Cloud Computing and Data Science

http://o0js.wiserpub.com/index.php/CCDS/ UNIVERSAL WISER
://0] P PP PUBLISHER

Research Article

Smart Homes and Blockchains: A Smart Door Lock Operated by a
Smart Contract

Riccardo Sottini'”, Vitor Jesus”

School of Computer Science and Digital Technologies, Aston University, Birmingham, United Kingdom
E-mail: v.jesus@aston.ac.uk

Received: 6 November 2024; Revised: 10 January 2025; Accepted: 15 January 2025

Abstract: The integration of blockchain technology into numerous domains has demonstrated its ability to address
transparency, security, and cost-effectiveness. Furthermore, with its association with cryptocurrencies, it allows seamless
integration with payment systems. We report on a project that investigates the practical elements of using blockchains
and smart contracts in Cyber-Physical Systems (CPS) in multi-party scenarios involving the delegation of (digital)
keys being handed over temporarily. Specifically, we implemented a smart lock system for a conventional front door
whose digital “keys” were stored and managed (e.g., digitally handed over) via smart contracts over a public blockchain
(Polygon, specifically). Through our evaluation, we found that modifying permissions takes around 5 seconds, primarily
due to the time required to update the blockchain, whereas checking for access is instantaneous.

Keywords: smart-homes, blockchains, smart contracts, cyber-physical systems

1. Introduction

The advent of blockchain opened the door for innovative solutions to real-world challenges. Whereas much
more research and practical implementations are needed to assess the true value and proposition of smart contracts, it
became evident how they can support the operations of complex decentralised systems while ensuring transparency
by maintaining immutable records and enhanced security through decentralised validation [1]. The unique properties
of blockchains, specifically public ones, sparked interest across industries, resulting in their integration into different
domains [1-2] -among them, their applications to the Internet of Things (IoT). Another important relationship is
with Cyber-Physical Systems (CPS), a domain parallel to [oT, which focuses on the functionalities of the system’s
hardware, employing sensors and actuators to perform actions in a physical space [3]. The combination of IoT and CPS
methodologies allows the creation of efficient systems while adding blockchain to this equation is promising in multiple
instances [4-8].

In this paper, a Cyber-Physical System is integrated with a blockchain where a smart contract implements physical
Access Control with a granular permission set. To this end, we designed a smart door lock, both hardware and software.
In a nutshell, guests request permission to open the door through a web or mobile application, and the landlord approves
the request. The challenge we undertook consisted of implementing, from hardware to software, a physical access
control system (as a front door) based on Smart Contracts. From this work, we aimed to learn lessons that can not only
be shared with the wider community but also guide a future formalisation of a functional and cyber threat model, similar

Copyright ©2025 Vitor Jesus, et al.

DOI: https://doi.org/10.37256/ccds.6120256035

This is an open-access article distributed under a CC BY license
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

Volume 6 Issue 1 |2025] 67 Cloud Computing and Data Science

https://orcid.org/0009-0002-1796-6154
https://orcid.org/0000-0002-5884-0446
http://ojs.wiserpub.com/index.php/CCDS/
http://www.wiserpub.com/

to the developments in [9].

As we adopted a public blockchain, its inherent transparency allows for an easy review of door accesses, while also
enabling the design of various detection and event monitoring mechanisms. Notably, similar systems rely on centralised
servers, which are prone to outages and data tampering, whereas our approach ensures availability via blockchain,
though it comes with trade-offs that will be discussed later.

A key principle of our project was the use of off-the-shelf hardware. Solidity was the language chosen to
implement the smart contract, which serves as the “brain” and decision-maker of the system, while the Polygon network
was used as the public blockchain. For hardware, we used off-the-shelf components such as the popular Raspberry Pi
with additional common electronics such as a 12 V solenoid electric lock. The interactive user interface was a web
application developed in Next.js.

In the remainder of the paper, Section II overviews related work, Section III presents our architectural approach and
implementation (both hardware and software) of this specific smart-lock application, Section IV discusses evaluation
results, and Section V concludes with future directions.

