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Abstract: Three-Dimensional (3D) point cloud analysis has become one of the attractive subjects in realistic imaging 
and machine visions due to its simplicity, flexibility and powerful capacity of visualization. Actually, the representation 
of scenes and buildings using 3D shapes and formats has leveraged many applications among which automatic driving, 
scenes and objects reconstruction, etc. Nevertheless, working with this emerging type of data has been a challenging 
task for objects representation, scenes recognition, segmentation, and reconstruction. In this regard, a significant effort 
has recently been devoted to developing novel strategies, using different techniques such as deep learning models. To 
that end, we present in this paper a comprehensive review of existing tasks on 3D point cloud: a well-defined taxonomy 
of existing techniques is performed based on the nature of the adopted algorithms, application scenarios, and main 
objectives. Various tasks performed on 3D point could data are investigated, including objects and scenes detection, 
recognition, segmentation, and reconstruction. In addition, we introduce a list of used datasets, discuss respective 
evaluation metrics, and compare the performance of existing solutions to better inform the state-of-the-art and identify 
their limitations and strengths. Lastly, we elaborate on current challenges facing the subject of technology and future 
trends attracting considerable interest, which could be a starting point for upcoming research studies.

Keywords: point cloud, 3D point cloud, 3D object recognition, 3D object segmentation, 3D object and scene 
reconstruction

1. Introduction
The development of acquisition methods and sensing technologies contributed considerably to capturing objects 

and monitoring scenes using Three-Dimensional (3D) representation. As a result, these tasks have gotten much easier 
and more cost-effective: the use of 3D images provides efficient information about the captured objects and scenes, 
which supports many applications such as object reconstruction, automatic driving, scene scanning, etc.

The most basic shape of a 3D representation is a Point cloud: it is formed by a group of single points drawn in a 3D 
area [1] to represent objects. To each point are associated several measurements, including coordinates along the X, Y, 
and Z axes as well as more specific data such as the color value, recorded in Red Green Blue (RGB) format [2], and the 
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lightness measure, which determines the point’s brightness.
The point cloud is captured by laser scanners or LiDAR sensors. These latter use different technologies when 

it comes to generating the 3D shape of objects or scenes: LiDAR sensors use various beams to capture the density 
of points cloud, while laser scanners use light speed to generate the 3D points cluster. The efficiency of each sensor 
lead depends on the number of dots being generated. This number is also a determining factor when it comes to the 
effectiveness of the methods working on the 3D point cloud. Figure 1 represents some examples of objects and scenes 
depicted in 3D point clouds.
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Figure 1. Object and scene with 3D point cloud representation

For the human eye, shapes and objects represented in 3D point clouds are easily detected and recognized even if 
the density of the gathered points is sparse. For example,

the swarm of dots that represents a tree can be recognized easily by the human eye, yet, a machine can consider this 
set of dots as noise which makes it hard to learn for the recognition algorithm. That being said, close attention was paid 
to finding effective methods to handle 3D point clouds growing up in a wide range of research fields [3-4]. Fortunately, 
with deep learning techniques and large-scale datasets, models became more capable of learning from various features 
and obtaining the desired outputs; whether it is about segmentation reconstruction or recognition of 3D shapes and 
scenes.

Unlike triangular meshes, the point cloud does not require storing or maintaining polygonal network connectivity 
[5] or topological consistency [6]. In addition, point cloud technology brought significant improvements in performance 
and reduced overhead costs. Therefore, this research area has drawn growing interest for a wide variety of applications 
[7]. Several sensing technologies have been used to create 3D models from 3D Point Clouds. This involves sensors 
like laser scanners, LiDAR, as well as Kinect, equipped with depth sensors to provide the distance and the depth of the 
object.

Even though the quick development of these sensing technologies makes the extraction of point clouds much easier 
[8], the analysis of point clouds is still one of the key aspirations [9]. In fact, point clouds usually suffer from noise 
pollution and the presence of outliers. This is usually due to limitations and noise inherent in sensing devices [10] and 
the nature of lightning, surface reflection, or artifacts in the respective areas [11]. As a way to redress this issue, filtering 
was implemented on key point clouds in order to achieve accurate results suitable for further processing. Yet, most of 
these approaches targeted meshes and only a few studies dealt directly with point clouds [12].

3D point cloud processing, on the other hand, attracted more attention and became a subject of interest and analysis 
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[13] worldwide. Different tasks were designed to process 3D point cloud data like, 3D object detection, recognition and 
segmentation as well as object and scene reconstruction [14].

In this regard, several studies have been performed, for instance, Dong et al. in [15] proposed a new 3D object 
recognition method based on sequential point cloud coding. This method first transforms a point cloud into an ordered 
multi-channel 2D array suitable for efficient 2D convolutional operation. While authors in [16] developed a localization 
method that integrates a supervised object recognition method to predict probabilistic distributions on classes of objects 
for individual sensor measurements, into the Bayesian network for localization.

At this stage, reviewing different tasks and techniques pertaining to the 3D point cloud should serve as a good 
starting point for researchers. Actually, it helps initiate basic concepts and understanding of leading ideas of the subject 
matter. Even though this paper is not an in-depth investigation of 3D point Clouds field of study, it does perform an 
overview of all existing tasks and approaches for 3D point cloud analysis. Within, we conduct an experiment to compare 
the performance of several methods on current datasets. Hence, the contributions of this work could be outlined as 
follows:

• A thorough taxonomy of the existing works is conducted with reference to various aspects, such as the 
methodology deployed to design the proposed models, types of image data that could be processed by the subject 
technology, and their application scenarios.

• Public datasets deployed to validate the proposed models on 3D point cloud data are discussed and compared 
with regard to different parameters.

• Several comparisons of the most significant works identified in the state-of-the-art have been conducted to 
demonstrate their performance across multiple datasets and metrics.

• Current challenges and issues that remained unresolved have been targeted. Insights about future directions and 
trends have been discussed along with their potential impact on research and development in the near and distant future.

