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Abstract: In this survey, we explore the latest methods and trends in constructing and mining biological networks. 
We delve into cutting-edge techniques such as weighted gene co-expression network analysis (WGCNA), step-level 
differential response (SLDR), Biomedical Entity Expansion, Ranking and Explorations (BEERE), Weighted In-Network 
Node Expansion and Ranking (WINNER), and Weighted In-Path Edge Ranking (WIPER) from the Bioinformatics 
community, as well as breakthroughs in graph mining methods like parallel subgraph mining systems, temporal graph 
algorithms, and deep learning. To ensure a solid foundation, we provide an introductory-level overview of six well-
established network types in systems biology. In addition, we offer a concise and accessible overview of strategies for 
network construction, including gene co-expression networks (GCNs), gene regulatory networks (GRNs), and literature-
mined biomedical networks. We explain biological network mining in interdisciplinary domains, catering to both 
biomedical researchers and data mining experts. Our goal is to provide a comprehensive guide that doesn’t require a 
significant time investment. We believe that these current trends will help readers become familiar with the topic and the 
practical applications of these tools in real-world studies.

CCS concepts: mathematics of computing → graph algorithms • applied computing → bioinformatics • computing 
methodologies → machine learning

Keywords: network, graph, mining, gene, microarray, protein, protein-protein interaction

1. Introduction
Biological networks such as gene co-expression networks (GCNs), gene regulatory networks (GRNs) and protein-

protein interaction (PPI) networks have become the de facto standard in silico media for biomedical researchers to 
extract biomolecules of potential biological significance from experimental data, which can be further tested to discover 
pathways, molecular functions, and mechanisms of action that are vital for drug/vaccine discovery, disease control/
prevention, etc. The biomedical community has created many well-established network analytics tools that are widely 
used by biomedical researchers, such as the weighted gene co-expression network analysis (WGCNA) [1] R package for 
weighted correlation network analysis. Moreover, new network analytic methods such as step-level differential response 
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(SLDR) [2], Biomedical Entity Expansion, Ranking and Explorations (BEERE) [3], Weighted In-Path Edge Ranking 
(WIPER) [4], Weighted In-Network Node Expansion and Ranking (WINNER) [5] and distance-bounded energy-field 
minimization algorithm (DEMA) [6] are being constantly developed to open new opportunities to find more insights 
from biological networks. For example, WIPER is a recent method that allows a node ranking method (that is usually 
used to find vital biomolecules) to be directly applied to rank edges (i.e., interactions between biomolecules). Another 
interesting breakthrough in the biomedical community is the availability of large knowledge databases such as Semantic 
MEDLINE Database (SemMedDB) [7] that mine predications from the vast amount of biomedical literature to allow 
the construction and enrichment of biological networks. Network mining has been widely applied to discover disease-
specific genes [8], biomarkers [9], drug candidates [10, 11], drug side effects [12], leading to the emergence of network 
medicine [13].

On the other hand, the computer science community has recently made breakthroughs in graph mining and 
analytics, where new graph algorithms and machine learning models are emerging and have been applied to analyze 
biological networks to bring more insights [14, 15]. Specifically, dense and frequent subgraph mining problems were 
originally motivated by applications in Bioinformatics to find important substructures, but their biomedical applications 
are still very limited due to the prohibitive computation cost. Recent breakthroughs have been made in the field of graph 
mining with parallel and distributed systems being developed that allow dense and frequent subgraph mining to be more 
affordable, such as the G-thinker [14, 16-19] and PrefixPFM [15, 20-22] systems. These systems open a great potential 
for subgraph mining to be applied more widely in Bioinformatics applications. There are also new algorithms being 
developed to capture the temporal interactions modeled by a temporal graph, and those methods can potentially change 
the way that biological networks are analyzed (currently still dominantly in the static network setting) to bring new 
insights into the biological processes. New deep learning models are also emerging for tasks like biological function 
prediction over biological networks, such as graph neural networks (GNNs) that are currently being actively researched.

Given the breakthroughs in both communities, it is important to provide a timely survey of the current research 
status in biological network mining, as well as new recent methods in each community that can potentially be used 
to generate new tools. There have been related surveys in the biomedical community but they are application-
driven, such as to inform biomedical researchers about the available software tools [23] or to test various methods in 
a particular experimental setting like single-cell gene expression experiments [24]. On the other hand, the core data 
mining community that studies graph mining algorithms mainly focus on methodology novelty and biological networks 
are merely used as motivating application (along with many others, such as online social networks that often exhibit 
different features than biological networks). The frequently asked question is, “Is there an interdisciplinary survey in 
grasping insights to inspire data mining researchers with biomedical questions and familiar biomedical researchers with 
the most advanced tools?”. 

To address it, we designed this survey that sits in the middle ground, easily accessible to both communities: 
computer science researchers can gain better knowledge about the fundamentals and breakthroughs regarding 
biological network analysis in the biomedical context, while biomedical researchers can get the big picture of the latest 
breakthroughs in computer science that can be used to improve biological network analysis for their subjects of study. 
While it is not intended to be a comprehensive coverage of all recent works, or a deep dive into individual algorithms 
and methods, it is written to be brief and insightful, allowing researchers from both communities to gain a solid 
understanding of the fundamentals in this interdisciplinary domain. By investing minimal time, researchers can gain a 
big picture of recent trends and methods in biological network analysis, and ultimately, we hope to foster new research 
that delves into specific directions and accelerates convergence between the biomedical and data mining communities, 
especially in the graph mining field.

The rest of this survey is organized as follows. Section 2 familiarizes readers with the different types of biological 
networks that can be constructed from a diverse set of biological data. Section 3 reviews the methods to construct 
biological networks from experimental data as well as the biomedical literature. Section 4 then presents the various 
methods for prioritizing vital nodes (e.g., biomolecules), edges (e.g., interactions) and subgraphs (e.g., biomolecular 
structures and recurrent patterns), including case studies of recent methods such as BEERE [3] and WIPER [4]. Finally, 
Section 5 concludes this survey with a discussion of promising breakthroughs in computer science that could break new 
grounds in biological network mining research.
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2. Networks in biology
Network construction is an essential step in systems biology analysis. The upstream analysis usually performs 

statistical analysis (e.g., data normalization and data filtering by p-value) in extracting the phenotype-related 
biomolecule candidates. Various in silico analysis techniques are invented for different biomolecules (genes, 
transcription factors, proteins, compounds and other regulatory molecules) yielding biomolecule-phenotype matrices. 
Although the relationships between the biomolecule candidates and phenotypes (e.g., diseases or specific conditions 
under treatments) have been revealed, it is still hard to interpret how the biomolecule candidates work systemically 
with biological relevance (e.g., the pathways, molecular functions, mechanisms of action). Therefore, the downstream 
systems biology analysis usually constructs the biological networks integrating prior knowledge and the statistical 
relationships between the biomolecules to enable the understanding at the higher levels of an organism, a tissue, or 
a cell. The rapidly emerging biological network analytic models and their applications have revealed unprecedented 
insights into cells, which speeds up drug discovery in complex diseases.

Regarding different aspects of biological focus, there are different types of biological networks constructed for 
network mining [25], such as PPI networks, GRN, GCN, signal transduction networks, metabolic and biochemical 
networks.

PPI networks [26] consist of the interactions information among proteins acting in concert to fulfill or maintain 
the biological functions of cells. Although the majority of proteins’ complete sequences are discovered, their molecular 
function in specific diseases is not fully revealed. Protein function prediction remains to be a hurdle in computational 
biology. Tremendous efforts have been made to infer protein functions from their connected neighbors. Particularly, the 
prevalence of large-scale and high-throughput techniques enables the detection of protein-to-organism interactions. For 
instance, mass spectrometry [27], tandem affinity purification (TAP) [28], pull-down assays [29], yeast two-hybrid (Y2H) 
[30], microarrays [31] and phage display [32] are popular techniques in the past. Nowadays, several well-known datasets 
have been produced using the aforementioned techniques, e.g., the Tong et al. [33], Krogan et al. [34], the Munich 
Information Center for Protein Sequences (MIPS) [35], the Database of Interacting Proteins (DIP) [36], and Gavin et al. 
[37] datasets. Other than that, numerous biological databases containing PPI information have become accessible and 
they are mostly species-specific. Some notable databases are the Yeast Proteome Database (YPD) [38], MIPS [39], the 
Molecular Interactions (MINT) database [39], the IntAct database [40], DIP [36], the Biomolecular Interaction Network 
Database (BIND) [41], the Biological General Repository for Interaction Datasets (BioGRID) database [42], the Human 
Protein Reference Database (HPRD) [43], the Human Protein Interaction Database (HPID) [44] or the Drosophila 
Interactions Database (DroID) [45] for Drosophila. More well-known text mining-based services include the Human 
Annotated and Predicted Protein Interactions version 2.0 (HAPPI-2) [46], Search Tool for Interactions of Chemicals 
(STITCH) [47] and STRING [48] databases.