2. Related work

Introduced in 2008 by Satoshi Nakamoto [10], Blockchains propose a radically new approach to computation.
Whereas the original application was the exchange of digital currency (Bitcoin) through a purely decentralised
architecture, it saw fast developments, such as with Ethereum in 2015 [1, 11], which proposed a distributed computing
platform where a blockchain can execute arbitrary code (“smart contracts”) and was no longer limited to maintaining
a simple ledger. Since then, it has been applied or considered in virtually all domains, with varying degrees of success.
Polygon, which we use in this project, is a platform compatible with Ethereum that guarantees fast transactions and
reduces fees by up to 100 times through its scalable architecture [12].

CPS denotes the fusion of various engineering disciplines, such as mechanics, electronics and computer science [2-
4], with the aim of reinventing the interaction between humans and computers by using sensors and actuators [13]. The
positive synergies and potential of combining blockchains and CPS have been widely recognised [4-5].

In tangential areas, similar integrations have been reported, such as for Industrial 1oT [5, 14], generic sensing
architectures [15] (e.g., the Electricity grid [16]), and also includes local blockchains [17] (as opposed to public
blockchains, that we use). Notably, our project was inspired by an existing open-source project. Specifically in the
domain of smart locks, we note similar projects such as using One-Time Pads for increased secrecy [18], or a project
similar to ours that used blockchains and reported comparable results [19].

3. Approach

Figure 1 depicts the hardware setup. A Raspberry Pi, is connected to the internet via Wi-Fi, which is electronically
wired to control both an light-emitting diode (LED) (for notifications) and a relay connected to a lock. The project
assumed two actors: the owner of the property (such as a “landlord”) and a guest. The guest would receive the (digital)
key from the landlord, who can revoke access at any moment.

Figure 2 shows a simplified architecture diagram where:

The blockchain provides the infrastructure, stores data and enforces rules over all the agents through a smart
contract.

The frontend supplies a web interface, allowing users to request authorisation to unlock the door.

The door represents the physical component, receiving instructions from the blockchain on when to open the lock.

Cloud Computing and Data Science 68 | Vitor Jesus, et al.

Raspberry Pi model 3B 5 V relay

12 V Supply
=
5
LED 12 V Solenoid lock

VUmy\y

6

Figure 1. Hardware setup

j 2) % 2)

Frontend Blockchain Door

Figure 2. Simplified architecture diagram

read only > read only blockchain
ﬁ---- @----) API
</>

physical lock Internet gateway
1
! read only
\/
read only)
write
client and \ write blockchain
management —— /

o

wallet

Figure 3. Architecture interfaces

Figure 3 depicts the interfaces. Rather than directly interfacing with the blockchain and considering a CPS scenario
where devices are expected to be resource constrained (energy, storage, and connectivity), we used an external element
providing APIs to the blockchain. Moreover, a cryptocurrency wallet is required for authentication and to facilitate
operations on the blockchain and smart contracts.

3.1 Architecture

Our overall architecture uses specific modules: (1) authentication, (2) guest and (3) owner operations, and (4) CPS

(door) interfaces.
Authentication-It begins by connecting to the blockchain wallet, which verifies account ownership (Figure 4). Once
authenticated, the frontend retrieves the user’s balance and role, which can either be an owner or a guest, and displays

Volume 6 Issue 1 [2025] 69 Cloud Computing and Data Science

the corresponding interface.

Frontend Wallet Provider Blockchain

- (52

Request to authenticate Request to verify signature

Return wallet is connected Success: signature verified

Retrieve the wallet’s address

Return the address

Check blockchain

Retrieve the address balance for new data

Success: return the balance Return updated data

Retrieve user’s role Forward request to contract

Success: return user’s role Retrieve response
" : . from contract

Figure 4. Authentication

Frontend Wallet Provider Blockchain

N £ - 22
Retrieve authorisation

Forward request
status to contract

Retrieve response
. Success: return status from contract

subscribe to the
event kistener

Request the Commit request
L authorisation . on blockchain
IF the aut’horl_satlon Event: new pending Success: return
doesn’t exist: Authorisation « confirmation

IF the authorisation is . . .
. B Display pending/rejected
pending/rejected: P stztrl)ls mesgz/i gJe

Commit request
Request to open the door on blockchain
Success: return
Event: new door access . confirmation
IF the authorisation new dodr access
is approved: event captured

Forward request
Retrieve accessess

to contract
Success: return list Retrieve response
« of accesses from contract

Figure 5. Guest operations

Cloud Computing and Data Science 70 | Vitor Jesus, et al.

