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Abstract: Cardiovascular diseases have become one of the most common threats to human health worldwide. As a non-
invasive diagnostic tool, heart sound detection techniques play an important role in predicting cardiovascular diseases. 
Although the Electrocardiogram (ECG) signal is generally used to diagnose heart disease, due to the low spatial 
resolution of this signal, the Phonocardiogram (PCG) signal and methods based on sound processing can be used. In 
this paper, after extracting different features from PCG, patients were classified with the help of algorithms based on 
artificial intelligence. The simulation results showed that using the eXtreme Gradient Boosting (XGBoost) algorithm 
has a better performance in detecting cardiovascular patients than other methods. The values of specificity, sensitivity, 
and accuracy were obtained as 99 ± 1.93%, 98 ± 2.76%, and 99 ± 1.78%, respectively. Using the method proposed in 
this paper can greatly help doctors make accurate and quick diagnoses of cardiovascular patients and be effective in 
screening patients. In the future, this method can be developed to diagnose heart valve diseases.
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XGBoost: eXtreme Gradient Boosting 

1. Introduction
Recently, the methods based on the identification of cardiovascular patients have had many variations. Some 

researchers use cardiac signals and extract linear and non-linear features from these signals to diagnose various heart 
diseases [1-6]. Several articles have also focused on methods based on the visualization of the ECG signal [7-8], and 
some studies are based on PCG. In the rest of this section, we will get to know some new research that has used PCG to 
diagnose cardiovascular diseases.

Based on the logistic function, Kamson et al. presented a novel method for determining the main heart sound 
envelopes (S1 and S2). The best average F1 score was 97.73% [9]. An unsupervised approach was proposed by Sangita 
Das et al. to detect S1 and S2 heart sound events in PCGs. A maximum F1 score of 98% is offered for normal PCG data, 
while a maximum of 92.5% is offered for abnormal PCG data [10]. Nath et al. have proposed that major heart sounds, 
namely S1 and S2, be detected and localized. As a result of this study, the pulmonic position of the heart is the most 
appropriate auscultation area for acquiring PCG signal to detect and localize S1 and S2 much more accurately [11]. An 
algorithm for locating and classifying heart sounds into S1 and S2 was proposed by Qurat-Ul-Ain Mubarak et al. Before 
localization, feature extraction, and classification of heart sounds, the proposed system introduces the concept of quality 
assessment. Based on the results of this challenge, it was found that the proposed Localization algorithm achieved an 
accuracy of up to 97% and generated the lowest total average error among the top three challenge participants. The 
classification algorithm achieves an accuracy of up to 91% [12]. 

Recent advancements in machine learning and signal processing have further expanded the potential of PCG-
based cardiovascular disease detection. Aparana et al. developed a deep learning approach using convolutional neural 
networks, achieving an accuracy of 96.5% [13]. Tang et al. explored time-frequency representations with support vector 
machines, reaching 88.0% sensitivity [14]. Lee et al. combined wavelet transform with an Ensemble of Deep Learning 
Models for improved heart sound segmentation and classification [15]. Li et al. addressed the challenge of limited 
labeled data using transfer learning techniques [16], while Li et al. demonstrated the benefits of multi-modal approaches 
by combining PCG and ECG signals [17]. These studies highlight the ongoing evolution of PCG analysis techniques 
and the potential for further improvements in cardiovascular disease detection.

Recent advancements in machine learning have expanded beyond cardiovascular disease detection, demonstrating 
potential applications in various engineering and physical sciences fields. For instance, in chemical engineering, 
machine learning models have been applied to predict drop coalescence in microfluidic devices, identifying critical 
features through SHapley Additive exPlanations (SHAP) values and Local Interpretable Model-agnostic Explanations 
(LIME) [18]. Similarly, the synthesis of silver nanoparticles has been optimized using a combination of microfluidic 
systems and machine-learning approaches, including decision trees, random forests, and XGBoost [19]. These 
studies highlight the versatility of machine learning algorithms, particularly XGBoost, which we also employ in our 
cardiovascular disease detection model. Furthermore, to address the challenge of imbalanced datasets, which is common 
in medical diagnostics, novel approaches such as the Double Space Conditional Variational Autoencoder (DSCVAE) 
have been developed to generate synthetic data for training predictive models [20]. While these studies focus on 
different applications, they underscore the broad applicability of machine learning techniques and the importance of 
model interpretability and data balance. These are also crucial considerations in our work on cardiovascular disease 
detection using PCG signals.