GRNs contain the direct regulatory relationships between the detected biomolecules (genes, microribonucleic 
acids (miRNAs) and transcript factors) with the indication of gene expression control. There are many variables in 
the modulation of this process, such as transcription factors [49], post-translational modifications and biomolecular 
associations [50]. GRNs are normally created as directed graphs to model how proteins and other biomolecules are 
involved in gene expression. The series of events that happen in different stages of the process were captured and they 
often show specific motifs and topological patterns. Data collection, data integration and analysis techniques have made 
it possible for GRN construction on a larger scale [51]. In terms of protein-deoxyribonucleic acid (DNA) interaction, the 
commonly used databases are JASPAR [52] and TRANSFAC [53], whereas post-translational modification is available 
in databases like Phospho.ELM [54], NetPhorest [55] and Phosphorylation Site Database (PHOSIDA) [56].

GCNs are undirected graphs. Nodes of GCNs represent genes, and edges are given by a set of node pairs 
representing the significant co-expression relationship among the nodes. Given a gene expression microarray where 
rows are genes and columns are different samples or biological conditions, GCN can be constructed with the gene 
pairs sharing similar expression patterns, i.e., their row values rise and fall together across samples (or conditions). 
Those patterns are featured by the same expression directions across different samples. GCNs are interesting since co-
expressed genes are likely regulated by the same transcriptional regulatory agent, functionally related, in the same 
pathway, or in the same protein complex, which is of biological interest. GCNs have been used in performing network 
analysis using DNA microarray data, ribonucleic acids sequence (RNA-seq) data, miRNA data, etc. One of the most 
well-known tools for exploring co-expression modules and intramodular hub genes is WGCNA. Co-expression modules 
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can imply pathways or cell types. The intramodular hubs can be regarded as representatives of their respective modules. 
Some example databases for building GCNs are Gene Expression Omnibus (GEO) [57] and Coexpressed Gene 
Database (COXPRESdb) [58].

Signal transduction networks usually utilize multi-edged directed graphs to reflect the protein cascades via 
interaction, activation and inhibition to convert an external signal or internal signal into a physiological response. 
The biological signal transmission is coupled with a series of molecular events, such as protein kinases catalyzing 
most protein phosphorylation and resulting in a cellular response. The perturbation of the cell homeostasis is caused 
by environmental changes or triggers different responses. Signal transduction networks exhibit common motifs and 
topological patterns [59] similar to GRNs. The signal transduction pathways can be found in the databases such as 
Microbial Signal Transduction (MiST) [60], TRANSPATH [61], etc.

Metabolic and biochemical networks [62] consist of directed edges modeling the chemical reactions in metabolic 
and physical processes within a cell. The edge annotations provide the details of physiological and biochemical 
reactions. There are several useful tools for modeling metabolisms in different organisms. In the metabolic pathways, 
chemical reactions occur at different time points in a cell. The enzymes play major roles as driving forces in catalyzing 
biochemical reactions in a metabolic network. Often, enzymes need cofactors such as vitamins to support biochemical 
reactions. A metabolic network consists of the pathways with information on a series of biochemical events and their 
correlations. Modern sequencing techniques have enabled network reconstruction using biochemical reactions in 
organisms from bacteria to human [1, 63]. Some popular biochemical network databases are the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [64], EcoCyc [65], BioCyc [66] and metaTIGER [67]. Various approaches are utilized for 
the pathway structure analysis of metabolic networks [68-72]. The above networks can also be integrated into a multi-
omics network to provide a global and comprehensive view of the multi-level transitions in the health and disease of a 
cell.

Multi-omics networks (or trans-omics networks) are generated by integrating the multiple omics-layers such as 
genomics, transcriptomics, proteomics, epigenomics, metabolomics and/or microbiomics in molecular biology based 
on prior knowledge of biochemical interactions and data-driven analytics [73]. Compared to traditional approaches, 
omics techniques provide a more comprehensive molecular understanding of biological systems. However, integrating 
multiple omics platforms remains a challenge for researchers due to their inherent data differences. A multi-omics 
network involves the building blocks of a cell, including DNA, ribonucleic acid (RNA), protein, and metabolite, and 
provides more credibility in explaining the reactions in a cell than simple molecular networks such as those described 
before. A high-quality multi-omics integration can yield meaningful and accurate results. For example, the two distinct 
strategies in modeling Escherichia coli are flux rerouting and gene expression, which robustly control the metabolite 
level against genetic and environmental perturbations, respectively. Both strategies infer “metabolic regulation” from 
the metabolome, expression proteome, transcriptome, and metabolic flux data [74]. As another example, a combination 
of transcriptome, proteome, metabolome, chromatin immunoprecipitation (ChIP) analysis, and metabolic flux reveals 
that Bacillus subtilis responds to the carbon diauxic shift through two distinct adaptation modes: faster adaptation by the 
post-transcriptional regulation, and slower adaptation by changes in gene expression [75]. Also, the report of 48 novel 
regulatory pathways in the form of phosphorylation of metabolic enzymes in rat hepatoma FAO cells is enabled by the 
trans-omics network reconstruction of insulin action [76].

Subsequently, we present a survey of various prevalent algorithms and tools that pertain to the four primary areas 
of biological network analysis: building biological networks, ranking biomedical entities, ranking biomedical entity-
to-entity associations, and mining significant subnetworks (Table 1). Furthermore, we provide detailed explanations of 
cutting-edge techniques such as WGCNA, SLDR, BEERE, and WIPER from the Bioinformatics community.
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Table 1. Data summaries

Topic Type Algorithm/tool

Building biological network

GCN

WGCNA

Partial correlation

Mutual information

Partial information decomposition

GRN

SLDR

Bayesian networks

Decision tree ensembles

Single-cell methods

Semantic networks Semantic interpreter (SemRep)

Ranking biomedical entities Node ranking

BEERE

WINNER

ToppGene

Endeavour

Ranking biomedical entity-to-entity 
associations Edge ranking

WIPER

Betweenness centrality

Jaccard coefficient

Bridgeness index

Reachability index

Mining significant subnetworks

Subgraph mining
Dense subgraphs

Frequent subgraph patterns

Clustering Biclustering

3. Building biological networks
Now that we have seen different kinds of biological networks, this section illustrates how those networks are 

constructed, either from experimental measurements (Sections 3.1 and 3.2) or from text mining over the biomedical 
literature (Section 3.3). In Sections 3.1 and 3.2, we consider networks whose nodes are genes, and whose edges are 
deduced from statistical inference (e.g., gene-wise correlation analysis). Section 3.1 focuses on GRN where edges 
are directed. These gene networks are typically built using datasets from high-throughput technologies such as DNA 
microarray, RNA sequencing or single-cell sequencing.

3.1 GCN construction

This subsection first introduces a famous tool called WGCNA to construct weighted networks in Section 3.1.1, and 
then briefly covers other techniques that decide if there is an undirected edge between two genes in Section 3.1.2.
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3.1.1 Weighted correlation network analysis by WGCNA

One of the favorite tools for building GCN mining is WGCNA [77]. As an R package, WGCNA provides a list of 
R functions to perform weighted correlation network analysis. WGCNA here is the acronym of weighted correlation 
network analysis, not just weighted gene co-expression network analysis, since the input data can be substituted for 
many other omics datasets such as DNA methylation, miRNA, and functional magnetic resonance angiography (MRA) 
data, as long as the goal is to capture the correlation patterns among biomolecules. We focus on the gene correlation 
patterns across microarray samples in this subsection. WGCNA can discover gene clusters (aka gene modules) based 
on correlation. There are three purposes for extracting such gene clusters: (1) to find the module eigengene or an 
intramodular hub gene summarizing the clusters, (2) to find the module-to-module associations and the module-to-trait 
associations, where traits are from external samples, and (3) to compute membership measures in each module. In the 
sequel, we consider GCN construction, module detection, and relating genes/modules to clinical traits, and we describe 
WGCNA’s approach for them.

Correlation network construction. The network is constructed from DNA microarray data which can be regarded 
as an n × m matrix X = [xiℓ] where each row i corresponds to a gene (or a node in the GCN to be constructed) and each 
column ℓ corresponds to a sample. If we use the block-matrix notation to list the rows X = [xiℓ] = (x1, x2, …, xn)

T, then 
the i-th row xi is called the node profile of the i-th gene, which records its m sample measurements.

 In WGCNA, a network is constructed as an adjacency matrix A [78], which is a symmetric n × n matrix with 
each entry aij taking a value in [0, 1] encoding the network connection strength between genes (aka nodes) i and j. 
The calculation of aij is based on the (Pearson) correlation coefficient between the expression profiles of nodes i and j, 
denoted by cor(xi, xj), though it can be replaced with other more robust correlation measures such as the Spearman’s 
rank correlation and the biweight midcorrelation [79] which is recommended by WGCNA.

