for assessing nanoparticles are briefly described. The developments in the preparation 
methods of metal nanoparticles has led to their applications as antimicrobial agents in various sectors. It is expected 
that there will be a strong demand for metallic nanoparticles as antimicrobial agents in the future which prompt a lot of 
investigations of antimicrobial nanoparticles. Further, the rise in pathogenic infections due to drug resistance require 
new and efficient metallic and metal oxide nanoparticles to be explored for use in antibacterial surfaces in the medical 
sector. It should also be considered that safety issues comply with the random use of metallic nanoparticles in various 
applications as human ingestion or release into the environment may restrict the development and application of these 
nanoparticles. Hence, it is recommended that regulatory bodies provide appropriate safety measures in the use and 
discard of nanoparticles without harmful effects on human health and environmental concerns.
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