Frontend

;I Retrieve list of @'

authorisations

Wallet

Provider

Forward request @

to contract

Success: return
authorisations

Retrieve response
rom contract

subscribe to the
event listener

Request history of
door accesses:

Retrieve accessess

Forward request
to contract

Success: return Jist
of accesses

Retrieve response
rom contract

Accept/Reject an
authorisation:

ACCEPT/REjECT

Commit request on

authorisation blockchain
Event: accepted/rejected Success: return
request confirmation

Create new
authorisation:

Create new authorisation

Commit request on
blockchain

Event: new
accepted request

Success: return
confirmation

Reset contract:

Request to reset
the contract

Commit request on
blockchain

Event: contract has
. been reset

Success: return
confirmation

Blockchain

Figure 6. Owner operations

Door

B

Blockchain

s

Provider

Fetch new events Check blockchain for new data

v
v

Door: Locked Return no event Return updated data

&»

<

repeat fetch request every 2 seconds

Client requests
to open the door

repeat fetch request every 2 seconds

Fetch new events Check blockchain for new data

v
«

Return new access event Return updated data

Door: Unlocked

&>
L

Figure 7. Door operations

Guest-First, the frontend evaluates whether the guest has previously requested door access (Figure 5). If not, the
guest can submit a request by paying a gas fee, which remains pending until the owner either approves or rejects it.
Depending on the owner’s choice, door access is granted or a rejection message is displayed. Once approved, the guest
can open the door at their discretion.

Owner-The contract’s owner has complete control over the data, with the ability to view authorisations and door
access, approve, reject, or create new authorisations, and reset all recorded information (Figure 6). Any action taken by

Volume 6 Issue 1 |2025] 71 Cloud Computing and Data Science

the owner that alters the smart contract’s data requires the payment of a small gas fee.
Door-The door is interfaced with the smart contract through the blockchain provider, fetching incoming events
(Figure 7). Once a new door access is detected, the lock is opened for a fixed amount of time.

3.2 Implementation

As mentioned, we used off-the-shelf components and services to implement our project.

3.2.1 Off-the-shelf components

We used Polygon as the blockchain platform due to its popularity, support, faster transactions, and low fees.
Furthermore, the smart contract was developed using Solidity v0.8.x and deployed on the Polygon Amoy test network,
both of which are among the most versatile options available in 2024. The frontend was developed using Next.js v14, a
React-based framework combined with TypeScript, which provides type-checking capabilities to improve the robustness
of the codebase. It ran locally on a Node.js server during the development phase. However, it can also be deployed
remotely for global accessibility.

The lock consists of both hardware and software elements, powered by a Raspberry Pi 3B. The GPIO pins manage
a 12 V solenoid lock, a 3.3 V LED, and a 5 V relay. The relay is required as standard electric locks require a 12-volt
power supply, whereas the GPIO pins provide only up to 5 volts. Additionally, a Python 3.10.x script was developed to
retrieve events from the smart contract and control when the LED and the relay must be activated, resulting in the lock
being opened.

Furthermore, MetaMask was used as a browser-based wallet. It serves to store private keys, verify the user’s
account ownership, and manage their assets. Moreover, it played a crucial role in authentication and interaction with the
smart contract. Finally, we used a third-party blockchain provider as a service via an Application Programming Interface
(API), instead of a self-hosted blockchain node for scalability. Specifically, QuikNode was selected as a provider
as it offers API endpoints to deploy smart contracts and fetch data via HTTP and WebSocket protocols, supporting
synchronous and asynchronous communication.

3.2.2 Smart contracts

The initial focus was on identifying the data structures to store the users, authorisations and door access entries.
Subsequently, several methods were defined and categorised into two groups: ‘view’ functions, which retrieve data, and
‘state-changing’ functions, which require a gas fee to alter or insert data, as shown in Table 1.