 Note that correlation takes a value in [-1, 1], but each adjacency aij takes a value in [0, 1], and aij is actually a 
function of cor(xi, xj). The calculation of the adjacency matrix is based on the type of network. In an unsigned network, 
aij = |cor(xi, xj)|

β, where the power β ≥ 1, which performs soft thresholding (i.e., to bias towards high correlation) to 
better model the scale-free topology of biological networks such as GCNs and PPI networks. Specifically, if we define 
the connectivity of a node i as Σj aij (a concept similar to vertex degree in an unweighted graph), then the portion of 
nodes in different connectivity levels follow a power-law distribution with only a few high-connectivity nodes. In a 
signed network where we only want positively correlated genes to be in the same module, we have aij = |0.5 + 0.5·cor(xi, 
xj)|

β to suppress negatively correlated gene pairs.
 Thresholding is essential to prune gene pairs with low adjacency (i.e., to set aij to 0) to avoid generating a 

complete graph or overly dense network. A user can control the threshold parameter, for example, by using the criterion 
of approximate scale-free topology [80]. The idea is to choose the power parameter β such that the log-log scatter plot 
of node frequency vs. connectivity is approximately linear, as measured by R2 where R is the correlation. As we increase 
β, the value of R2 rises to a high value indicating that our network begins to satisfy the scale-free topology, and this is 
where we choose the value for β. If we increase β further, R2 usually plateaus or even drops slightly. Another criterion is 
the mean connectivity among all nodes which drops when β increases, and we do not want the mean connectivity to be 
too low as we will miss too many genes with low connectivity values. That is why we typically use the smallest β such 
that R2 has risen to a high value.

Module detection. In a GCN, genes are usually clustered into the so-called “modules” which are highly connected 
subgraphs. Genes in a module are highly correlated and thus tend to have a similar function or participate in biological 
processes together with interactions. 

WGCNA identifies gene modules based on unsupervised clustering without any prior knowledge. A user has an 
option to choose the method of module detection. Hierarchical clustering is the default method, where the branches of 
the resulting dendrogram correspond to modules, and the available branch cutting methods can be directly used in the 
module identification, such as the constant-height cut or two dynamic-branch cut methods as introduced in [81], with the 
second one improving the detection of outlying members of each cluster by including a Partitioning Around Medoids 
(PAM)-like step.

A representative is often identified for each module to summarize the node profiles therein (which are gene 
expression profiles here), and it is much more computationally efficient to focus analysis on the level of modules (or 
their representatives). This can be regarded as a network-based data reduction method, in which the mappings are from 
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modules (or their representatives), instead of nodes, to the clinical trait of a sample. Meanwhile, this method can also 
alleviate the multiple testing problem (aka multiple comparisons fallacy) in statistical analysis. 

Two popular module representative definitions include eigengene and the most highly connected intramodular hub 
gene, as we review next. Module eigengene is defined as the first principal component of the corresponding module’s 
expression matrix. The eigengene is not an actual gene expression profile in its module but can be regarded as a 
weighted average expression profile. Eigengene calculation in WGCNA comprises the imputation of missing values. 
Alternatively, one can use the intramodular connectivity to measure and filter the most highly connected intramodular 
hub gene as the module representative, which is an actual gene in its module in contrast to eigengene. The intramodular 
hub genes are highly correlated with the module eigengenes.

Many DNA microarrays report expression levels of several thousand (or more) distinct genes (or probes), which 
can be computationally challenging if only the high-complexity hierarchical clustering is used. WGCNA provides a 
block-wise module detection approach to address this scalability problem, where the first step is to pre-cluster nodes 
into large clusters called blocks, using a variant of k-means clustering which is efficient. Next, hierarchical clustering is 
applied only within each smaller block to find modules therein. Finally, an automatic module merging step is performed 
where modules from different blocks whose eigengenes are highly correlated get merged.

Sometimes it is interesting to find consensus modules present in different networks (e.g., most or all networks in 
a dataset). Here, two nodes should be connected in a consensus network only if most or all of the input networks agree 
on that connection, i.e., the similarity between two nodes can be defined as the minimum (or a suitable quantile) of the 
input network similarities. WGCNA also supports a block-wise approach to calculate consensus modules.

Relating modules to external data. Given a microarray sample trait t which is also measured as a vector with 
m components that correspond to the columns of the data matrix X, then we can measure how significant a gene xi 
is related to the trait t by defining a gene significance (GS) measure. The module significance can be measured by 
the average GS across the module genes, or by the module eigengene as xi to calculate GS. Modules with high trait 
significance may imply potential pathways associated with the sample trait.

WGCNA supports module and gene selection by applying a GS measure to assign a non-negative number to each 
gene. The GS measure can be the absolute value of the correlation between the i-th gene and the sample trait, i.e., 
|cor(xi, t)|, by default. It can be substituted by p-value from either a correlation test or a regression, i.e., -log(p-value) 
for assessing the statistical significance between xi and t. The higher the GS of a module/gene is, the more biologically 
significant the module/gene is. For instance, a GS measure could imply pathway membership importance in functional 
enrichment analysis or the knockout essentiality in gene-knockout.

Application: With the shift towards single-cell data, WGCNA has the potential to expand its applications for 
identifying novel prognostic models in cancer studies for survival prediction [82]. Furthermore, WGCNA can be 
combined with machine learning techniques to discover immune-related biomarkers for complex diseases, such as 
rheumatoid arthritis [83]. WGCNA can also be used in conjunction with other analytical methods, such as gene set 
variation analysis (GSVA), to explore potential biomarkers for novel preventive and pharmacological approaches in 
surgical samples using total RNA data [84].

3.1.2 Other methods to infer undirected edges

Next, we consider a few other methods that decide if an undirected edge exists between two genes in the resulting 
GCN. 

Partial correlation. Besides the correlation metrics previously introduced in WGCNA, we can also use partial 
correlation to test whether or not two genes have highly correlated expression patterns. In probability theory and 
statistics, partial correlation (pCorr) measures the degree of association between two random variables subject to the 
elimination of a set of controlling random variables. In a GCN, the pCorr of the pairwise genes i and j, pCorr(xi, xj), is 
defined by treating all the other genes X –{xi, xj}  as confounding variables (here, we abuse the notation X to mean its 
row set {x1, x2,…, xn}). Under this definition, inferring if there is an edge between genes i and j is equivalent to testing 
the following hypothesis:

H0:  pCorr(xi, xj) = 0    vs.    H1:  pCorr(xi, xj) ≠ 0.
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In this way, the presence of an edge between genes i and j implies that a correlation exists regardless of which 
other genes are being conditioned on. The Fisher transformation (aka Fisher z-transformation) can be used to test these 
hypotheses to calculate the p-value for thresholding (e.g., statistical significance was set to be 0.05). Since we need 
to perform this hypothesis testing over all pairs of genes, adjustment for multiple testing correction of the p-values is 
necessary, e.g., by using the Benjamini-Hochberg method [33].

Mutual Information (MI). Besides correlation, MI can also be used to decide the presence of an edge between 
genes i and j. Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNE) [85] is a conventional 
information-theoretic network approach based on MI. Given two gene profiles xi and xj of two genes i and j in a 
DNA microarray X = [xiℓ], their MI, denoted by I(xi, xj), can be computed by the following equation using the value 
distributions of genes i and genes j in X, denoted by p(xiℓ) and p(xjℓ), respectively, plus the joint distribution p(xiℓ, xjℓ).

                                                   
( ) ( ) ( )
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i j
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p x ,x
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where p(xiℓ) is fit from the elements of xi, and p(xiℓ, xjℓ) is fit from the column-aligned element pairs in xi and xj, using 
kernel density estimation with a Gaussian kernel. MI I(xi, xj) indicates the degree of dependency between two genes i 
and j. 

Next, ARACNE applies the Data Processing Inequality (DPI) to eliminate indirect interactions inferred from the 
remaining interactions in the GCN network. DPI states that if genes i and k interact only through a third gene, gene j, 
(i.e., gene i ↔ ... ↔ gene j ↔ ... ↔ gene k and no alternative path exists between genes i and k), then I(xi, xk) ≤ min {I(xi, 
xj), I(xj, xk)}. ARACNE removes every such indirect edge i ↔ k. To compensate for errors in estimating the probabilities 
when computing MI, a tolerance parameter eps is used so that edge i ↔ k is removed only if min {I(xi, xj), I(xj, xk)}  – 
I(xi, xk) > eps. The tolerance eps is suggested to be set between 0.1 and 0.2. 