The remainder of this article is organized as follows: first, we provide an overview of the filtering techniques 
applied to 3D point clouds. Then we describe the experiments performed on this kind of data before we detailed 
and discussed the respective results. Finally, we conclude the paper, and we identify potential challenges and future 
perspectives.
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Figure 2. Computer vision tasks on 3D point cloud data
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2. Related works

Table 1. Object detection recognition and segmentation methods and their characteristics

Task Method Technique Dataset

Object
detection

and 
recognition

[11] Statistical algorithm Self-collected 

[19] STEM, CaRFs, VGG Washington RGB-D, Cornell grasping

[20] PPF, LRF UWA, Queen’s, bin picking

[21] Appearance-Based Object Recognition (ABOR) KITTI

[22] Cross-modal, SHOT and ESF descriptors self-collected

[23] Covariance descriptor RGB-D

[24] LonchaNet, CNN, GoogleNet ModelNet-10

[25] Global Orthographic Object Descriptor Washington RGB-D

[26] iCLAP, tactile features -

[27] 3D FCN architecture KITTI

[28] RNN,MLP ModelNet40

[29] 3D CNN ModelNet40, MNIST

[30] 3DSmoothNet, SDV, LFR 3DMatch, ETH

[31] voxels-based shape descriptor self-collated MLS point cloud

[32] 3D cluster descriptor ImageNet

[33] PointNet, NetVLAD VGG/AlexNet Oxford RobotCar

[34] ShapeContextNet (SCN) ModelNet40, MNIST

[35] PVNet, Embedding Attention Fusion ModelNet40

[36] VoxelNet, RPN KITTI

[37] SO-Net ModelNet10, ModelNet40, MNIST

[38] Saliency map, Point cloud conversion, Hough voting RGB-D converted to 3d point cloud

[39] 3DCNN, MLP S3DIS

[40] Adopted 3D ZSL ModelNet-10-40, Mcgill, SHREC2015

[41] TZSL, GZSL, 3D CNN, ResNet-101 ModelNet-10-40, McGill, SHREC2015

[42] 3DCNN, ResNet ModelNet10, ModelNet40

[43] GAN KITTI

[44] RNN, K-D tree searching method Bin-picking, UWA

[45] RS-CNN, MLP ModelNet40

[46] MeteorNet MSRAction3D
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Table 1. (cont.)

Task Method Technique Dataset

Object
detection

and 
recognition

[47] 2D CNN, JointNet HDRObject9, SMDObject6

[48] InterpCNNs, MLP ModelNet40

[49] Attentional PointNet KITTI

 [50] SFCNN ModelNet40

[51] CNN, YOLO KITTI

[52] PointNet++, PGM, PointsPool KITTI

[53] DGCNN ModelNet40

[54] MVF, CNN KITTI

[55] Point pair feature UWA, Real scene

[56] Octree, DeepCNN, VoxRec Shapenetcore Part

[57] two-stage Weakly Supervised KITTI

[58] VoxNet, 3DCNN RGB-D, LiDAR

[59] 3D to 2D projection, Inception-v3 KITTI

[60] MVG, RPN KITTI

[61] RPN, segmentation network, estimation network KITTI

[21] CNN, Contextual Labeling Refinement (CLR) KITTI

[62] Voxel-based 3D-CNN LiDAR point cloud Ottawa

Object 
segmentation

[28] 3D CNN,MLP ShapeNet part

[29] 3D CNN ModelNet40

[32] 2D CNN labeling ImageNet

[34] Attentional ShapeContextNet (A-SCN) ShapeNet part

[37] SO-Net ShapeNet part

[45] RS-CNN, MLP ShapeNet part

[46] MeteorNet KITTI, Synthia

[48] InterpCNNs, MLPs ShapeNet Part

[50] SFCNN ShapeNet Part

[53] DGCNN ShapeNet Part

[56] Octree, DeepCNN, VoxRec Shapenetcore Part

The impact of point clouds on many computer vision applications pushed researchers toward finding the best 
techniques to classify, recognize or segment the objects pictured using point clouds like presented in Figure 3. In this 
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context, many approaches have been proposed, and from which we described and analyzed the ones we presumed more 
relevant. These approaches are split into categories in accordance with the tasks performed on point clouds: this could 
be object classification and recognition, object scene segmentation, and object scene reconstruction as presented in 
Figure 2. A summarization of the main characteristics of each method and for each task is detailed in Tables 1 and 2.

Table 2. Summarization of scenes recognition and objects reconstruction methods

Task Method Technique Dataset

Scenes 
and places 
recognition

[69] PointNetVLAD, LPD-Net, RN-VLAD, GCA Oxford RobotCar

[33] PointNet, NetVLAD VGG/AlexNet Oxford RobotCar

[61] RPN, segmentation network, estimation network KITTI

Scenes
and obejcts 

reconstruction

[78] Building Information Modeling (BIM) 2D-3D-S, S3DIS

[79] unsupervised Building Information Modeling (BIM) 2D-3D-S, S3DIS

[80] Vectorized model, Multistep 2D optimization MC and Office

[81] CNN, building element segmentation and reconstruction S3DIS, 2D-3D-S

[83] Mesh deformation network and Graph Unpooling Network ShapeNet

[84] point set generation network (PSGNet) ShapeNet

[85] Point Cloud Reconstruction Network, Silhouette Completion Net-work ShapNet

[86] CNN ShapNet

[87] Encoder-decoder ShapNetCore, Pix3D

[88] RfD-Net, 3D detector, spatial transformer, shape generation ScanNet [89], Scan2CAD [77]

2.1 Objects detection and recognition

Recently, computer vision and pattern recognition communities have been focalizing object detection. It has always 
been considered an essential task in computer and robot vision systems. Despite the progress achieved in this area, a 
lot of improvements would have to be made to achieve human-level performance. In 3D representation of data, the 
detection and recognition of objects represent a different, more complicated task compared to the work performed on 
2D data [17-18].

Recognizing 3D objects could be more problematic if the 3D point cloud data includes missing parts and or noisy 
data. To reach accurate recognition, researchers were compelled to find methods to recover or estimate these parts of 
obscured data [19-20]. However, the particularity of 3D point cloud representation, compared to RGB images and 
the usual types of data, makes it hard to operate without proper data preparation [21]. The 3D point cloud data should 
undergo a series of pre-processing steps such as data denoising and cleansing before initiating the recognition process. 
This does not change the fact that working with 3D point clouds, instead of conventional data, has driven computer 
vision applications towards new strategies of data analysis and optimized consumption of memory and storage [22]. For 
that, and using hierarchical cascading for low-quality, authors in [19] introduced an object recognition and detection 
solution from RGB-D images. This method consists of analyzing comprehension probabilities and object class 
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probabilities by extracting features using VGG architecture. Also, to recognize objects using a unified representation 
based on point clouds, authors in [22] proposed a cross-modal Visio-Tactile object recognition method using tactile data 
retrieved from a tactile skin reader. SHOT and ESF descriptors were used for the recognition process.

Basically, capturing a 3D point cloud requires accurate sensors like laser, LiDAR, and range finder to generate 
precise measurements. Yet, in many cases, low-quality sensors are the ones being used. Here is where things get 
complicated and the need to achieve 3D object recognition despite low-quality representation arises. To handle the 
imperfect acquisition, authors in [23] suggested the use of descriptors (usually exploited in other computer vision 
domains) to process 3D point clouds. This method establishes an object recognition process based on the Covariance 
descriptor, which proved to be effective in many similar subject studies. In [24] authors designed a CNN-based 
architecture named LonchaNet for real-time recognition represented in 3D point cloud. The proposed model exploited 
the GoogleNet network for features extraction and was tested on the ModelNet-10 dataset. 