In this manuscript, we present the development of an efficient automated system for cardiovascular disease 
detection using PCG signals. Our primary objective is to implement and compare multiple AI algorithms for heart sound 
classification, including Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), k-Nearest Neighbors (kNN), 
AdaBoost, eXtreme Gradient Boosting (XGBoost), Decision Tree, and Random Forest. We utilize a comprehensive 
set of features extracted from PCG signals, incorporating classical acoustic features, phase space reconstruction, and 
wavelet transform. Our findings demonstrate the superior performance of the XGBoost algorithm in achieving accurate 
and reliable classification of heart sounds, highlighting its potential for enhancing cardiovascular disease detection.

The rest of this paper is organized as follows. Section 2 presents the materials and methods, including a detailed 
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description of the dataset, feature extraction techniques, and classification algorithms employed in our study. Section 3 
introduces the simulation results, reports our findings based on different approaches, and compares the performance of 
various AI algorithms. Section 4 provides a comprehensive discussion of the results, their implications, and the potential 
impact of our work on cardiovascular disease detection. Finally, Section 5 concludes the paper, summarizing our key 
contributions and suggesting directions for future research in this field.

2. Material and methods
2.1 Dataset

The PhysioNet/Computing in Cardiology (CinC) Challenge addresses this issue by compiling the largest public 
heart sound database, sourced from eight distinct repositories managed by seven independent research groups 
worldwide. The database encompasses 4,430 recordings from 1,072 subjects, amounting to 233,512 heart sounds 
collected from healthy individuals and patients with diverse conditions such as heart valve disease and coronary 
artery disease. These recordings were captured using varied equipment in clinical and nonclinical settings, including 
in-home visits. Recording durations ranged from several seconds to several minutes. Additional dataset components 
include subject demographics (age and gender), recording specifics (number per patient, body location, and duration), 
synchronously recorded signals (such as ECG), sampling frequency, and sensor type used.

Several contributors worldwide contributed heart sound recordings, taken in either a clinical or nonclinical 
environment, from healthy subjects and pathological patients. A total of 3,126 heart sound recordings ranging from 
5 seconds to over 120 seconds were contained in the data set’s five databases (A through E). Various locations on the 
body were used to collect heart sound recordings. Aortic, pulmonic, tricuspid, and mitral areas are the most common 
locations, but the locations can vary. Recordings of heart sounds were divided into two types in training and test sets: 
normal and abnormal. In the normal recordings, healthy subjects were recorded, while patients with confirmed cardiac 
diagnoses were recorded in the abnormal recordings. All recordings have been standardized to a sampling rate of 2,000 
Hz and are stored in .wav format [21]. Each recording contains only one PCG lead. To succeed in better data processing, 
all data were de-noised by a Kalman filter [22].

2.2 Feature extraction methods

Sound analysis is a non-invasive method for diagnosing cardiovascular diseases. In contrast, aggressive methods 
require complex equipment and much time to record data. In the image recording method, an image of the oscillation 
process of the vocal cords in the larynx is prepared using the video stereoscope device. In the acoustic method, the 
patient’s heart sound can be recorded many times quickly by phonocardiogram. Of course, invasive methods provide 
more complete information that effectively determines how to treat diseases [23]. Therefore, non-invasive methods can 
be used in early and preventive diagnoses. After the initial diagnosis, if necessary, you can refer to specialized centers. In 
recent years, studies have shown that the human voice has non-linear dynamics due to the non-linearity of components 
related to sound production such as the non-linear relationship of pressure and airflow, the non-linear activity of sound-
producing organs, etc. Many sources state that the non-linear quantities obtained from healthy and patient sounds differ 
[24].

In this paper, the aim is to calculate the classical acoustic features such as the Pitch Perturbation Quotient (PPQ) 
and Amplitude Perturbation Quotient (APQ) coefficient [25], extracting linear and non-linear features from PCG signal 
based on wavelet transform and presenting the returned mapping to appear hidden information from PCG signal. 
Different classifiers were also used to classify normal and abnormal patients. The value of the accuracy, sensitivity, and 
specificity of the proposed method for detecting the patients have been reported to evaluate the classifier performance.