Another MI-based approach is Context Likelihood of Relatedness (CLR) [86, 87]. The difference from ARACNE 
is that CLR considers the background distribution of MI values. The background correction is to reduce false positives 
in detection interactions due to data noise. CLR derives a modified (positive-only) z-score for I(xi, xj) with respect to 
column j in the MI matrix: 
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where μi and σi are the mean and standard deviation of MI values I(xi, xj), j = 1, …, n. Note that zi(xi, xj) may not equal 
zj(xj, xi), which is OK if we are constructing a directed GRN by assigning zi(xi, xj) as the weight of edge i → j. For an 
undirected GCN, we can use the following weight for edge i ↔ j instead.
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Partial Information Decomposition (PID). In information theory, another interaction metric is PID [88]. PID 
quantifies the information from several inputs individually (unique information), redundantly (shared information) or 
only jointly (synergistic information). In our case, PID considers the information flowing from the source genes i and j 
to another target gene k, which is partitioned into redundant, synergistic, and unique information:

I(k; i, j) = Synergy(k; i, j) + Uniquej(k; i) + Uniquei(k; j) + Redundancy(k; i, j),

where the PID term Redundancy(k; i, j) is the portion of information about gene k derived from either gene i or gene 
j alone; Uniquej(k; i) is the portion of the information contributed uniquely by gene i (when the other gene is j); and 
Synergy(k; i, j) is the portion of the information that is only yielded by knowledge of both gene i and gene j together. 
All these terms can be computed from the probability distribution of gene expression values that can be estimated from 
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gene profiles, using proper data discretization and an MI estimator. Two methods for discretization, along with four MI 
estimators, were tested in [89], which uses PID to identify regulatory relationships between genes for single-cell data. 
Their inference algorithm, called PID and context (PIDC), uses the ratio of unique information between gene i and gene 
j across every of the third (target) gene k in X – {xi, xj}, giving rise to the following definition of Proportional Unique 
Contribution (PUC):

                                                  
[ ] { }

( )
( ) [ ] { }

( )
( )

,k k
i,j k n i,j k n i,j

Unique i;j Unique j;i
u  = 
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where [n]= {1, 2, …, n}, and I(i; j) = I( j; i) is the MI between gene i and gene j. Note that the difference between I(i; j) 
and Uniquek(i; j) is equal to the redundancy between all three genes i, j and k, meaning that the ratio Uniquek(i; j)/I(i; 
j) represents the proportion of MI contributed from the unique information between X and Y, as opposed to redundant 
information between all three genes. Here, we consider both unique information directions to make the resulting 
network undirected, though one direction is OK if we allow a directed graph like in a GRN. To find a threshold for defining 
an edge, we should account for the difference in the distributions of PUC scores between genes. The CLR method 
introduced before can be similarly adapted to the PUC setting, where we estimate Fi(ui,j), the cumulative distribution 
function of all the PUC scores involving gene i, from ui,1, ui,2, …, ui,n, assuming either a Gamma or Gaussian empirical 
probability distribution. The confidence of an edge i ↔ j can then be calculated as c = Fi(ui,j) + Fj(uj,i). By integrating the 
distribution of PUC score for a particular gene, rather than simply keeping edges that are ranked the highest across all 
genes, PIDC is designed for detecting the most important set of inferred interactions per gene.

3.2 GRN mining

In a GRN, nodes represent genes and edges represent interactions between genes (e.g., direct physical connections 
or indirect regulation). Like a GCN, a GRN is also inferred from a data matrix X = [xil] = (x1, x2, …, xn)

T where rows 
correspond to genes and columns correspond to samples (e.g., single-cell transcriptomes). Like GCN, a GRN can 
be inferred using metrics like correlation and MI as described in Section 3.1, but edge directions and the allowing of 
an asymmetric adjacency matrix bring the possibility of other methods, such as regression-model-based association 
measures [90] which can capture non-linear relationships. We next review a few additional techniques to construct a 
GRN.

3.2.1 SLDR

The highly-connected gene regulators, or “hubs” of gene regulations in the GRN, are covered reasonably well in 
the current databases. However, low-connectivity regulators, or “de-centric nodes” in the GRN regulatory, are poorly 
covered as the chances for randomly observing their activities are low. 

SLDR [2] is designed to fill this gap by identifying “de-centric” nodes and their “rare” activation/inhibition 
genetic regulatory relationships. SLDR takes advantage of functional genomics data of the same species under different 
perturbations in different biological conditions. Each de-centric target gene is modeled as being controlled by a small 
number of at most N binary-state regulators, leading to ≤ 2N observable states for the target. In other words, if we sort 
the RNA expression values of gene profile xi, we will observe ≤ 2N “jumps” in the sorted value sequence. 

The selection of de-centric target genes is conducted in five steps. (i) Firstly, for each gene i, the RNA expression 
values in its gene profile xi are sorted to get an expression sequence v1, v2, …, vm, and the average value of its difference 
sequence (v2 – v1), (v3 – v2), …, (vm – vm–1) is computed using the difference of the maximum expression and the 

minimum expression of gene i as 1

1
mv v
m
−

∆ =
−

. (ii) Secondly, for each gene i, SDLR counts the number of differences 

(vt – vt–1) in the difference-sequence that passes Δi as the cutoff threshold. We call such a difference as a jump, and the 
cutoff is expected to be useful in identifying jumps since most differences (vt – vt–1) are expected to be close to 0. (iii) 
We then sort the number of jumps for all genes into a sequence k1, k2, …, kn, and define kmax = max {k1, k2, …, kn}. (iv) 
To eliminate fake jumps with small differences that got counted to inflate the jump numbers of individual genes, a new 

cutoff threshold is computed for each gene i as 1

1
m

max
max

v v
k

−
∆ =

−
 which is larger than Δ and so better captures the ≤ kmax 
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jumps that contribute mainly to the cumulative expression changes (vm – v1). (v) Finally, the number of binary-state 
genetic regulators N of each target gene i is inferred according to 2N = k + 1, where k is the number of jumps identified 
from the new cutoff threshold Δmax. 

Pearson correlation is applied to identify the genetic regulatory relationships among genes. Given a target gene i, 
we determine if gene j is a regulator of gene i by considering two expression sets extracted from the gene profile xj: (1) 
low expression set which consists of the columns with the lowest 20% expression values in xj; (2) high expression set 
which consists of the columns with the highest 20% expression in xj. We only deem an activation or inhibition to exist 
if (a) the correlation of gene i and gene j is close to 0 in the low expression set (since gene j is not active and should 
not dominate the impact on gene i), and meanwhile, (b) the correlation of gene i and gene j is close to ±1 in the high 
expression set (since gene j is active and should impact gene i). Now consider the rest 60%m columns after ruling out 
the low and high expression sets, which we call as the middle expression set. SLDR additionally requires that there is 
no significant change of expression (larger than 1

1
mv v
m
−

∆ =
− )) for the target gene i in the middle expression set, or we 

reject the edge j → i. This is because a big expression change in the middle expression set signals the existence of other 
potentially more dominant regulators. SLDR rejects j → i if the difference between the largest and the lowest expression 
of gene i in the 60%m columns of the middle expression set is ≥ Δ · 60%m.

3.2.2 Other methods to infer directed edges

Bayesian networks. A Bayesian network is a probabilistic graphical model to represent a set of variables and their 
conditional dependencies via a directed acyclic graph (DAG). In our GRN, each node corresponds to a gene i whose 
expression value (i.e., variable) is characterized by a conditional probability distribution that specifies the likelihood of 
obtaining that expression value for gene i given the expression values of its parent nodes (i.e., regulator genes). 

Gaussian Bayesian Networks (GBNs) are commonly applied to reconstruct networks based on the continuous 
values of gene expressions. In a GBN, the joint distribution over all variables is assumed to follow a multivariable 
normal distribution, while the local conditional distributions are linear regression models where the parent nodes are 
used as explanatory variables. The network structure can be learned from the gene expression data X using a structure 
learning algorithm that uses the Bayesian Information Criterion (BIC) score to guide the network inference process.

Decision tree ensembles. GEne Network Inference with Ensemble of Trees (GENIE3) is developed based on a 
tree-based method to reconstruct GRNs, and it has been reported to be the best in the Dialogue for Reverse Engineering 
Assessments and Methods 4 (DREAM4) In Silico Multifactorial challenge [86]. GENIE3 decomposes the inference of 
a GRN into n subtasks, one for each gene i as the target gene, where the goal is set to identify the subset of other genes 
whose expression profiles are the most predictive of the expression profile of gene i. 

Each subtask for a target gene i trains a tree ensemble model with each sample as a training data tuple, gene 
i’s expression as the target for regression, and the expressions of the other (n – 1) genes as the input features. Two 
tree ensemble models are considered for each subtask: a random forest regressor and an extremely randomized tree 
regressor. Only binary node split is adopted, and at each node split, k = √n features (or regulator gene candidates) are 
selected at random to choose the best split feature and its split condition. Each model produces a ranked gene list for 
screening regulator candidates of a target gene i. Ranks are assigned based on weights calculated as the sum of the total 
variance reduction of the output variable due to the split. Hence, the importance of predicted regulatory links between 
the target gene and a list of input gene can be measured.