In the same low-quality context, authors in [25] proposed a new object descriptor named Global Orthographic 
Object Descriptor (GOOD) where robots recognize objects on a real-time basis. This approach aimed at real-time 
recognition, easy descriptive use, and low computational cost. The evaluation was performed on the RGB-D Object 
dataset. On the other hand, authors in [26] built up an algorithm named iterative Closest Labeled Point (iCLAP) based 
on kinesthetic and tactile information. This solution combined two sensing modalities to create a composite perception 
of objects and yielded a significant improvement in recognition rate despite low-quality conditions.

 

Figure 3. Car detection and recognition from 3d point cloud data

On KITTI dataset, authors in [27] adopted a 3D vehicle detection using 3D boundary boxes by extending 2D FCN 
architecture to 3D FCN. Another low-quality case is camera self-occlusions caused by hand obstruction. 

For classification purposes, authors in [28] designed an RNN architecture named Point-Net using Multi-layer 
perception (MLP). Their purpose was to overcome small perturbations of input points as well as errors through point 
insertion or deletion. To improve the performance of PointNet architecture, authors in [29] used metric space distances 
to enable learning from local features as well as increasing contextual scales by learning from multiple scales. Also, 
the learning can be done from different modalities like LIDAR [30]. Authors in [31] used mobile laser scanning 
point cloud data to design 3D multi-scale shape descriptor for object recognition named SigVox. This method used 
a shape description exploiting voxels to identify different types of lamp poles and traffic signs in streets. In [32] 
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authors’ main objective was to create classification solutions for 3D object recognition from point cloud data. Also, 
these types of methods are implemented for place and scene recognition. They implemented 2D Convolutional Neural 
Network (CNN) for labeling, 3D clustering descriptor for object segmentation, and a deep learning-based model for 
recognition. Also, this is used for scene and place recognition like in [33]. Another 3D object recognition method 
was proposed in [34] which involves a deep learning-based technique named Attention ShapeContextNet (SCN). The 
architecture concatenates a list of ShapeContextNet blocks followed by Multilayer Perceptron (MLP) layers for the final 
classification. The proposed method has been evaluated on ModelNet40 classification dataset. With the same leading 
idea, authors in [35] used a deep-learning-based method for 3D shape recognition over point cloud data and multi-view 
3D shape representation of the object. This combination was executed through a unified network while an Embedding 
Attention Fusion (EAF) block was used over the features on point cloud and multi-view 3D shape; features extraction 
was carried out using AlexNet backbone.

Detecting 3D objects from LiDAR point cloud data was the focus in [36]. In this work, authors introduced a 
generic 3D detection network named VoxelNet which consists of extracting features before predicting boundary boxes. 
The region proposal network (RPN) was adapted to interface with the 3D point cloud while generating boundary 
boxes and probability maps. Authors in [37] proposed a 3D point cloud classification method named SO-Net. SO-Net 
architecture is a multi-task network that extracts global features to be used in the classification network. ModelNet10, 
ModelNet40, and MNIST datasets were used for assessment purposes. In [30] proposed compact learned local feature 
descriptors for 3D point cloud matching. They introduced the smoothed density value (SDV) voxelization as a novel 
input data representation in order to reduce the sparsity of the input voxel grid, mitigate the boundary effects and smooth 
out miss-alignments due to local reference frame (LRF) estimation errors.

In order to recognize objects from RGB-D images, a segmentation process was per-formed on RGB and in-depth 
images [38]. This step was followed by a conversion and a generation to 3D point cloud representation. On resulting 3D 
point cloud data, features extraction followed by Hough voting operation are performed to recognize existing objects. 
Using 3D laser-scanned point clouds, authors in [39] established a 3DCNN-based deep learning method (MLP used 
in the last layer) to recognize building elements and perform object reconstruction. To evaluate the model, the authors 
used the S3DIS dataset. Despite the wide scope of solutions for object recognition, a concern about identifying unseen 
classes of 3D point cloud data leads to using some of the techniques initially applied to 2D data: one of which is Zero-
Shot Learning (ZSL). For instance, authors in [40] adopted a 2D ZSL method to 3D point cloud data by changing the 
setting parameters of the original ZSL approach. In that same regard, authors in [41] combined Transductive Zero-Shot 
Learning (TZSL) and Generalized Zero-Shot Learning (GZSL) techniques for 3D point cloud classification. In [42] 
authors used the ResNet backbone for features extraction on multi-view of 3D presentation of an object, afterward, they 
implemented a deep-learning-based approach named View-based Weight Network (VWN) for 3D object recognition. 
Projections of different views of a given object were used for its identification. Exploiting Generative Adversarial 
Network (GAN) was also one of the ways to handle 3D point cloud object recognition: authors in [43] proposed a 
method called Point Cloud Up-sampling Adversarial Network, PU-GAN which consists in identifying an object from 
a whole scene captured using LiDAR sensors. Considering that the scene may comprise other objects like buildings, 
trees, etc. PU-GAN is designed to fill the detected object by up-sampling the point sets. In [44], instead of transforming 
point clouds to voxel grids, authors introduced a technique of extracting 3D key point features directly from point 
clouds. These features are used to recognize this object by exploiting and preserving its geometric information. In a 
different work, [45], a Relation-Shape Convolutional Neural Network (RS-CNN)-based solution was devised for object 
classification, segmentation, and reconstruction. Besides, to classify, segment and estimate the scene flow from 3D point 
clouds, authors in [46] introduced a method named MeteorNet. Unlike previous works which used normal 3D point 
cloud vectors [47], MeteorNet’s purpose was to classify objects from 3D point cloud sequences using KITTI dataset for 
performance assessment. Authors in [48] proposed a CNN-based deep learning model named Interpolated Convolution 
Network (InterpConv). InterpConv was implemented for object recognition and segmentation purposes. While authors 
in [49] relied on PointNet architecture to detect and recognize 3D objects.

Even though most of the existing methods operated directly on 3D point cloud representation for object recognition, 
other approaches chose to convert, first, 3D data into 2D data. That is, to benefit from the existing object recognition 
methods with deep learning techniques. For instance, some authors developed a solution for object recognition using 
2D representation while converting 3D shape of point clouds to 2D multi-view representation cloud data. Then, work 
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on the new data with a 2D CNN-based method to recognize objects. A fusion module is implemented to collect different 
multi-view features for classification parts. The proposed method was tested using three datasets namely HDRObject9, 
SMDObject6, and SUObjects. Also, using an adaptive spheri cal projection of 3D point cloud with a fractal structure, 
authors in [50] implemented a convolutional neural network for 3D object recognition. Using 2D representation, the 
spherical projection enables the deep model to learn from various features.