Table 1. Smart contract’s methods

Method Type Role Description
getRole View All Retrieve user’s role
getAuthorisation View Guest Retrieve guest’s authorisation
getAccessess View Guest Retrieve door’s accesses
getData View Owner Retrieve the authorisations list
requestAuthorisation State-changing Guest Request an authorisation
accessDoor State-changing Guest Request to open the door
createAuthorisation State-changing Owner Create a new authorisation
acceptAuthorisation State-changing Owner Accept a guest’s authorisation
rejectAuthorisation State-changing Owner Reject a guest’s authorisation
reset State-changing Owner Reset the data of the contract

Cloud Computing and Data Science 72 | Vitor Jesus, et al.

getRole()

1F: .sender == owner
Role.OWNER;

Role.GUEST;

Figure 8. getRole definition (an example of “view” method)

As an example, Figure 8 illustrates the definition of a method in Solidity, getRole, a “view” method that retrieves
the user’s role. A method definition includes its name, the visibility, the returned data type and its instructions.

Asynchronous communication with the frontend and the door script is established through an event-based
mechanism. Three event types were defined to notify when data is modified: one for new door access, one for the
contract reset, and one prompting the guest and owner to fetch updated data.

3.2.3 Frontend

A web application was developed using Next.js, with separate interfaces: the owner can manage authorisations and
reset the contract, while guests can decide when to access the door and view the history of previous accesses. Figure 9

illustrates the user interface.

SmartDoor
Dissertation PDF Installation

Logged as: Owner

Address: 0x1dc8378ad19ce7el7aa3b2719be822c5feflccoc
Balance: 10.102750 Polygon (MATIC)

Reset Contract
List of Authorisations

Statusv New

Q Search by name or address...

GUEST REQUESTED ON STATUS ACTIONS

S

30/03/2024,
19:5413

ACCEPTED

SmartDoor
Dissertation PDF Installation

Logged as: Guest
Address:0x93342dcbe19b74b76dald03abl5ac66c5a358a23

Balance: 0.092495 Polygon (MATIC)
Your authorisation has been accepted

Access the Door

History of accesses to the door

30/03/2024
21:13:22

30/03/2024
21:13:14

30/03/2024
21:12:20

Figure 9. User interfaces for the owner and guests, respectively

Throughout the frontend development, the Web3.js library was used to interact with the smart contract. An event
listener was configured to capture new events and update the interface to replicate the mechanism shown in Figure 10.

4. Fetch data

3. Request to fetch data

1. Emit event

2. Communicate
event

Blockchain

5.Return updated
data

> Web3 Inst

H

ance — Context Provider

6.Communicate new

data 7. Update UI

Component

Figure 10. Capturing a new event

Volume 6 Issue 1 |2025] 73

Cloud Computing and Data Science

send.eth.getChainId

if(checkchain(
bl .contr: end.methods. requestAuthorisation(name).send(
from: .account,
gas: .web3_send.utils.toHex EE
).catch((err

console.log(error);
)5
else
setError();
setErrorMessage(

Figure 11. requestAuthorisation() contract’s method call

Another interaction involves calling a contract’s method by first verifying the wallet’s network and then confirming
the call by paying a specified gas fee (Figure 11).

3.2.4 Door

The door lock is controlled through a Python script that captures the event of a new door access, resulting in a
signal being sent to certain GPIO pins to power an LED and open the lock for a fixed amount of time (Figure 12).

Figure 12. Solenoid lock transitioning from closed to open

A fundamental step in creating the script was configuring an event loop that polls for new events every two seconds
and filters them to identify door accesses from the latest block (Figure 13).

run(self):

event_filter = .contract. events. newAccess () .create_filter(fromglock="1
loop = asyncio.get_event_loop()

. loop.run_until_complete(asyn: gather: .log_loop(event_filter, 2)))
finally:
1oop. close()

Figure 13. Subscription to the event listener

Cloud Computing and Data Science 74 | Vitor Jesus, et al.

4. Evaluation

Our approach was evaluated based on performance, the maintenance costs, and the security of the smart contracts.