Other single-cell methods. Single-Cell rEgulatory Network Inference and Clustering (SCENIC) [91] is an 
approach for simultaneous GRN reconstruction and cell-state identification from single-cell RNA-seq data. We now 
introduce the SCENIC workflow as follows. First, the identification of sets of genes (aka modules) that are co-expressed 
with transcription factors is accomplished with GENIE3. These modules may include many false positives and indirect, 
as they are derived solely depending on co-expression. To identify putative direct-binding targets, the cis-regulatory 
motif enrichment analysis is applied to each co-expression module to borrow information from a pre-built database 
RcisTarget [92] to identify enriched transcription factor binding motifs in the identified co-expression modules. To 
remove indirect target genes without motif support, those modules with significant motif enrichment of the correct 
upstream regulator are retained and pruned. Top-ranked genes for each motif are treated as the regulons, and each 
transcription-regulon combination is assigned in the edge list to form the network.
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SCODE [93] enables GRN reconstruction for single-cell data via regulatory dynamics using ordinary differential 
equations (ODEs). Particularly, the transcription factors’ (TFs’) expression dynamics are described using linear ODEs:

dx = Ax dt,

where x is a vector of length n (n is the number of TFs) that denotes the expression of TFs, and A is an n × n square 
matrix that denotes the regulatory network among TFs. Given an n × m expression matrix X where m is the number 
of cells, and each cell is associated with a pseudo-time estimated using Monocle [94], the TF regulatory network is 
inferred by optimizing A such that the ODE can successfully describe the observed expression data. A scalable algorithm 
optimizes A by integrating the transformation of linear ODEs and linear regression.

3.3 Literature-mined semantic networks

Besides experimental measurements, we can also construct various kinds of biological networks by mining from 
the biomedical literature, which we call as literature-mined semantic networks. The constantly increasing published 
works have allowed biologists to learn from the past and build the concept-level knowledge-based networks using data 
mining and natural language processing. One of the largest knowledge-based databases is SemMedDB [95] which 
currently stores over 97 million semantic predications (subject-predicate-object triples) obtained by processing over 29 
million PubMed citations. To build the database, Semantic MEDLINE utilizes the SemRep natural language processing 
system [96] to extract semantic relationships between concepts found in the Unified Medical Language System (UMLS) 
Metathesaurus [97], by inspecting every sentence in every PubMed citation. 

Here, semantic relationships are represented as predications, a formal representation having a predicate and 
arguments. For example, the predication “Genes AFFECTS Circadian Rhythms” was extracted from the sentence “Clock 
genes are the genes that control circadian rhythms in physiology and behavior.” A SemRep predication has UMLS 
Metathesaurus concepts as arguments and a UMLS Semantic Network relation as a predicate. The ULMS Semantic 
Network stipulates relationships between concepts, stated in terms of the semantic types assigned to Metathesaurus 
concepts. Semantic MEDLINE provides enhanced access to biomedical research literature by combining PubMed 
document retrieval, semantic relationships, and automatic summarization. 

Another popular text mining tool is PubTator [98]. PubTator is a web-based system for facilitating biocuration. 
PubTator advances the feature of a PubMed-like user interface. To ensure the quality of its automatic results, it 
incorporates several challenge-winning text mining algorithms. Compared to a formal evaluation using two external 
user groups, PubTator improves manual curation in terms of both efficiency and accuracy. 

Both SemMedDB and PubTator have made it much easier nowadays for biomedical researchers to build high-
quality and comprehensive literature-mined semantic networks.

4. Analyzing biological networks
Next, we investigate how to analyze the constructed biological networks. One common analysis is to find 

statistically significant nodes (e.g., candidate genes of a disease), edges (e.g., candidates of regulations) and subgraphs 
(e.g., candidates of molecular complexes and biological modules), which can be prioritized in experimental studies and 
verifications of their actual biological significance to identify unknown pathways, to speed up drug discovery, etc. This 
section reviews the methods of identifying significant nodes, edges and subgraphs.

4.1 Ranking biomedical entities
4.1.1 BEERE

We demonstrate how to prioritize network nodes using the random-walk based approach BEERE [3]. BEERE 
modifies two node scoring algorithms, PageRank [99] and network propagation [100], for node ranking. 

BEERE also can expand an existing biological network with additional text-mined nodes and edges (e.g., semantic 
predications in SemMedDB [7]) for further score adjustment, giving a ranking of the so-called “biomedical entities”, 
which include genes/proteins, biomedical terms, or their combinations. 
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Node ranking by modified PageRank. PageRank [99] was invented by Larry Page and Sergei Brin, founders of 
Google, to rank webpages. Specifically, the web is modeled as a graph where webpage i is linked to webpage j if there is 
a hyperlink to webpage j in the content of webpage i. A user is assumed to be surfing the web following hyperlink clicks 
with probability α, while randomly jumps to an arbitrary webpage with probability (1 – α). Here, α is called the damping 
factor. Assuming there are n webpages in total, then the PageRank for any node i is iteratively updated as follows until 
convergence:
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where t is the iteration number, ( )t
iPR  is the PageRank of node i in iteration t, ( )resp. in out

i iΓ Γ  is the set of inbound 
neighbors (resp. outbound neighbors) of node i. PageRank gives a uniform initial value 1/n to every node so that the 
jump back probability to each node i is ( )0 1/iPR n= . The above update equation basically says that with probability  
(1 – α), a random jump gets to the current node i from some other node; and with probability α, the current node 
is reached from an inbound neighbor j, whose PageRank ( )1t

jPR −  was evenly distributed to all its out
jΓ  outbound 

neighbors. 
BEERE modifies PageRank to incorporate the rich edge weight information in a biological network. Let us denote 

the weight of an edge (i, j) by w(i, j). In BEERE, w(i, j) can be either assigned by PPI confidence scores generated 
from HAPPI-2 (the human-annotated and predicted protein interactions database) [46], or the so-called Relation 
Density Score (RDS) calculated from the semantic predications in SemMedDB [7] based on p-value derived from 
hypergeometric test to adjust for the frequency difference of different predicates. 

Instead of using uniform initial scores (which equals the jump-back prior probabilities), BEERE uses the so-called 
“relevance score” (RS) developed in [8] to initialize ( )0

iPR :
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where RS is considering a PPI network with undirected edges and thus Γi means the neighbors of node i. Here, RS is 

taking logarithm over 
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, which is promoted if a protein i has high-confidence interactions w(i, j). RS 

introduces an empirical constant k (k = 2 by default) to control the RS distribution kurtosis, to reinforce high values 
of weight summation, so that if a protein i has more high-confidence interactions with other proteins, then its RS (or 

interaction score) will be higher. Since 
( ),

i

k

j

i
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 can be less than 1 causing ( )0
iPR < 0, BEERE forces such 

negative ( )0
iPR  to be 0 which is reasonable as these proteins are weakly relevant and thus are assumed to have a zero 

jump-back probability. 
After setting the initial weights to the bioentities, a PageRank-like iterative update method [101] is applied 

to evaluate bioentities importance globally. Here, we take the edge weights into consideration, by distributing the 
PageRank of a node i to its neighbors proportionally to the outbound edge weights, rather than evenly as in PageRank:
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Node ranking by network propagation. In the approach of network propagation, each node is initialized with 
a certain amount of fluid; then, a diffusion process is iteratively conducted where the fluid of a node flows towards its 
neighbors with an amount proportional to the outbound edge weights. Similar to PageRank, a damping factor α kicks in 
here: in each iteration, a node retains (1 – α) portion of fluid, and flows the rest α portion to its neighbors. This gives rise 
to the following update formula (we reuse the notation PR as the score, but please think about it as the amount of fluid):
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 is the total amount of new 

incoming fluid contributed by neighbors. Interestingly, the only difference from PageRank is that the first term was  
(1 – α)· PRi

0� �  but now it is (1 – α)· PRi
t�� �1  and changes with iterations.

Evaluating the significance of ranking scores. For each bioentity (or node), the statistical likelihood that its score 
is generated by a random chance is estimated using a statistical significance test to obtain its associated p-value. The 
ranking scores first go through a log2-based transformation. Let Mo be the mode of the score distribution frequency 
histogram, let M be the median of the score distribution, and let IQR be the interquartile range [102] (Q3 − Q1, or the 
difference between 75th and 25th percentiles) of the score distribution. We can use 0.2×IQR to determine the bin size of 
the score histogram. 