From a sensing perspective, it is commonly known that methods based on LiDAR information are good to detect 
obstacles, yet limited for other types of objects. For better outcomes, combining the vision and point cloud (LiDAR) 
information is used in [51] by exploiting a fusion method for vehicle detection. In this solution, obstacles are detected 
using point cloud data, then mapped to the image. The YOLO technique is used for the detection and localization of 
vehicles. While the boundary boxes are mapped to the same image. In [52], authors defined a two-stage 3D object 
detection framework, named sparse-to-dense 3D Object Detector (STD). The proposed network goes through two 
stages: PointNet++, as backbone, detects the regions where the objects are, then PointsPool uses the first stage’s 
features to detect objects with a compact representation. Also, to Work with convolutional neural networks on point 
cloud data, an adaptation is made by authors in [53] using a spatial transformation for point cloud segmentation and 
classification. Authors proposed a deep learning module named EdgeConv which was replicated between the model’s 
layers. In another research work namely, [54], authors designed a multi-view Fusion (MVF) method by introducing a 
dynamic voxelization algorithm with the purpose of overcoming the problems affecting existing Voxel-based methods. 
The proposed voxelization method consists of two branches in the MVF network including the Bird-eye view and 
perspective view used for features extraction. From each branch, a list of convolution and pooling layers is fused to 
obtain the final classification. Using a new descriptor based on point pair features of 3D point cloud objects, authors in 
[55] estimated and recognized the poses of an object. Authors in [56] used many features such as surface normal and 
surface curvature and 3D point cloud for classification and segmentation processes. The authors proposed a multitask-
deep-learning-based method by extracting the histogram and voxelized features of an object to be used as input for the 
proposed CNN network. Authors in [57] operated on LiDAR 3D point cloud data and implemented a two-stage weakly 
supervised system for 3D object detection. This model is trained on a small dataset with few annotated scenes (500 
annotated scenes). The first stage operates on cylindrical object generation learning while the second stage implements 
cuboids confidence score selection. On the same dataset, authors in [58] developed a 3DCNN model referred to as 
VoxNet, for 3D object recognition. Also, by converting 3D point cloud data to a 2D representation, authors in [59] 
used the projection technique for mapping 3D data into 2D images. Then Inception-v3 was used for data classification. 
Object recognition is performed using the fusion of image-based detection and point cloud data. While Authors in [60] 
implemented Multiple Views Generator (MVG) methods that observe the scene from four views, and a region proposal 
network (RPN) for object detection. 

The unstructured distribution of LiDAR point clouds has also been an issue when it comes to pattern learning, 
especially for recognition purposes [61-63]. Henceforth, authors in [64] proposed a variant of Broad Learning System 
(BLS) that implements a Unified Space Auto-Encoder (USAE). Referred to as USAE-BLS, the result came out 
as a lightweight model for 3D object recognition. In [65] authors sought object classification from 3d point cloud 
representation. While combining point clouds and voxelized data, they used the Euclidean distance between the 
point and the object’s center to extract connections between points within each voxel. Next, a deep learning network 
performed the task of object classification. A different deep learning-based method named Drop Channel Graph Neural 
Network (DC-GNN) was designed in [66] to extract meaningful features and depict an effective representation of 
objects before classification. This solution relied on k-NN-based drop channel and Multi-Layer Perceptron (MLP) 
Networks. In [67], another MLP-based method implemented spatial-shift MLP as the backbone to determine the 
relationship between patches from different views. A different approach, known as view, set pooling transformer 
(OVPT), [68], was designed to build a comprehensive image of the same object from different perspectives using view 
information entropy computation. This process can be found also in other tasks like scene and place recognition [69]. 
In [70] authors proposed a 3D local feature descriptor named Histograms of Point Pair Features (HoPPF) for 3D object 
recognition. The HoPPF method implies robust representation and efficient computation.

In [71] authors proposed a dynamic ball query (DBQ) network for subset selection of input points and then 
assigned the feature transform to each selected point. Yet, in many cases, objects are partially covered and the 
information gathered is barely sufficient for accurate detection. Accordingly, authors in [72-73] presented a LiDAR-
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based Behind the Curtain Detector (BtcDet) model to complete the shape of objects before detection. By learning 
the shape priors, this solution estimates the complete shape of partially obscured (curtained) objects. Authors in [74] 
introduced a Boundary-Aware 3D Object Detection BADet network. In the form of a local neighborhood graph, this 
method efficiently displays local boundary correlations of an object. For more informative RoI-wise representations, a 
lightweight Region Feature Aggregation Module was devised to exploit voxel-wise, pixel-wise, and point-wise features 
with expanding receptive fields. In [75-76] authors described a solution for 3D object detection and recognition based 
on two different inputs of the same object: the RGB image and the 3D point cloud. On the other hand, authors in [75] 
implemented a network for 3D object detection using encoder-decoder architecture, a refinement module, and a Cascade 
Bi-directional Fusion.

Dense Voxelization

Annotated Training Data

Training

Testing

3D CNN

Voxel Labels
Input: 3D Scene

Point cloud

Output: 
Labeled Point Cloud

Category-Balanced 
Voxelization

Figure 4. 3D point cloud segmentation proposed in [62]

2.2 Scenes and place recognition

Recognizing the observed scenes could be very helpful for navigation and localization purposes. In the case of 
conventional images and videos, the recognition of places and scenes could be easy but with 3D data presentation it 
becomes quite difficult: recognizing scenes and places from RBG images is easy using deep-learning-based techniques. 
But the representation of these scenes and places using 3D points makes it harder due to the potential presence of 
a swarm of dots as well as objects within the scene. To avoid possible confusion, many studies were conducted to 
differentiate places and scenes from other types of data.

Based on large-scale places datasets, authors in [33] introduced a 3D point cloud scene recognition approach 
named PointNetVLAD. The model encompasses three blocks, namely PointNet architecture, NetVLAD, and a fully 
connected network. NetVLAD architecture is used to aggregate image features extracted using VGG/AlexNet into a 
global descriptor vector. While in [61], authors depicted a 3-step Deep Neural Network (DNN) using RGB image and 
LiDAR data. RPN model is put in place to generate feature maps from RGB images. These features are lifted into 3D 
proposals to be used for segmenting object points. The estimation network is used to extract 3D objects from bounding 
boxes. In [69], authors propose the Point Cloud and Image Collaboration Network (PIC-Net), which combines the 
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features of an image with those of a point cloud and mines the complementary information they provide. Additionally, 
the night image is converted into a daytime image in order to improve recognition performance at night.

2.3 3D objects, scenes and buildings reconstruction

The reconstruction of objects and scenes using different types of data including RGB-D images, Lidar, and Laser 
scanner data is a complex yet beneficial task for many applications such as medical imaging, virtual reality, computer 
imaging, etc. The reconstruction of objects, scenes, and buildings after being transferred makes the exchanges of this 
type of data very helpful compared to other types of data like images or videos.