4.1 Performance

The system’s performance was measured by considering the interaction time with the smart contract’s methods.
To do so, our self-developed “evaluate methods.js” script was used to retrieve the minimum, average, and maximum
interaction times, based on 25 calls to each contract’s method (Figure 14).

As a result, the average time for “state-changing” method calls, which alter data, is 4.047 seconds, whereas “view”
method calls are much quicker, averaging 0.224 seconds. The accessDoor method, which commands the door to open, is
the system’s most time-constraining operation, with an average execution time of 3.501 seconds. It is worth mentioning
that the experiment was conducted under good conditions, employing the Polygon Amoy test network with low
congestion.

(a)
® Min B Average Max
0.32
0.3 0.308
0.28 0279
0.26
0.252
024 0.239 0.24
8o
: 0.207 .
0.2 0.201 t
0.191 0.197
0.18 :
O\Q [ﬂ-\\o‘\ %@%Q Q{b’\,‘b' b&
N & & N \®
v ~ W £ &
V’& QOZ)‘\ QP%
o z}vo
2
(b)
® Min B Average ®Max
7.5 7.55 7.67 7.743 7.797
7
6.5
6 5.895
5.5 5.616
5
4.419
! 451 B 4376 msis M 4232
3.5 3.501 3.577
3 2235
2.5 © 2613
2 2329 @ 22 @ 5143 ©2343
;\\OQ 000* .'\\OQ \QQ o @%q‘}
&\%‘b‘ P 'Q%(} & ‘\%‘}
& & S S <
» F S R S
Q%NVV &@Y' @Q&Yv ~@°\Yv
@0? Q‘e ‘boo &QJX

Figure 14. Evaluation: (a) view method times, (b) state-changing method times

We can also observe that neither the hardware (admittedly low end) nor the blockchain itself impacts scalability,
at least at a local level. Whereas reconfiguring permissions and access is acceptable to be slow (yet, in the order of
seconds) as it is an infrequent activity, gaining access can be a simple read process that takes no resources and can be
done offline, if necessary, should the hardware and server have a local copy of the ledger. In any case, one notes that

Volume 6 Issue 1 [2025] 75 Cloud Computing and Data Science

simply waiting ~ 5 seconds is well within expected usability parameters. On the other hand, a valid discussion point is
whether a public, global blockchain can handle many such devices, a discussion connected to the underlying blockchain
infrastructure and is out of scope in this paper yet will be explored in future work.

4.2 Costs

The cost of maintaining a system supported by a blockchain is defined by gas fees paid when interacting with state-
changing methods. Moreover, view functions also consume gas, but this only measures the computational expenditure
for the network, and users are not required to pay for it. The “estimate gas.js” script (see Figure 15) was developed to
retrieve the gas consumption for each smart contract method, expressed in GWEI (a cryptocurrency unit derived from
“giga-wei”, which is equivalent to one-billionth of an Ether).

Upon analysis, the lowest gas consumption is found in view methods, with values ranging from 23,787 to 26,836
GWEI. The key insight is that state-changing methods inserting new data incur higher fees than those updating existing
data. For instance, the methods requestAuthorisation and createAuthorisation consume over 160,000 GWEI to insert
a new authorisation into the list, in contrast to methods like acceptAuthorisation and rejectAuthorisation, which alter
existing authorisations and incur lower fees of around 50,000 GWEI per call.

Estimation of the gas consumption for each smart contract method

Estimated gas for ‘getRole’ (view): 23787
Estimated gas for ‘requestAuthorisation' (state-changing): 166717
Estimated gas for ‘getAutho tion® (view): 25081
Estimated gas for ‘access ' (state-changing): 92691

Estimated gas for ' C s()" (view): 23985
Estimated gas for * (view): 26074
Estimated gas for ‘createAuthorisation' (state-changing): 163456
Estimated gas for ‘acceptAuthorisation’ (state-changing): 56379
Estimated gas for ‘rejectAuthorisation’ (state-changing): 50313
Estimated gas for 'getAccesses(address)’ (view): 26836
Estimated gas for ‘reset' (state-changing): 28532

Figure 15. Estimation of gas consumption for each method

This type of experiment is particularly useful for optimising costs and identifying bottlenecks in the smart contract
design.