The score distribution is then checked to see if it has a bell shape that can be captured by a normal distribution 
(e.g., as is the case for Non-Small Cell Lung Cancer network obtained from the Human Annotated and Predicted Protein 
Interactions (HAPPI) subsets of the 4-star rank level and above [103]), which is judged by testing whether the difference 
between Mo and M falls within 0.5×IQR. If so, the p-value is computed assuming a normal distribution with the mean 
being M and the standard deviation being IQR/1.34 (as Q3 and Q1 are at -0.67σ and 0.67σ, respectively). 

Otherwise, i.e., when the difference between Mo and M is greater than 0.5·IQR as in a scale-free network is 
expected, it is difficult to expect the distribution shape and p-value is then calculated empirically as a ranking-based 
percentile.

Network expansion. After the node scores are computed, we can expand the network to incorporate and rank new 
entities from other data sources. The network can be extended by retrieving undirected neighbors from a data source via 
the shortest paths from the seed entities. 

Another more sophisticated approach is to use network propagation again with α = 0, but initially, new entities have 
zero amount of fluid. The process can be halted after a few iterations when most of the fluids are still close to the seed 
nodes. This approach is desirable since a node that is not a direct neighbor of some seed node but is not too distant from 
many seed nodes (i.e., well connected through many short paths) will be ranked high; the process also automatically 
deprecates paths that pass highly connected or hub nodes, because the fluid will diffuse to the many neighbors of the 
hub, and only a small share will be allocated to each neighbor. An alternative way to halt the process is to use a random 
walk with restart (RWR, i.e., α > 0) so that at each step of the propagation process, with some fixed probability the fluid 
at a node returns to the original source node rather than continues propagation. This version advances the propagation 
process to a steady state even when diffusion is restricted to the local neighborhood. Note that with a damping factor, 
long walks are unlikely since the amount of fluid that reaches a node decreases exponentially on the basis of its distance 
from the source. 

Application. BEERE is a versatile tool for expanding multi-domain networks [104]. For example, to construct 
expanded semantic interaction networks from seeded genes, key terms from PAGER were combined with the lists of 
differentially regulated genes and used as input for BEERE. The resulting networks were integrated with long non-
coding RNAs (lncRNAs) and their proximal genes to identify the key pair relationships, which enabled the construction 
of lncRNA to messenger RNA (mRNA) interaction networks. BEERE can also be used to statistically evaluate the 
relevance of terms [105], which is an important application. For example, to validate the keywords of enriched pathways 
from a differentially expressed gene list in a particular disease such as “melanoma”, users can leverage BEERE to assess 
the significance of the terms in the disease context. This can help remove biases and refine the list of relevant pathways 
from a semantic perspective. Furthermore, BEERE can be easily incorporated into any pipeline for complex disease 
gene prioritization analysis [106].

4.1.2 WINNER

WINNER is a new software tool that can help characterize and prioritize disease genes from this project and 
generally for other cancer studies [5]. This tool allows researchers to process molecular interaction network data to 
create an expanded network where nodes are ranked by their statistical relevance within the network. The network where 
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WINNER can apply generically refers to GRN, PPI network, metabolic network, pathways, or subcomponents of the 
networks as network modules. Prior to the work, researchers generally use selected statistical properties, e.g., centrality 
score for gene nodes, or biological properties, e.g., transcriptional factors or cell-surface receptors, to prioritize genes 
[107]. WINNER provides a knowledge-agonstic approach to ranking genes based on network properties learned from 
the entire network architecture. In WINNER, two types of statistics are available for users to assess the robustness of the 
ranked results: 1) the node-expansion p-value, which evaluates the statistical significance of incorporating “non-seed” 
molecules into the original biomolecular interaction network consisting of “seed” molecules and molecular interactions; 
and 2) the node-ranking p-value, which assesses the relative statistical significance of each node’s contribution to the 
overall network architecture.

WINNER’s network-based ranking result is robust, which is measured by conducting several network permutation 
experiments involving noise spiking. In WINNER, the node degree-preservation randomization of the gene network 
yielded normally distributed ranking scores, surpassing those generated by other gene network randomization 
techniques. Additionally, WINNER-ranked genes had a stronger association with disease biology compared to existing 
methods, such as PageRank.

WINNER upstream ranking and expansion can identify genes that are missing from previously curated disease 
gene networks. For example, curated genes in the KEGG chronic myeloid leukemia (CML) pathways were collected 
and distributed into layers. Correlation among WINNER (WN), Igenunity Pathway Analysis (IPA), DIAMOnD (DM), 
node2vec (ND), random walk (RW), and GenePANDA (GP) ranking were compared to suggest that WINNER identified 
expanded and top-ranked genes more significantly related to disease biology than those specified by other gene 
prioritizing software tools, including IPA and DM.

4.1.3 Other node ranking methods

Network-based methods. Multiple heuristic algorithms have been developed in the prioritization of nodes using 
network-based methods [108-111], including various models such as random walks (e.g., PageRank and Hyperlink-
Induced Topic Search), conditional random field, and flow propagation. 

Graph-theoretical node importance metrics. There are a number of graph-theoretical node importance metrics, 
such as node centrality. Betweenness centrality of a node is the number of shortest paths (between all possible pairs 
of nodes) that pass through the node. Closeness centrality (or closeness) of a node is a measure of centrality in a 
network, calculated as the reciprocal of the sum of the length of the shortest paths between the node and all other nodes. 
Similarly, the eccentricity centrality (or eccentricity) of a node i is calculated as the reciprocal of the longest shortest 
path between the i and all other nodes. Since the previous centralities are expensive to compute, semi-local centrality 
[112] is proposed as a more compute-efficient alternative that is more effective than degree centrality (or simply, node 
degree which is the number of links incident upon a node) for identifying the influencers. Let N(w) be the number of 
vertices within two hops from node w, and define a node metric ( )( )

jw N wQ j ∈Γ= Σ  where Γj means the set of node j’s 
direct neighbors, then the semi-local centrality of node i is equal to ( ) ( )

iw N w Q j∈ΓΣ  
Degree-based metric. Degree-based metric is the core number of a vertex. Specifically, the k-core of a network is 

a maximal connected subgraph in which all nodes have a degree of at least k. The k-core is unique and can be computed 
using a peeling algorithm that repeatedly removes a vertex with degree < k until no more such vertex exists. The k-shell 
is the subgraph of nodes in the k-core but not in the (k + 1)-core, and in this case, every node in the k-shell has a core 
number equal to k.

Other bioentity ranking methods. According to the hypothesis that functionally related gene disorders result 
in phenotypically similar diseases, gene prioritization implements the similarity scores for the ranking between the 
candidate genes and the known disease genes. 

Popular tools. One of the popular tools is ToppGene [113] which provides a grand similarity score that combines 
multiple similarity scores by comparing the test genes’ annotations to the training genes’ enriched annotations. The 
annotation can be either categorical terms such as Gene Ontology, pathways, drug targets, etc., or numeric annotations, 
i.e., the microarray expression values. A fuzzy-based similarity measure [114] is applied for the categorical terms, and 
Pearson correlation is measured for the numeric correlations. To provide a grand score that is able to aggregate all the 
similarity scores of different annotations, ToppGene applies a statistical meta-analysis. In this analysis, an empirical 
p-value will be assigned to each annotation based on the similarity score ranking in the score distribution generated from 
a random sampling of the whole genome. Assuming p-values come from independent tests, ToppGene adopts Fisher’s 
inverse chi-square to combine the multiple annotations’ p-values into a grand p-value. The grand similarity score is 
simply 1 – the grand p-value. Another tool called Endeavour [115] applies a similar principle but with more data sources 
integrated. To perform an integrated pathway analysis, upstream kinomics data were combined with lncRNA proximal 
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genes of interest using MetaCore/GeneGo (Clarivate Analytics) in parallel with the aforementioned analyses.

4.2 Ranking biomedical entity-to-entity associations
4.2.1 WIPER

The edge metrics we have seen so far do not utilize edge weights which are common in biological networks. We 
show how to prioritize network edges using WIPER [4], which is able to effectively utilize weighted edges along with 
graph topology to rank the edges so as to solve biomedical problems such as finding a therapeutic strategy by “targeting 
the right interactions in the interactome” [116]. 

WIPER treats an input biological network as a probabilistic network where each edge (i, j) has a weight between 
0 and 1 modeling the probability that node i successfully regulates node j, denoted by Pr(i, j). A key innovation of 
WIPER is that it will transform this probabilistic network among bioentities into another weighted network where each 
node is an edge in the original graph, so that node ranking algorithms as introduced in Section 4.1.2 (e.g., BEERE) 
can be readily used to rank the edges. WIPER can also predict new edges in the network, and those newly discovered 
interactions may represent novel biological mechanisms to form new hypotheses. 