Whether it is 3D laser scanning, RGB-D camera, stereo camera, or LiDAR, 3D point clouds usually represent 
3D surfaces or objects in accurate manners. Using 3D point clouds, a building or a surface could be pictured 
and reconstructed [77]. Accordingly, multiple studies have been conducted on 3D Objects, scenes, and buildings 
reconstruction. while objects were reconstructed by filling the spaces between points. With the same scope, authors in [78] 
introduced a method for building Walls reconstruction using Building Information Modeling (BIM). Using the same 
method type, authors in [79] devised an unsupervised Building Information Modeling (BIM). This method also referred 
to as scan-to-BIM, consists of reconstructing the building including walls for scanned 3D point cloud data.

However, generating data using image-based 3D reconstruction or using LiDAR is prone to errors, missing parts 
or noisy points. Using Multi-step 2D optimization and Levels of Detail (LoDs) which perform a progressive vectorized 
reconstruction of models, authors in [80] reconstructed surfaces from 3D point cloud data. To recognize the scene 
components and reconstruct them from 3D point cloud data, authors in [81] proposed a deep learning method to detect 
and recognize building elements from laser-scanned data. Then the detected elements are segmented before being 
reconstructed. Another paper [82], investigated an alternative approach, which is based on the alignment of convex 
hulls of segments detected in a depth image with convex hulls of target 3D object models. The input of the algorithm is 
a triangular mesh obtained from a 3D point cloud and the output is a set C of convex surfaces Ci. In the same context, 
yet to create 3D point objects from a single image, authors in [83] developed a CNN-based model named Pixel2Mesh 
with a Mesh deformation network and a Graph Unpooling Network. To generate 3D point cloud from RGB images, 
authors in [84] implemented a deep learning method named point set generation network (PSGNet). Also, authors in [85] 
proposed a method for object reconstruction using RGB images and a silhouette map. An encoder-decoder network was 
dedicated to the extraction of the complete object silhouette. The completed silhouette and RGB images are introduced 
as input of the ResNet-50 network. A reconstruction network was set up to build the point cloud representation of the 
object. The training and the validation were completed on the ShapeNet dataset using Chamfer Distance (CD) and Earth 
mover’s distance (EMD) metrics. Another method to reconstruct a 3D object from a single image is proposed in [86]. 
The method named pixel2point exploited an encoder-decoder network to generate a point cloud. In [87] an encoder-
decoder network was deployed to produce RGB information in latent space and then use it to reconstruct 3D objects.

The reconstruction of different components of a scene including objects, walls and buildings has become a subject 
of interest for many applications including interior design and robot navigation. For this reason, many researchers 
strived to improve reconstruction mechanisms over 3D point clouds. For example, using point cloud, authors in [88] 
presented a deep learning solution named RfD-Net for the detection and reconstruction of object surfaces in a scene on 
the ScanNet [89] dataset. 

2.4 Objects and scenes segmentation

Segmenting objects in a scene is convoluted when the data is captured using LIDAR sensors. This data is presented 
with a swarm of dots and makes it hard to find a pattern to segment these objects. To segment the point cloud into 
regions of ground: low foreground (i.e. short objects), and high foreground (tall objects), authors in [21] built an object 
segmentation solution using CNN and Contextual Labeling Refinement (CLR) to complete the connected components of 
an object. As proposed for classification purposes, authors in [28] also presented a 3DCNN architecture for object part 
segmentation. The architecture is simple with 19 convolutional layers and assessed using the ShapeeNet part dataset.

A new upgraded version of PointNet architecture was described in [29] and labeled PointNet++. This new 
version consists of Multi-scale group (MSG) and Multi-resolution group (MRG) layers and provides a comprehensive 
solution for part segmentation. Also, for recognition purposes, the solution in [32] was designed to segment objects 
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for easier recognition using 3D spatial information and a CNN-based model. Meanwhile, in [34], authors adopted 
ShapeContextNet (SCN) for point cloud recognition and attention ShapeContextNet (A-SCN) for segmentation. The 
evaluation of A-SCN was performed on the ShapeNet part segmentation dataset.

In [37], a 3D point cloud classification and segmentation system, SO-Net, was developed upon a multi-task network 
that extracts spatial distribution features before segmenting objects by a segmentation network. For evaluation purposes, 
authors used the ShapeNet part dataset as well. Another method was devised in [45] using a deep learning architecture 
named Relation-Shape Convolutional Neural Network (RS-CNN). This solution was tailored to segmentation as well 
as classification and object reconstruction. In [46] authors presented a deep learning method named MeteorNet. Here, 
semantic segmentation was performed using Synthia and KITTI datasets. In [48] another deep learning model named 
Interpolated Convolution operation (InterpConv) was deployed to tackle point cloud feature learning and understand 
issues of object segmentation.

As mentioned earlier, the conversion of 3D point clouds to a 2D representation can make the processing of a deep 
learning model much more effective. For this reason, an adaptive spherical projection using a 2D CNN model, also 
referred to as Spherical Fractal Convolutional Neural Networks (SFCNN), is used before segmenting objects [50]. 
Also, to Work with convolutional neural networks on point cloud data, an adaptation is made by authors in [53] using a 
spatial transformation for point cloud segmentation and classification. Authors proposed a deep learning module named 
EdgeConv which was replicated between the model’s layers. Unlike standard methods implementing deep learning 
and using 3D point cloud for object recognition, authors in [56] utilized different features such as surface normal 
and surface curvature to classify and segment 3D objects. The authors proposed a deep-learning-based method using 
OCTREE encoder features for segmenting different parts of the object. With the aim of labeling a scene that involves 
objects pictured with 3D point clouds, authors in [62] proposed an object segmentation mechanism centered on a 3D 
convolutional neural network. The proposed method is presented in Figure 4. This approach minimizes prior knowledge 
of the labeling problem and does not require a segmentation step or artisanal features.

Segmenting objects in a scene some authors proposed a 3D object segmentation method using the Dual Attention 
Network (DANet) to overcome the irregularity and sparsity of point clouds for 3D object classification and segmentation 
[90-91]. DANet combines two modules: a Local Feature Extraction module (LFE) for local feature learning and a 
Global Feature Fusion module (GFF) for global information fusion. In [92] authors adopted a Graph Convolutional 
Neural Network (GCNN) to learn from contextual-point relationships between neighboring points for a structured 3D 
point cloud segmentation. Also using a GCNN-based network, authors in [93] attempted to locate the attentional regions 
using spatial information with different distances.

A Deep Feature Transformation Network (DFT-Net) was proposed in [94]. It was intended to capture local features 
and exploit the relationship between neighborhood points. In the same context, and to extract spatial and semantic 
consistencies between point cloud data, authors in [95] proposed a deep learning-based network that encompasses a data 
augmentation module and a segmentation network.