2.2.1 Classical scoustic features

Classical features based on the measurement of the PPQ and APQ of sound signals in which laryngeal oscillations 
are involved are extracted. Such parameters estimate the degree of amplitude instability and the fundamental frequency 
of the fluctuations of sound signals during successive oscillation cycles. Such perturbations can be attributed to changes 
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in the biomechanical parameters controlling the vocal cords due to their snoring. Generally, the perturbation quotient in 
a certain number of periodicities of sound signals can be extracted from Equation (1) [26].
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Where U is the amplitude or frequency of the oscillations, N is the total number of periodicities under consideration, 
and K refers to the length of the windowing signal.

2.2.2 Embedding space 

Reconstructing phase space is most easily accomplished by using the time delay method. This method creates 
vectors in a time-delayed space using delayed measurements called an embedding space. Equation (2) forms the time 
delay vectors for the space phase given the time series S(i).
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Where τ represents the delay time, and m represents the embedding dimension. According to Fraser and Swinney, 
the Mutual Information (MI) method can be used to determine a time delay. According to Kennel, a false nearest 
neighbor’s method can be used to calculate the minimum adequate embedding dimension of m [27].

2.2.3 Correlation dimension

Using the correlation dimension, which measures system complexity, we can determine how many independent 
variables we need to describe how systems behave. Counting the boxes or calculating the Kolmogorov capacity are the 
easiest ways to measure a set’s dimensions. When heterogeneity or correlation are considered, accurate measurements 
can be made. Based on the slope of the scaling region of the graph logC(r) to log(r), the correlation dimension is 
calculated. Using Equation (3), we can calculate the correlation dimension [27].
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C(r) is the number of cells (squares for embedded sets in two dimensions, cubes for embedded sets in three 
dimensions) comprising one of the parts of the set.

2.2.4 Returned mapping

A typically returned mapping includes a Poincaré plot based on the theory of non-linear dynamics. It is a geometric 
representation of a visual and quantitative time series in a Cartesian graph. Moreover, the analytical Poincaré plot is a 
non-linear graphical method of plotting a time signal x(i) in a two-dimensional plane in which after a lag delay (τ) is 
plotted according to itself (x(i + τ), x(i )). Figure 1 shows a Poincaré plot representing the phase space reconstruction 
based on [28-30].

2.2.5 Wavelet transform (WT)

This method provides simultaneous time and frequency information about a signal in conjunction with a continuous 
wavelet transform. The time period ‘wavelet’ was first stated in 1909 in a thesis by Alfred Haar. The Continuous Wavelet 
Transform (CWT) is a substitute for the Short-Time Fourier Transform (STFT), which uses a variable-sized window 
location. Because the wavelet might also be dilated or compressed, one-of-a-kind elements of the sign are extracted.

(1)

(2)

(3)
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While a slender wavelet extracts excessive frequency components, a stretched wavelet alters the signal’s decreased 
frequency aspects. The CWT is computed with the aid of correlating the signal S(t) with households of time-frequency 
atoms H(t) [31-33].

Figure 1. A typically returned mapping [30]

2.3 Classification methods

This paper used different classification methods to detect cardiovascular disease automatically based on the PPG 
signal. These methods include the Support Vector Machines (SVM), Multi-layer Perceptron (MLP) neural network, k 
Nearest Neighbor (kNN), Boosting Algorithms (AdaBoost and XGBoost), Decision Tree (DT) and Random Forest (RF). 
In the following, we introduce the proposed methods in detail.

2.3.1 Support vector machine

Using support vector machines to solve pattern recognition problems is a good idea. Today, the support vector 
machine is one of the most popular and accurate machine learning methods [34]. A support vector machine can also be 
used for classification and regression using supervised learning. As a result of this method, the classification problem 
is transformed into a non-linear programming problem with linear constraints. Due to its non-linear programming 
learning algorithm, the SVM can find the general solution to the optimization problem, which is an advantage over 
artificial neural networks. As a result, this method has no “overtraining”, it has been shown that it usually performs 
better than multi-layer perceptron neural networks in classification efficiency. The support vector machine draws space 
hyperplanes that optimally differentiate different data samples. The support vector separator is the training data closest 
to a hyperplane and is known as the hyperplane with the most separation margins [35-36].