Given an input biological network G = (V, E) where V is the bioentity node set and E is the edge set where 
each edge (i, j) has weight Pr(i, j), WIPER first resets the edge weight into w(i, j) which is the score contributed by 
the optimal path from i to j. Let us denote the path by i -> k1 -> k2 -> … -> kt -> j, then the probability that node i 
successfully regulates node j along this path is given by:
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which can be higher than the weight of the original edge Pr(i, j), making this new weight more appropriate. 
Therefore, the new edge weight w(i, j) is decided by the optimal path from i to j that maximizes the probability of 

regulation:
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

which can be calculated by the Floyd-Warshall algorithm that computes the lengths of shortest paths between all pairs 
of vertices, modified so that edge weights are aggregated by multiplication instead of summation, and instead of keeping 
the shortest path length, here, w(i, j) keeps the highest probability product among potential paths. After this step, the 
biological network G now has edge weights w(i, j) replacing Pr(i, j) (unless the original edge (i, j) is already the optimal 
path connection between i and j). 

Next, WIPER transforms this updated bioentity graph G into another graph G  where each node corresponds to an 
edge in G. Let us denote vi,j as a node of G  that corresponds to the edge (i, j) in G. Then, we can set the weight of an 
edge (vi,j, vk,ℓ) as:

                                       ( ) ( ) ( ) ( ) ( ) ( ) ( ){ },i,j k,w v ,v Pr i,j Pr k, max Pr i,k ,Pr i, ,Pr j,k ,Pr j,= ⋅ ⋅


  

which is a product of the existence probabilities of (i, j) and ( j, ℓ), and the probability of the most likely connecting path 
between two node sets {i, j} and {j, ℓ}, which is similar to the idea of single-link hierarchical clustering. Finally, the 
edge WIPER scores are calculated by performing the aforementioned node ranking algorithms on the graph, and p-value 
estimation. Please refer to Section 4.1.2 for the details.

Application: WIPER can be easily accessed using an API and is an effective method for evaluating network edge 
importance in any weighted network [117]. In the context of literature retrieval, WIPER uses the PubMed score as 
a measure of semantic validation [105]. The p-value evaluation in WIPER can be adapted to work with any ranking 
algorithm tools, such as the Polar Gini Curve [118].

4.2.2 Other node ranking methods

Ranking edges in a biological network allows quick focus on top-ranked edges for subsequent biological 
interpretations [119-121]. Critical edges can be divided into two categories based on their roles: some enhance the 
locality, like the ones inside a cluster, while others contribute to global connectivity, like the ones connecting two 
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clusters. 
There are a number of graph-theoretical metrics for finding critical edges. Among locality metrics, degree product 

(and its variants) [122] supposes that edges whose end-nodes have high degrees are critical.
Betweenness centrality. The betweenness centrality of an edge (i, j) is defined as

                                                                           

( , )
( , ) ,st

s t V
st

i j
BC i j

δ
δ≠ ∈

= ∑

where δst denotes the number of all the shortest paths between node s and node t, δst (i, j) denotes the number of all the 
shortest paths between node s and node t that pass through the edge (i, j). The larger the betweenness centrality score is, 
the more shorter paths that pass through the edge, and hence the more important the edge is.

Jaccard coefficient. Among global connectivity metrics, the Jaccard coefficient of an edge (i, j) is defined as

                                                                                 
( , ) ,i j

i j

J i j
Γ ∩Γ

=
Γ ∪Γ

where i and j are the two end nodes of the edge (i, j) and Γi is the set of i’s neighbors. Edge (i, j) is essential (regarding 
global connectivity) if its Jaccard coefficient is low, since node i and node j have less common neighbors, so information 
is more likely to have to pass through (i, j). 

Bridgeness index. The bridgeness index (or bridgeness) [123] of an edge (i, j) is defined as

                                                                                  ,

( , ) ,i j

i j

S S
B i j

S
=

where Si, Sj and Si,j are the sizes of the maximum cliques containing nodes i, j and edge (i, j), respectively. Similar to 
Jaccard coefficient, edge (i, j) is important in terms of global connectivity if its bridgeness is low. Intuitively, edges in 
smaller cliques are more important since their removal tends to impact global connectivity more. 

Reachability index. The reachability index [124] of an edge (i, j) is defined as

                                                                    

1( , ) ( ; ( , )) ,
s V

R i j R s G i j
V ∈

= −∑

where |V| is the number of nodes, G – (i, j) is the subnetwork by removing edge (i, j), and |R(s;G – (i, j))| is the number 
of nodes reachable from a node s in G – (i, j). A lower reachability index means that after removing edge (i, j), the 
average number of reachable nodes is decreased more and thus edge (i, j) is important. 

We remark that while locality metrics for edges are intuitive in ranking bioentity-wise associations, global 
connectivity metrics are also useful. For example, [125] explores the weak-ties effect in PPI networks to discover 
protein complexes, where a similarity function is defined based on bridgeness to quantify how close a node is to its core 
component.

4.3 Literature-mined semantic networks

Besides finding significant nodes and edges, it is also interesting to find active subnetworks (or, modules) which is 
useful in applications such as detecting/uncovering molecular complexes/structures (densely connected regions in large 
PPI networks) [126, 127], and identifying recurrent patterns across multiple networks to discover biological modules 
[128]. 

Many algorithms have been designed to identify active subnetworks or modules participating in condition-specific 
biological functions. In fact, in many such algorithms, the previously introduced node and edge importance metrics 
serve as their input. 

The survey of [23] classifies subnetwork mining methods into six categories: (1) greedy algorithms, (2) 
evolutionary algorithms, (3) maximal clique identification, (4) random walk algorithms, (5) diffusion emulation models, 
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and (6) clustering-based methods. Most of them are similar to what we have covered, such as greedy search (node 
expansion from seed nodes), random walks, and clustering (e.g., the gene modules in WGCNA found by hierarchical 
clustering). Thus, this section covers more unique methods, including dense subgraphs, frequent subgraph patterns, and 
biclustering. 

We remark that some methods, such as evolutionary algorithms, directly maximize a subgraph scoring function, 
such as the aggregate score of nodes and edges, or the similarity between the connected modules provided for different 
diseases; while others are based on the structural and expression-order relationships. The statistical significance of 
the subnetworks is estimated by its score’s empirical p-value in the sample and gene permutations or subnetwork 
randomization. We can also evaluate the cohesion of the subnetworks found using metrics such as degeneracy and 
h-index. The degeneracy of a graph is the largest value k such that it has a k-core, while the h-index of a graph is the 
maximum number h such that the graph contains h vertices of degree at least h.

Dense subgraphs. There are many definitions of dense subgraph structures that can be mined from underlying 
biological networks. Cliques are subnetworks in which every node is connected with all others, and maximal cliques 
can be used to find active protein modules though preprocessing is often needed to simplify the network to reduce 
computation cost [23]. Since requiring a subnetwork to be a complete graph is too strict, relaxations called quasi-cliques 
can be used to improve recall. A degree-based p-quasi-clique requires that every node in the subnetwork be connected 
to at least p fraction of the other vertices, which has been used to explore significant protein modules in a PPI network 
[129] and to classify whole-genome protein sequences in a linkage graph [130]. A similar definition to the degree-based 
p-quasi-clique is k-plex, where a node is allowed to be a member of the subnetwork when it has connections to all but at 
most k other members. A density-based p-quasi-clique requires the edge density of the subnetwork to be at least p, where 
the density is evaluated by comparing to the number of all possible edges among nodes of the subnetwork (i.e., when it 
is a clique), and it has been used for clustering PPI networks to detect functional groups [127]. Other definitions include 
k-core which was introduced before, and k-truss which is the maximal subnetwork where each edge is involved in at 
least k triangles (i.e., 3-cliques). Another way is to find hub-induced subgraphs from the neighborhoods of high-degree 
nodes, such as [131] which keeps removing edges with high betweenness centrality to obtain sub-groups such that the 
intra-group connections are dense and intergroup connections sparse, which serve as potential functional modules in a 
PPI network.

Frequent subgraph patterns. Frequent pattern mining (FPM) is a classical problem at the core of data mining 
research, which aims to find patterns that appear in at least a fraction α of all data objects (called transactions in FPM 
terminology) in a database. We consider the problem of frequent subgraph pattern mining where a pattern is a subgraph, 
and a data object is a network. There are two variants: one is to find patterns that occur in many networks, and the other 
is to find patterns that occur in different places in a big network. The patterns can be network motifs, i.e., statistically 
overrepresented sub-structures (sub-graphs) in a network, and the study of biological network motifs may reveal 
answers to many important biological questions. 