3. Datasets
The growth of ML and DL algorithms led to the creation of large-scale datasets [96]. These datasets have had 

a big impact on models outcomes and effectiveness. A dataset with thousands or billions of annotated data offers a 
huge amount of information model can learn from. For example, ImageNet [97] helps to evaluate visual recognition 
algorithms, while VGGFace [98] is designed to validate face recognition methods. For 3D point clouds, KITTI, 
ModelNet-10, and ModelNet-40 are the most famous data sets for object classification and recognition. For 3D object 
segmentation, a more recent research area, few datasets include annotation. Figure 5 portrays samples from the most 
famous datasets used for 3D object recognition, segmentation, and reconstruction. In the following paragraph, we will 
briefly discuss the individual properties of these datasets.

KITTI (http://www.cvlibs.net/datasets/kitti/)The images pertaining to this dataset are captured from various places 
in the metropolis of Karlsruhe (Germany), including highways and rural regions. It contains more than 12K images 
illustrating varied objects. In each image, we can find around 30 pedestrians and 15 vehicles.

MSRAction3D (https://www.uow.edu.au/ wanqing/#Datasets) is an action recognition dataset or 3D point 
representation that contains in-depth images grouped in 567 map sequences with a resolution of 640 × 240 pixels. 

http://www.cvlibs.net/datasets/kitti/
http://www.cvlibs.net/datasets/kitti/
http://www.uow.edu.au/
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Images are captured using a Kinect sensor.
ModelNet (https://modelnet.cs.princeton.edu) ModelNet dataset derives a set of versions including ModelNet10 

and ModelNet40. ModelNet10 is composed of 10 classes of different 3D point cloud objects. While ModelNet40 
contains 40 classes. These two datasets are used by multiple deep-learning methods for 3D object classification and 
recognition.

3D ShapeNets (https://shapenet.org) or ShapeNet Parts is a 3D object segmentation dataset composed of more than 
31K meshes of 16 classes of objects. Object shapes comprise 2 to 5 labeled parts.

ImageNet (http://image-net.org/) This data set is dedicated to Large Scale Visual Recognition Challenge (ILSVRC). 
ImageNet is also a large-scale dataset with thousands of images and subnets. Each subnet is represented by 1,000 
images. The current version of the dataset contains more than 14,197,122 images wherein 1,034,908 images of the 
human body are annotated with bounding boxes.

2D-3D-S (https://github.com/alexsax/2D-3D-Semantics) is a dataset including 2D and 3D data with segmented 
geometric and semantic annotations. This dataset is collected from 6 large-scale areas of more than 6,000 m2 of 
buildings with annotated 3D point cloud representations. It does, also, contains 70K RGB depth images of the same 
scenes.

ShapeNet (Scenes) ShapeNet (Objects) ScanNet ShapeNet Parts

2D-3D-S

board
chair
beam

floor
wall

window

table
column

sofa

door
bookcase

ceilingEnclosed Spaces

x

y
z

Figure 5. Sample examples from 3D point cloud datasets

http://image-net.org/
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4. Experimental results and discussion
In this section, we present the experimental results of the state-of-the-art works eval uated on standard 3D point 

cloud benchmarks, including KITTI, ShapeNet, ShapeNet parts, ModelNet10, ModelNet40, and MNIST. The accuracy 
and efficiency are compared between methods performing the same task. Methods performance is often measured on the 
validation set and test set for each dataset: if so, this distinction is taken into consideration in our comparison.

4.1 Object detection and recognition evaluation on KITTI dataset

Table 3. Evaluation results of car detection on KITTI dataset

Dataset Test/Val Method
3D Car BEV Car

Easy Moderate Hard Easy Moderate Hard

KITTI

val

Yang et al. [60] 86.31 77.32 73.21 89.36 81.52 79.62

Li et al. [27] 84.20 75.3 68.0 - - -

Meng et al. [57] 84.04 75.10 73.29 90.11 84.02 76.97

A-PointNet [49] 58.62 52.28 47.23 - - -

VoxelNet [36] 81.97 65.46 62.85 - - -

MVF [54] 90.23 79.12 76.43 - - -

DBQ-SSD [71] 89.60 79.56 78.51 - - -

BtcDet [72] 93.15 86.28 83.86 - - -

test

VoxelNet [36] 77.47 65.11 57.73 - - -

Wang et al. [51] 70.58 62.71 55.17 - - -

Zhang et al. [61] 80.25 69.21 60.15 - - -

Meng et al. [57] 80.15 69.61 63.71 90.11 84.02 76.9

Yang et al. [52] 86.61 77.63 76.06 89.66 87.76 86.89

BADet [74] 89.28 81.61 76.58 95.23 91.32 86.48

Li et al. [76] 78.68 61.46 60.09 88.07 86.26 69.79

SIENet [73] 88.22 81.71 77.22 92.38 88.65 86.03

EPNet++ [75] 91.37 81.96 76.71 - - -

PointRCNN+SAT-
GCN [99] 86.55 78.12 73.72 92.83 88.06 83.51

The 3D object detection and recognition have been evaluated on the KITTI dataset. Some researchers chose to 
evaluate their method on validation sets only while others opted for validation and test sets like VoxelNet in [36]. 
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Results obtained for each method are assessed using Average Precision metric (AP) on two modalities including 3D car 
and BEV Car. Table 3 represents the respective results for validation and test sets.

On the KITTI validation set, we note that the approaches under investigation: [36], [54], and [71], succeeded 
to detect 3D objects with close results for easy, moderate, and hard metrics in 3D car modality. However, results of 
[49] are 32% below the utmost one, for the first metric (Easy). For the BEV Car, only two methods investigated this 
modality, and the outcome showed improvements as per the methods evaluated on 3D car modality. For example, in [57] 
the accuracy for 3D car(easy) is 84.04% whilst it hits 90.11% for BEV Car, with a difference of 6%.

On the KITTI test set, we notice that more methods performed the evaluation for BEV Car as opposed to the 
validation set. For 3D car modality, EPNet++ [75] reached the highest performance for easy and moderate modalities, 
while it came in second place for hard modality with a precision of 76.71. For BEV car modality, BADet [74] achieved 
the highest precision results for easy modality with 95.23 outperforming PointRCNN+SAT-GCN [99] by 2%. The same 
observation applies to moderate categories. Meanwhile, results recorded by [52] are the best for hard metrics.

The Average Precision metric (AP) is also considered for evaluation on Pedestrian and Cyclist modalities according 
to the same difficulty flags: easy, moderate, and hard. Table 4 details the results of different methods. Comparing 
the evaluation results on 3D Car and BEV Car, we note that the AP rates on Pedestrian and Cyclist fall behind those 
registered for 3D Car and BEV Car modalities. This difference demonstrates that Pedestrians and Cyclists are more 
challenging to process due to intrinsic characteristics and the complexity of these modalities compared to the Car 
modality. This makes real-time usage hard to be implemented at present.