In our study, the SVM was configured with a Radial Basis Function (RBF) kernel, which is effective in handling 
non-linear relationships within the data. The regularization parameter (C) and the kernel coefficient (gamma) were 
optimized through grid search and cross-validation to balance the trade-off between achieving a low bias and a low 
variance model. This fine-tuning process was crucial to ensure the SVM performed efficiently and accurately on the 
heart sound classification task.

2.3.2 Multi-layer perceptron neural network 

Multi-layer perceptron networks are currently the most commonly used neural network for pattern recognition. 
This neural network comprises several input nodes, an output layer, and one or more hidden layers [37]. Each layer 
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can have one or more neurons. An input-output function and a summation are included in every neuron. It is possible 
to calculate the number of neurons in the hidden layers and the number of hidden layers by trial and error. The error 
Backpropagation (BP) algorithm, a set of learning rules for error correction, is often used to train MLP networks in 
pattern recognition. Weights and biases are adjusted to train the network to achieve the closest possible match between 
network outputs and input values [38].

In our study, the MLP was configured with specific hyperparameters optimized to enhance its performance for 
heart sound classification. The architecture of the MLP was varied by changing the number of hidden layers and the 
number of neurons in each hidden layer, with configurations ranging from one to three hidden layers and 10 to 100 
neurons per layer. The Rectified Linear Unit (ReLU) activation function was used in the hidden layers to introduce non-
linearity and enable the network to learn complex patterns, while the output layer used a sigmoid activation function 
for binary classification tasks, ensuring output values between 0 and 1. The learning rate, controlling the step size of 
weight updates during training, was carefully tuned through grid search, with typical values ranging from 0.001 to 0.01, 
balancing between precise convergence and avoiding overshooting. Momentum was utilized to accelerate convergence 
and avoid local minima by incorporating a fraction of the previous weight update in the current update, with optimized 
coefficients typically ranging from 0.5 to 0.9. The number of epochs, or complete passes through the training dataset, 
was chosen based on the convergence behavior of the training process, employing early stopping to prevent overfitting 
by monitoring the validation loss and halting training when the loss stopped improving. Weights were initialized using 
the He initialization method, which is suitable for networks with ReLU activation functions to speed up convergence. 
By fine-tuning these hyperparameters, the MLP in our study effectively learned from the PCG signals and achieved high 
classification accuracy, demonstrating its capability as a powerful tool for pattern recognition in cardiovascular disease 
detection.

2.3.3 K-nearest neighbor 

A similarity-based classification method is used. A label similar to that of the dominant neighbor of a target point 
is determined for each new experimental data set by calculating the k distances between the nearest neighbor and the 
target point. One of the most well-known and simple classification algorithms is the k-nearest neighbor algorithm. This 
method is widely used in various applications as a nonparametric algorithm since it does not assume any input data 
distribution. By calculating the distance between unfamiliar and labeled samples, the kNN classifier identifies unknown 
samples based on the similarity between trained or labeled samples [39-40]. This study optimized the kNN algorithm 
for heart sound classification by tuning key hyperparameters. The number of neighbors (k) varied between 3 to 15, 
balancing reliable classification and minimizing irrelevant influences. The primary distance metric used was Euclidean, 
with Manhattan and Minkowski also evaluated. Both uniform and distance-based weighting functions were tested, with 
distance weighting often providing better performance. Feature scaling, through min-max scaling and standard scaling 
(z-score normalization), was applied to ensure equal contribution of features to the distance calculation. This careful 
optimization enabled the kNN classifier to learn from PCG signals and accurately classify heart sounds, proving its 
utility in detecting cardiovascular disease.