The seminal work of [132] mines the transcriptional regulation network of E. coli and finds that much of it consists 
of repeated appearances of three highly significant motifs. For each network motif, there is a function in determining 
gene expression, such as generating temporal expression programs and governing the responses to fluctuating external 
signals. The motif structure also provides an easily interpretable view of the entire known transcriptional network of 
the organism. CODENSE [128] is an algorithm to mine frequent coherent dense subgraphs across large numbers of 
graphs, and has been used across multiple networks to identify recurrent patterns as biological modules;  CODENSE 
was applied to 39 co-expression networks derived from microarray datasets, which discovered a large number of 
functionally homogeneous clusters and made functional predictions for 169 uncharacterized yeast genes. NemoProfile 
[133] identified five network motifs from E. coli and Saccharomyces cerevisiae PPI networks, which are used to 
construct protein attributes that are fed into a decision tree to predict essential proteins. Network motifs have also been 
mined in metabolic networks to study pathway evolution [134]. Network motifs are also defined in bipartite graphs that 
can model enzyme-reaction links in metabolic pathways and gene-disease associations, such as butterflies (or 2 × 2 
bicliques) [135].

Biclustering. Biclustering can be applied directly on the microarray X, and finds the so-called biclusters (R, C) 
where R is a row set of biomolecules and C is a column set of test conditions, such that expression values {xij} where i 
ϵR and j ϵC are highly correlated. An example of biclustering is the concept of order-preserving submatrices (OPSM) 



Biostatistics Research 48 | Zongliang Yue, et al.

[136]: a submatrix S of X is an OPSM if there is a permutation of the columns of S, under which the expression values 
of each row in S are strictly increasing.

In the gene expression data analysis using microarray experiments, genes (rows) with simultaneous mRNA 
expression changes across different time points (columns) may share the same cell-cycle related properties [137]; 
columns may also refer to different experimental conditions as in [138]. In this application, an OPSM represents co-
expressed gene patterns among cohorts in a particular stage of a disease or under the same drug treatment, etc. [139]. 
This biclustering method overcomes the shortcoming of traditional gene clustering methods in the identification of 
patterns corresponding to only a part of the expression matrix X, since the computation of gene correlations in GCNs are 
based on all columns.

Biclustering also applies to a bipartite graph. Statistical-Algorithmic Method for Bicluster Analysis (SAMBA) 
[140] identifies active modules by building a weighted bipartite graph in which two types of nodes represent genes 
and proteins, respectively. A connection between these two types of nodes represents the probability of gene protein 
associations. Biclustering enables the identification of the locally optimal subgraphs. Overlap is minimized by limiting 
the shared properties between subgraphs. The SAMBA performance relies on the selections of the properties layer.

5. Conclusions
We have seen how existing works build and analyze biological networks. However, the combination of different 

methods is still largely ad hoc, without a clear consensus on what is right or wrong. The goal is to organize these 
methods in a way that best serves biological interpretability. For example, while the original design of WGCNA was 
for mRNA networks, it has been expanded to miRNA and lncRNA networks [141, 142]. Moreover, studies have shown 
that integrating PPI network complexes and WGCNA co-expression networks can enhance the identification of hub 
gene signatures associated with important phenotypes, such as cancer and polygenic disorders [143-148]. By combining 
various network mining techniques and integrating different types of biological networks, researchers can increase 
their ability to identify and interpret gene signatures associated with specific phenotypes. Ultimately, this can help us 
better understand the molecular basis of complex diseases and design more effective strategies for their prevention and 
treatment. Although many algorithms have been developed for biological network mining, there are still inspiring and 
promising approaches that have yet to be fully explored. For example, several functional dependencies (FD) mining 
algorithms for data profiling [149-152] could be applied to extract subnetworks from discrete expression data. Similarly, 
the backtracking algorithm for the transversal hypergraph problem [153] could be utilized to condense biological 
networks. In terms of data retrieval, Prefix Closed Pattern Tree based Frequent Closed Itemset mining algorithm (PCPT-
FCI) [154] could be useful in mining frequently closed entities in biological subnetworks. Furthermore, specific domains 
such as inferring drug Mechanisms of Action (MOA) or off-target mechanisms from cell-line specific perturbational 
profiles [134] have the potential to yield valuable drug-gene networks [155]. 

Several directions are promising for future research, including (i) speeding up analysis by parallel computing, (ii) 
new approaches utilizing the temporal information of the networks, and (iii) deep learning models.

Parallel computing. Concurrent network construction is easy since the computing of correlation between different 
pairs of biomolecules (rows in a microarray) is embarrassingly parallel. Data-intensive graph-parallel systems are 
abundant such as the think-like-a-vertex programming paradigm pioneered by Google’s Pregel [156] and followed 
by numerous other systems as reviewed by [157]. These systems are ideal for implementing concurrent network 
propagation and random walk algorithms for ranking nodes and edges; depending on the available hardware, one 
can choose from single-machine out-of-core systems such as GraphChi [158] and X-Stream [159], or distributed 
systems such as Pregel+ [160-162], Giraph [163], GraphLab [78], Blogel [164], Quegel [165, 166], and lightweight 
checkpointing (LWCP) [167], to list just a few. These systems are more than enough as they target the billion-node scale 
of online social networks, well surpassing the size of a typical biological network. 

On the other hand, mining significant subgraphs are often more computationally expensive (often nondeterministic 
polynomial (NP)-hard) as the possible node set of a subgraph is the power set of the set of biomolecules in the biological 
network. Hence the search space grows exponentially with the network size. It is critical to share the computing 
workloads among all central processing unit (CPU) cores available, which is ill-suited for data-intensive systems 
mentioned before where execution is input output (IO)-bound. Fortunately, there are recent breakthroughs in systems 
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research that allows massively parallel mining of dense subgraphs as supported by G-thinker [14, 16-19], and massively 
parallel mining of frequent subgraph patterns as supported by PrefixPFM [15, 20-22] and time-frequency signature 
matrix (T-FSM) [168]. Both systems allow the efficient finding of significant subgraphs and thus bring substantial 
potential to expedite biological findings using the approaches we introduced in Section 4.3. 

An alternative to parallel computing is to use graph sketches which are succinct summaries of massive data 
(e.g., all shortest paths between nodes in a biological network) often estimated from a sample of the data and provide 
approximate answers with certain quality guarantees (e.g., with 99% probability that the error is within 1%). For 
example, the reachability index is usually estimated using bottom-k sketches [124] while node betweenness centrality 
can be estimated using hypergraph sketches [169].

Temporal network metrics. It is important to capture the dynamics of interactions among biomolecules that 
change over time, and we have seen that one solution is to use ODE to construct a GRN as by SCODE [93], but the 
constructed GRN for further analytics is still a static graph. 

There are some recent breakthroughs in defining meaningful metrics useful in our network analysis as described in 
Section 4, which are worth exploring in future research. Some of these metrics consider the order that interactions can 
happen, such as temporal shortest path [170], temporal reachability [171] and node centralities [172]. Others consider 
the persistence of dense interactions through a consecutive period of time, such as temporal quasi-clique [173] and 
temporal k-core [174]. These new definitions have great potential to find more convincing network modules that respect 
temporal order and persist over some time.

Deep learning. Deep learning has revolutionized the domain of artificial intelligence (AI) due to its superior 
performance that dominates traditional machine learning models when given sufficient training data. Convolutional 
neural networks can extract features from matrix/tensor input and can be explored over the microarray data or the 
network adjacency matrix (e.g., for supervised learning tasks like functional classification), while recurrent neural 
networks can be utilized to capture the temporal dependencies. Both structures can be combined to capture the network 
dynamics using hybrid models such as convolutional neural network long short-term memory (CNN-LSTM) or 
convolutional long short-term memory (ConvLSTM) [175]. 

When a biological network is constructed, a more graph-native approach should be preferred which aligns well 
with the recent trend of GNNs [176] that is made popular by the seminal work on graph convolutional networks [177]. 
In this thread of research, the graph convolution layer operates on the neighborhood of each node and is the counterpart 
of the convolution layer in ConvNets, and graph pooling operates on the intermediate graph layer similar to pooling in 
ConvNets. Compared with other node embedding methods like DeepWalk and node2vec which only utilizes topology, 
graph convolution networks also allow each node to contain input features that are utilized in computing the extracted 
node/graph features for use by the ultimate node or whole-graph classification. Graph convolutional networks have 
recently been applied to predict the interfaces between proteins [178], to infer cell-cell interactions [179], to predict 
metastatic events in breast cancer [180], and to encode biological knowledge such as Gene Ontology for gene set 
enrichment analysis and for selecting Gene Ontology terms that are important to target clinical variables [181]. 

Ensemble multimodal. The Differential Evolution Artificial Neural Network (DE-ANN) algorithm [182] is a 
hybrid optimization technique that combines the strengths of differential evolution and artificial neural networks. It is a 
combination of the DE-ANN algorithm and Fuzzy c-Means (FCM) clustering for skin cancer detection. The ensemble 
multimodal deep learning model developed by Kumar et al. [183] utilizes Uniform-Net and convolutional neural 
network (CNN) to extract distinguishing features for coronavirus disease (COVID-19) patient diagnosis.
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