With reference to the same table (Table 4), we observe that the solution detailed in [51] yields better results in 
terms of AP values on the test set, and outperforms EPNet++ [75] by a difference under 1% for Pedestrian and 7-13% 
for Cyclist modality. On the Val set, the method in [57] hits the best AP values for Pedestrian modality yet has not been 
performed on Cyclist. On the other hand, the method in [52] reached the second-best outcome for Pedestrians and 
SIENet [73] reach the highest one for cyclists.

Table 4. Evaluation results for Pedestrian and Cyclist on KITTI dataset

Dataset Test/Val Method
Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard

KITTI

test

Zhang et al. [61] 51.04 43.23 40.77 67.26 55.34 45.26

VoxelNet [36] 39.48 33.69 31.51 61.22 48.36 44.37

Yang et al. [52] 53.08 44.24 41.97 78.89 62.53 55.77

Li et al. [76] 39.11 34.42 27.13 62.09 43.65 36.80

SIENet [73] - - - 83.00 67.61 60.09

EPNet++ [75] 52.79 44.38 41.29 76.15 59.71 53.67

val

VoxelNet [36] 57.86 53.42 48.87 67.17 47.65 45.11

Meng et al. [57] 74.65 69.96 66.49 - - -

BtcDet [72] 69.39 61.19 55.86 91.45 74.70 70.08

4.2 Object shape classification on ModelNet10, odelNet40, and MNIST datasets

To perform 3D object classification from 3D point cloud data, the referred methods involved three public datasets 



Cloud Computing and Data ScienceVolume 4 Issue 2|2023| 149

namely ModelNet10, ModelNet50, and 3D MNIST. Relevant results are shown in Table 5, for ModelNet10 and 
ModelNet40 datasets, and in Table 6 for the MNIST dataset.

The results on the ModelNet10 (displayed in Table 5) demonstrate that most methods succeeded to classify 3D 
objects with approximate accuracy values except for TZSL [41] Which only reached 46.9%. The best results were 
recorded by SO-Net [37] and VWN [42], and they outperformed TZSL by a large margin of 49%. 

Table 5. Object shape classification results of methods On ModNet10 and ModNet40

Type Method ModeNet10 ModNet40

Point

TZSL [41] 46.9 -

Lonchanet [24] 93.3 -

VWN [42] 95.1 93.8

SO-Net [37] 95.7 93.4

VoxNet [58] 93.9 89.7

RS-CNN [45] - 93.6

PointNet++ [29] - 91.9

Mao et al. [48] - 93.0

SFCNN [50] 91.4 92.3

Xie et al. [34] - 90.0

PVNet [35] AlexNet - 93.2

DGCNN [53] - 93.5

SCN [34] - 90.0

USAE-BLS [64] 92.6 -

3DHMNN [63] 90.9 83.8

Gezawa et al. [65] 93.4 88.2

DC-GNN [66] - 93.6

View

R2-MLP (20 views) [67] 97.7 99.6

OVPT (9 views) [100] 97.2 99.3

ReINView (12 views) [68] 96.1 97.8

Results achieved by Lonchanet [24], VoxNet [58], and SFCNN [50] are mostly close: the difference between 
remained below 2%. This proves that the aforementioned approaches were fairly efficient and accurate in terms of 3D 
object recognition, yet there is always scope for improvement.
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Other methods chose ModelNet40 dataset for their evaluation as shown in Table 5. Respective results indicate that 
VWN reached the highest accuracy value of 93.8% while RS-CNN and DC-GNN achieved 93.6% with a difference of 
0.2%. The same difference was recorded between RS-CNN and SO-Net [37], PVNet and SO-Net. Also, we notice that 
the difference between the highest and the lowest results stayed under 4% which is between VWN, VoxNet, and DC-
GNN. This demonstrates the effectiveness of these solutions as well as the complexity of ModelNet40 compared to 
ModelNet10.

For the Multi-view-based approaches that were evaluated on ModelNet10 and Model-Net40 datasets are presented 
in Table 5. Within, we presented obtained accuracies while taking into account the number of views in the training 
process. We observe that R2-MLP [67] achieved the highest performance accuracies for both datasets using 20 views. 
While OVPT [100] method reached the second place with an accuracy of 79.2% on Mod-eNet10 and 99.3% on 
ModNet40 using 9 views. Using 12 views ReINView [68] reached high-performance accuracy for both datasets. In 
terms of the number of views, we can de-duce that OVPT [100] reached satisfactory results with less number of views 
compared to R2-MLP [67] and ReINView [68].

Table 6. MNIST digit classification

Method Input size Error rate

PointNet [28] 256*2 0.78

PointNet++ [29] 512*2 0.51

SO-Net [37] 512*2 0.44

SCN [34] 256*2 0.60

Table 6 presents the object classification of 3D MINST dataset. The table shows that SO-Net [37] achieved better 
performance in terms of error rate, followed by PointNet++ [29] with 0.51 as the error rate and a difference of 0.1%. 
These results were produced using an input size of 512. Methods with higher error rates used an input data size of 256. 
This demonstrates that the size of input data can affect system effectiveness on 3D MNIST dataset.

4.3 Object segmentation evaluation On ShapeNet Parts

Objects represented with 3D point clouds have made the segmentation more complicated because of confusing 
point clouds to noisy points. Therefore, the point cloud pre-processing step should precede the segmentation process. 
The proposed object segmentation methods on 3D point clouds were trained and evaluated on ShapeNet parts. Table 7 
compares all these methods with 16 object categories and a presentation of the best results for each category.

In Table 7, we find that some methods reached a good performance for the 16 categories like RS-CNN, LSDTM-
GCNN, VoxRec, and DC-GNN, which hit the best results. While other methods only achieved high accuracies for 
selected categories. In terms of Mean values, we find that SFCNN [50] came in second place by a value of 85.4% with 
a difference of 0.8% as opposed to RS-CNN [45]. From the means values we notice that all results are close and the 
difference between the highest and lowest values is only 5.3%. Also for some categories like Motor, Rocket, and Skate, 
results are lower than some other categories like Car, Gui, Mug, and Knife. Figure 6 illustrates some examples of the 
segmented part of objects from the ShapNet Part dataset obtained using the VoxRec method.
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4.4 3D object reconstruction evaluation

To evaluate 3D object reconstruction methods, authors used the ShapeNet dataset which contains segmented 
features. The metrics used for this evaluation for 3D point cloud reconstruction are Chamfer distance (CD), and Earth 
mover’s distance (EMD). These metrics are defined in [72] as follows:

( ) 2 2
2 2ˆˆ ˆˆ

1 1ˆ ˆ ˆ, min min
ˆ p Pp Pp P p P

CD P P p p p p
P P ∈∈∈ ∈

= − + −∑ ∑

While given predicted point clouds ˆp̂ P∈  and the ground truth p ∈ P.