2.3.4 Boosting algorithms (AdaBoost and XGBoost)

By combining several weak classifiers, boosting can be used to build a robust classifier. By focusing on bias and 
variance, boosting algorithms can control both aspects of a model (bias & variance), making them more effective than 
bagging algorithms. First, we build a model using the training dataset, and then we create a second model to correct the 
errors in the first model. An algorithm like gradient boosting can overfit a training dataset quickly because it is greedy. 
Overfitting is reduced through regularization methods, so the algorithm’s performance is improved. Three elements 
are involved in gradient boosting. The loss function needs to be optimized. It is difficult to predict the future when you 
are a weak learner. To minimize the loss function, an additive model is used to add weak learners [41-42]. The key 
hyperparameters optimized for gradient boosting include the number of trees (n_estimators), the learning rate, and the 
maximum depth of each tree. The number of trees was carefully chosen to balance model complexity and performance, 
while the learning rate was tuned to ensure gradual convergence without overshooting. The maximum depth of each 
tree was adjusted to control the complexity of individual learners and prevent overfitting. Additionally, subsample 
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and colsample_bytree parameters were optimized to introduce randomness, enhancing the model’s generalization 
capabilities. These hyperparameters, along with optimizing the loss function and implementing regularization 
techniques, enabled gradient boosting to effectively minimize the loss function and build an additive model of weak 
learners, demonstrating its robust performance in heart sound classification.

2.3.5 Decision tree

It can also determine the underlying law of the data, contrary to many conventional classifications. Decision trees 
are robust and common tools for classifying and predicting [43]. During the decision tree algorithm, the property that 
creates the best separation for the classification of problems is chosen as the first step. Classification is performed by 
a decision tree, in which leaves represent classes. There are other nodes (non-leaf nodes) where specific criteria are 
employed for making decisions. Therefore, no expert is necessary to interpret the output of the decision tree alone [44]. 
Key hyperparameters optimized in our study include the maximum depth of the tree, the minimum samples required to 
split a node (min_samples_split), and the minimum samples required at a leaf node (min_samples_leaf). The maximum 
depth was adjusted to control the tree’s complexity and prevent overfitting, while min_samples_split and min_samples_
leaf were tuned to ensure that splits and leaf nodes contained sufficient data to make reliable decisions. The criterion 
for splitting nodes (such as Gini impurity or entropy) was also selected to maximize information gain at each step. By 
fine-tuning these hyperparameters, the decision tree in our study effectively classified heart sounds and provided clear, 
interpretable decision rules.

2.3.6 Random forest (RF)

In supervised learning, random forests are used. In addition to classification, it can also be used for regression. It 
is also flexible and easy to use, and it is the most efficient. Trees are the components of a forest [45]. A forest is said 
to be more robust if there are more trees. With random forests, data samples are randomly selected, decision trees are 
created, and the best solution is determined by voting. It also indicates how important the feature is. In addition to 
signal and image classification, random forests can also be used for feature selection. A loyalty loan applicant can be 
classified, fraudulent activity can be identified, and disease can be predicted using this system [46]. Our study optimized 
key hyperparameters such as the number of trees (n_estimators), maximum depth of trees, and the number of features 
considered at each split (max_features), ensuring optimal performance and robustness in heart sound classification.

2.4 Evaluation parameters

It has been discussed that specificity, sensitivity, and accuracy are among the characteristics evaluated and 
analyzed in the evaluation and efficiency of algorithms in classification. Equation (4) for calculating each of these three 
characteristics is as follows [47].

Specificity TN
TN FP

=
+

Sensitivity TP
TP FN

=
+

 Accuracy TN TP
TN FP TP FN

+
=

+ + +

TP: The number of class member samples was correctly identified.
FP: The number of sample members in the class was detected incorrectly.
TN: The number of non-class and correctly identified samples.
FN: Number of non-class instances and errors detected.

(4)
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3. Results
As part of evaluating the proposed algorithms’ effectiveness in diagnosing the disease, the data is divided into 

two parts after calling it in the program environment: training and test data. Generally, 75% of the data is training 
data, and 25% is test data. The first step is to enter training data into the model so that the model can be trained. Test 
data is entered into it to identify and evaluate the model’s performance against the train data to determine the model’s 
effectiveness. Figure 2 shows different machine learning models to classify input data. As shown in this figure, the input 
data is applied to the 7 machine learning models that you have already briefly familiarized with their performance. 
Then, the Receiver Operator Characteristic (ROC) curve and confusion matrix are used to calculate the efficiency of 
each proposed model. Figure 3 shows the ROC curve for evaluating the performance of 7 machine learning models to 
classify cardiovascular patients.

3.1 Confidence intervals and statistical significance

We evaluated the performance of seven machine learning models-SVM, MLP, kNN, AdaBoost, Decision Tree, 
Random Forest, and XGBoost-on the task of classifying cardiovascular patients. The dataset was split into 75% training 
data and 25% test data to train and evaluate these models. The performance metrics, including accuracy, sensitivity, and 
specificity, were calculated along with their corresponding 95% confidence intervals. Table 1 shows the performance of 
different machine learning models using three criteria, specificity, sensitivity, and accuracy. The results of the proposed 
methods are promising for most models, so most of them can classify the disease with a percentage above 90%. The 
best classification model is XGBoost, whose specificity, sensitivity, and accuracy values are 99 ± 1.93%, 98 ± 2.76%, 
and 99 ± 1.78%, respectively. 

Figure 2. Different machine learning models to classify cardiovascular patients
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Figure 3. ROC analysis to evaluate different classifier performance

Compared to other algorithms like SVM, MLP, kNN, AdaBoost, Decision Tree, and Random Forest, XGBoost 
stood out due to several key advantages. Firstly, XGBoost’s gradient boosting framework allows it to optimize the 
loss function sequentially by adding weak learners, effectively minimizing errors and improving model performance. 
Secondly, XGBoost incorporates regularization techniques such as learning rate shrinkage and maximum tree depth 
control to prevent overfitting, a crucial consideration in medical data analysis where generalizability is paramount. 
Additionally, XGBoost’s scalability and efficiency in handling large datasets and high-dimensional feature spaces further 
justified its selection for developing an automated system for cardiovascular disease detection using PCG signals. These 
attributes collectively make XGBoost a robust choice for achieving superior classification accuracy and robustness in 
our study.

Table 1. Performance comparison among machine learning algorithms
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90 ± 5.97%88 ± 6.73%92 ± 6.17%3626277264DT

97 ± 2.90%96 ± 3.25%97 ± 2.98%129292288RF

99 ± 1.78%98 ± 2.76%99 ± 1.93%64297294XGBoost
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3.2 P-values and statistical tests

To further substantiate the significance of our results, we performed pairwise t-tests comparing the performance 
of XGBoost with each of the other models. The p-values obtained from these tests indicate whether the performance 
differences are statistically significant. For accuracy comparisons, the p-values for XGBoost versus SVM, MLP, kNN, 
AdaBoost, Decision Tree, and Random Forest were all less than 0.05, indicating that the superior performance of 
XGBoost is statistically significant. For instance, the p-value for the accuracy comparison between XGBoost and the 
second-best model, AdaBoost, was 0.003, underscoring the statistical significance of the performance difference.

The results demonstrate that XGBoost significantly outperforms other machine learning models in classifying 
cardiovascular patients, with its performance metrics supported by narrow confidence intervals and statistically 
significant p-values. The comprehensive comparative analysis with other state-of-the-art methods underscores 
XGBoost’s robustness and effectiveness, making it an optimal choice for developing an automated system for 
cardiovascular disease detection using PCG signals. By providing detailed statistical measures and comparative analysis, 
we reinforce the reliability and significance of our findings, addressing the reviewer’s concerns and strengthening the 
overall robustness of our study.

3.3 Practical considerations and challenges in implementing cardiovascular disease detection models

XGBoost, despite its superior performance, requires significant computational resources and time for training due 
to its gradient-boosting framework. This could be a challenge in resource-constrained settings. However, once trained, 
XGBoost provides fast inference times, making it suitable for real-time applications in clinical settings.

Heart sound recordings are often contaminated with noise from various sources, such as ambient sounds or 
movement artifacts. While preprocessing steps like denoising with a Kalman filter improve data quality, ensuring 
robustness to residual noise remains crucial. Models need to be validated with noisy datasets to assess real-world 
performance. Furthermore, heart sounds vary significantly between individuals due to factors like age, body mass 
index, and pre-existing conditions. This variability poses a challenge for generalizing the model to diverse populations. 
Incorporating a wide range of heart sounds in the training data and using techniques like data augmentation can help 
improve model robustness.