( ) ˆ:

1ˆ, min
P P p P

EMD P P p p
Pφ

φ
→ ∈

= −∑

Where ˆ: P Pφ →  denotes a bijection that minimizes the average distance between corresponding points.

Table 8. Quantitative comparison of different object reconstruction proposed models on ShapeNet

Category
CD EMD

[84] [83] [85] [86] [84] [83] [85] [86]

plane 0.430 0.477 0.386 0.329 0.396 0.579 0.527 0.382

bench 0.629 0.624 0.436 0.459 1.113 0.965 0.815 0.431

cabinet 0.439 0.381 0.373 0.607 2.986 2.563 2.147 0.494

car 0.333 0.268 0.308 0.439 1.747 1.297 1.306 0.361

chair 0.645 0.610 0.606 0.48 1.946 1.399 1.257 0.645

monitor 0.722 0.755 0.501 0.58 1.891 1.536 1.314 0.845

lamp 1.193 1.295 0.969 0.639 1.222 1.314 1.007 0.594

speaker 0.756 0.739 0.632 2.89 3.490 2.951 2.441 0.425

firearm 0.423 0.453 0.463 0.585 0.397 0.667 0.572 0.503

couch 0.549 0.490 0.439 0.390 2.207 1.642 1.536 0.737

table 0.517 0.498 0.589 0.626 2.121 1.480 1.340 0.605

cellphone 0.438 0.421 0.332 0.427 1.019 0.724 0.674 0.377

watercraft 0.633 0.670 0.478 0.555 0.945 0.814 0.730 0.489

mean 0.593 0.591 0.501 0.538 1.653 1.380 1.205 0.530
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3D object reconstruction methods were trained and tested on the ShapeNet dataset. This dataset includes synthetic 
images from different viewpoints, wherein 13 categories are considered during the evaluation process. Individual results 
are presented in Table 8 for each category. From the Table, we find that some methods generated point clouds for 3D 
objects with considerable accuracy using the two metrics CD and EMD. This translates into generating completed 
shapes and surfaces despite the presence of varied objects in the dataset. The comparison of relevant results reported in 
Table 8, shows that for the CD metric the [84] method reached the highest values for all categories.

Figure 6. Segmented results of some example from Shapenet Parts dataset using the method in [56] (VoxRec). Left: 3D point cloud. Middle: Ground-
truth. Right: the segmented results

While [83] method reached the second-best results for some categories like Plan, Monitor, Lamp, and Watercraft. 
Also, [86] yielded the best results for many categories like Cabinet, Car, Speaker, Firearm and Table (see Figure 
7). When it comes to EMD metric, [84] reached the highest results for all categories except for Lamp, Speaker, and 
Firearm. While [84] method came in the second place for most categories. [86] results using EMD are the lowest 
compared to previous methods with a difference of 0.01 to 2.5 points. To summarize, it is clear that the experimental 
results are convincing for certain categories yet need more work for others.

Figure 7. Generated 3D point cloud table using the method in [86]. Left: original image. Middle: Ground-truth. Right: the generated table

As an illustration of 3D object reconstruction, Figure 8 represents the output of [101] approach applied to 2D-3D-
Semantics Dataset. The evaluation was carried out on a set composed of a tile size of 1 million 3D points runnable on a 
normal machine CPU (the tile size can be bigger if working with a high machine performance). The figure reveals that 
some parts are not well segmented due to the noise and occlusions in the dataset. Besides, due to feature variance, some 
parts are over-segmented.
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Figure 8. The obtained results of [101] on 2D-3D-S dataset

5. Challenges and future directions
Point cloud representation is a new type of data that has been used to support and enhance many computer-aided 

applications. It comes with various benefits in terms of data transfer cost, efficient shredding data including multi-view 
data representation of objects, and the ability to reconstruct and generate real objects from point cloud data. However, 
this technique often faces challenges pertaining essentially to data analysis due to the presence of noisy points, blind and 
cluttered scenes, uncompleted parts of the objects, etc. In the following, we will present current issues of the 3D point 
cloud as well as some of the solutions and future trends intended to solve each one of them.

5.1 Incomplete, noisy, and unstructured data

Using dots of XYZ coordinates can represent a 3D synthetic object, but using a sensor like LiDAR, these 
coordinates cannot be perfectly represented due to the number of points (dots) captured as well as the distribution of 
these points. The number of points generated can be considered as a cloud of noise while there are many objects in 
a complex scene. For the same reason, the gathered data can contain some uncompleted parts of the objects. These 
parts can be important for recognizing the object in order to segment it or reconstruct it. Also using LiDAR sensor, the 
generated point cloud represents just one side of the object. Also, we can find that some regions have a sparse swarm of 
dots while others have dense dots which makes the data irregular because the distance between the points is varying due 
to the fact that each point is scanned independently.

In order to overcome this problem, researchers attempted to use deep learning techniques to complete the missing 
parts of 3D point cloud objects with reconstruction methods [102]. Also, the proposed methods tried to recognize the 
objects even if represented with a minimum swarm of dots.

Another issue facing deep learning methods (specifically the ones including convolutional neural networks (CNN)) 
is that they are usually trained on structured, ordered and regular data. So, to face 3D point cloud data discrepancy, 
researchers decided to convert the point cloud into a structured grid presentation to serve as input for their models.

5.2 Hard to store and process

LiDAR data that contains information on the 3D objects (represented with points in 3D space), can result in 
massive files to be stored and transferred [103]. This tremendous amount of information makes the data hard to process 
and handle. When it comes to training a model with a large-scale dataset, the process is costly in terms of memory 
and demands high-performance machines. Nevertheless, the use of multi-dimensional vectors or tensors of the point 
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cloud reduces the size of each file and enables the machine to process them more easily [104]. Also, the use of compact 
representations by encoding 3D shapes can make the classification and recognition tasks more doable [105].

6. Conclusion
3D point cloud is a new representation of data besides the existing ones such as image, video, and time-series 

data. This presentation can give much information using swarm dots about the object or the scenes represented in 3D 
shapes. Working on this data for recognizing the object segmentation andthe part of these objects or also reconstructing 
objects and scenes is a new breakthrough in computer vision. It has opened multiple opportuni ties in different research 
and development fields, wherein complete information about the objects is required, such as autonomous driving, 
remote sensing image mapping, object and scene reconstruction, etc. To inform the state-of-the-art, we proposed an 
extensive critical review of the tasks performed on 3D point cloud, which has been designed following a well-defined 
methodology. Accordingly, different tasks were first presented. Next, we listed the datasets used for performance 
evaluation. Also, we drew a comparison of the obtained results for each task using different evaluation metrics. A list of 
challenges of the methods working on 3D point cloud was provided with potential solutions and future directions.
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