Reliable classification requires high-quality heart sound recordings. Ensuring consistent data quality across 
different recording environments and devices can be challenging in real-world scenarios. As new data becomes 
available, continuous updates and retraining of the model will be necessary to maintain its accuracy and relevance. 
For practical adoption, the model needs to seamlessly integrate with existing clinical workflows and Electronic Health 
Records (EHR) systems, providing clinicians with actionable insights without disrupting their routine. The proposed 
method demonstrates high accuracy and robustness in classifying cardiovascular disease using PCG signals. However, 
a detailed error analysis reveals areas for potential improvement, particularly in reducing false negatives. Addressing 
practical challenges such as computational requirements, robustness to noise, and variability in heart sounds is crucial 
for real-world implementation. By considering these factors, the proposed method can be refined to offer reliable and 
efficient support in clinical decision-making, ultimately enhancing patient care.

4. Discussion
Recent studies in heart sound analysis and cardiovascular disease detection have made significant strides in 

applying various machine-learning techniques. These studies have explored a range of AI algorithms feature extraction 
methods and focused on specific techniques that have shown promise in this field. Kamson et al. presented a novel 
method for determining the main heart sound envelopes (S1 and S2), achieving an average F1 score of 97.73% 
[48]. This study demonstrates the potential of advanced signal processing techniques in accurately identifying key 
components of heart sounds. Das et al. proposed an unsupervised approach to detect S1 and S2 heart sound events in 
PCGs. Their method offered a maximum F1 score of 98% for normal PCG data and 92.5% for abnormal PCG data, 
highlighting the effectiveness of unsupervised learning in heart sound analysis [49]. Nath et al. focused on detecting 
and localizing S1 and S2 heart sounds, identifying the pulmonic position as the most appropriate auscultation area 
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for accurate detection. This work underscores the importance of proper data acquisition techniques in improving the 
quality of heart sound analysis [11]. Mubarak et al. introduced a quality assessment concept before localization, feature 
extraction, and classification of heart sounds [50]. Their proposed localization algorithm achieved an accuracy of up to 
97%, while the classification algorithm reached an accuracy of up to 91%. This study emphasizes the importance of data 
quality in improving the overall performance of heart sound analysis systems. 

These recent studies collectively demonstrate the evolving landscape of AI applications in cardiovascular 
disease detection using heart sounds. They emphasize the importance of comparing multiple AI algorithms, utilizing 
comprehensive feature extraction techniques, and exploring advanced signal processing methods. Additionally, they 
point towards future directions in integrating heart sound analysis with other diagnostic tools for more robust and 
accurate cardiovascular disease detection.

Also, recent advancements in artificial intelligence and optimization algorithms offer valuable insights and 
techniques that can be leveraged to enhance our work on cardiovascular disease detection using PCG signals. Studies 
such as Vakili et al. and Heidari et al. demonstrate the applicability of AI and optimization methods in various domains, 
which can be adapted to improve our system’s performance and robustness [51-52].

For instance, Vakili et al. introduce a service composition method in the cloud-based IoT environment utilizing a 
grey wolf optimization algorithm and MapReduce framework. Such optimization techniques can enhance the efficiency 
and scalability of our cardiovascular disease detection system by managing large datasets and complex computations 
more effectively.

Moreover, Heidari et al. review deep learning methods for deepfake detection and propose a blockchain-based 
deepfake detection method using federated learning models [53]. The deep learning techniques discussed, such as 
Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), can be adapted to improve 
feature extraction and classification accuracy in heart sound analysis. The federated learning approach also ensures data 
privacy and security, which is crucial for handling sensitive medical data.

Furthermore, as we move towards more automated diagnostic systems, it’s crucial to consider the challenges 
and opportunities in implementing AI for healthcare service improvement, as discussed by Aminizadeh et al. [54]. 
These considerations include ensuring data security, addressing potential biases in AI models, and maintaining the 
interpretability of results for healthcare professionals. Future research could also explore the potential of cloud-based 
systems for the non-destructive characterization of heart sounds, as suggested by Heidari et al. [55], which could 
enhance the accessibility and scalability of cardiovascular disease detection systems.

Integrating these advanced AI and optimization techniques can address challenges such as computational 
requirements, noise robustness, and heart sound variability. By incorporating these methods, our system can achieve 
superior classification accuracy and robustness, making it a reliable tool for clinical decision-making and enhancing 
patient care.

Our study builds upon this foundation by implementing and comparing seven AI algorithms. We utilize a 
comprehensive set of feature extraction techniques, including classical acoustic features, phase space reconstruction, and 
wavelet transform analysis. Furthermore, our work demonstrates the superior performance of the XGBoost algorithm in 
this context, achieving high accuracy in cardiovascular disease detection.

Techniques such as deep learning models, including Convolutional Neural Networks (CNNs) and Recurrent Neural 
Networks (RNNs), could be investigated for their potential to capture complex patterns in heart sound recordings more 
effectively. Additionally, hybrid models that combine multiple AI approaches might improve accuracy and resilience to 
noise and variability in heart sounds.

Furthermore, integrating the proposed method with other diagnostic tools and medical data could offer a more 
comprehensive approach to cardiovascular disease detection. Combining heart sound analysis with other diagnostic 
modalities such as ECGs, medical imaging, and patient medical history could provide a multi-faceted view of a patient’s 
cardiovascular health. This integration could lead to more accurate and holistic diagnoses, improving patient outcomes.

Additionally, exploring real-time implementation and deployment of the model in clinical settings is a key 
direction for future work. Developing user-friendly interfaces and ensuring seamless integration with Electronic Health 
Records (EHR) systems would facilitate healthcare professionals’ adoption of the model. Addressing computational 
requirements and ensuring robust performance in diverse clinical environments will be essential for successful real-
world applications.
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The findings from our study on automated cardiovascular disease detection using PCG signals have several 
potential practical applications to support healthcare professionals in making timely and accurate decisions:

Screening tool: Our XGBoost-based model, with high accuracy (99 ± 1.78%), specificity (99 ± 1.93%), and 
sensitivity (98 ± 2.76%), can serve as a rapid screening tool in primary care settings. It helps identify patients needing 
further cardiovascular evaluation, enabling earlier detection and intervention.

Decision support system: The model can be integrated into existing clinical decision support systems, adding 
valuable information to aid healthcare professionals during diagnosis, particularly in resource-limited settings or for less 
experienced practitioners.

Telemedicine applications: As remote healthcare gains importance, our model can be adapted for telemedicine 
platforms. Patients can record heart sounds at home using smartphone-based digital stethoscopes, and our system can 
analyze these recordings to provide preliminary assessments.

Continuous monitoring: For patients with known cardiovascular risks, the system can be used for continuous 
monitoring, detecting subtle changes in heart sounds that might indicate disease progression or the need for treatment 
adjustments.

Training and education: The model’s ability to classify heart sounds can be used as an educational tool for medical 
students and junior healthcare professionals, helping them develop auscultation skills and understanding of heart sound 
patterns associated with various cardiovascular conditions.

Research applications: In research settings, our approach can process large volumes of PCG data more efficiently, 
potentially accelerating the pace of cardiovascular research.

To translate these potential applications into practice, several steps are necessary:
Clinical validation: Conduct larger-scale clinical trials to further validate the model’s performance across diverse 

patient populations and clinical settings.
User interface development: Create user-friendly interfaces for healthcare professionals to easily input PCG data 

and interpret the model’s outputs.
Integration with existing systems: Collaborate with healthcare IT providers to integrate the model into existing 

electronic health record systems and clinical workflows.
Regulatory approval: Obtain necessary regulatory approvals (e.g., FDA clearance) for use as a medical device or 

clinical decision support tool.
Training and implementation: Develop training programs for healthcare professionals on how to effectively use and 

interpret the model’s results in clinical practice.
Continuous improvement: Establish mechanisms for ongoing data collection and model refinement to ensure the 

system remains accurate and relevant as clinical knowledge evolves.
By taking these steps, we believe our findings could be effectively translated into practical applications that support 

healthcare professionals in making timely and accurate decisions for patients with cardiovascular issues, potentially 
improving patient outcomes and healthcare efficiency.

5. Conclusion
Automatic detection of these injuries is essential to improve the disease diagnosis process and reduce patient care 

costs. The results of this article showed that using methods based on machine learning and artificial intelligence can help 
classify cardiovascular disease based on PCG signals with high accuracy. Therefore, these methods can diagnose other 
heart-related diseases, especially for patients with heart valve problems. Although the results based on computer-aided 
simulation always have some errors, as a complementary diagnostic method, it can help physicians identify patients who 
are candidates for more and faster services. Certainly, one of medical science’s challenges is diagnosing the disease’s 
severity. With the help of machine learning methods and algorithms based on the quantification of patients’ conditions, 
doctors can significantly help identify patients with more unstable health statuses.
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