4.3 Security

The security of the smart contracts was evaluated using Slither, which identified various threats across medium-
risk, low-risk, and informational categories. Once identified, these threats were addressed by making changes to the
contract’s code. Medium-risk security threats underline bugs exploitable by malicious entities. One example, shown in
Figure 16, relates to the locking of funds that occurs when a state-changing method is defined as “payable,” allowing
users to send funds but not implementing a mechanism to manage them. The fix involved removing the “payable”
keyword from the impacted methods, as shown in Figure 17.

ocking ether tound:
SmartDoor (contracts/comtract.scl#5-215) has payable functions:
- S o equestAuthorisation(string) (comtracts/contract.sol#57-68)
oor() {comtracts/contract.sol#82-95)
rtDoor. createfuthorisation(stri dress) (conmtracts/conmtract.soli#l31-143)

ontracts/contract.sol#]
rejectAuthorisation{address) (contracts/contract.soli#l6:
rtDoor. () (comtracts/comtract.sol#195-213)
But does not have a function to withdraw the ether
Reference: https://github.com/crytic/slither/wiki/Detector-Documentationticontracts-that-lock-ether

Figure 16. Medium-risk threat: contract locking ether

Cloud Computing and Data Science 76 | Vitor Jesus, et al.

Low-risk threats do not compromise the security of a smart contract; however, they serve as indications of best
practices, and they might undermine maintainability. For example, the owner address must be defined as immutable, and
before looping through an array, its length must be stored in a variable.

requestAuthorisation(s

requestAuthorisation(string

Figure 17. requestAuthorisation method redefinition

5. Conclusions and future work

The design for a Smart-Lock system supported by a Smart Contract is presented, with detailed design, code, and
evaluation, allowing researchers and professionals to gain practical insights into the synergies of blockchains and CPS.
The developed system presents numerous benefits. For instance, the system does not require a dedicated backend to
store data and execute operations, as the blockchain assumes this role. This property allows the system to be accessible
by everyone worldwide while offering good security, and virtualisation of functions such as auditing and access control.
Moreover, stored data cannot be altered, resulting in the record of door accesses not being tampered with by malicious
entities. Ultimately, another benefit relates to authentication, which presents a high-grade security standard, removing
the need for a physical key to open the door.

To evaluate the system’s effectiveness, a standardised process was created. As a result, it was observed that the
performance, expressed as the time for the system to execute an operation, is highly variable, potentially influencing
real-time interactions where fast response is important. Another factor analysed was maintenance costs, which are linked
to gas fees. In this case, the most cost-expensive operations and the fact that network congestion impacts the costs at any
given time were highlighted. Finally, the security of the smart contract was assessed, highlighting the ease of detecting
and fixing vulnerabilities through Slither, a widely used security tool.

This project aims to advance future research on the integration of Cyber-Physical Systems (CPS) and blockchain
technology. For instance, the proposed architecture provides a framework for evaluating the security standards of
network protocols, not only by analysing threats at the application layer but through a comprehensive assessment of
the entire blockchain infrastructure. Additionally, there is potential for scaling this architecture to support large-scale
commercial systems, allowing the evaluation of key factors such as scalability, throughput, technological constraints,
and environmental sustainability. Specifically, domains like rental property management and commercial building access
control could greatly benefit from such a scaled-up solution. Ultimately, an emphasis on developing fault tolerance,
health and safety protocols, and a more robust hardware framework would be beneficial to strengthen its resilience and
practicality.

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] Buterin V. A4 Next-Generation Smart Contract and Decentralized Application Platform. Ethereum White Paper.
2014.

[2] Atlam HF, Alenezi A, Alassafi MO, Wills G. Blockchain with internet of things: Benefits, challenges, and future
directions. International Journal of Intelligent Systems and Applications. 2018; 10(6): 40-48.

Volume 6 Issue 1 |2025] 77 Cloud Computing and Data Science

[3] Lee EA. The past, present and future of cyber-physical systems: A focus on models. Sensors. 2015; 15(3): 4837-
4869.

[4] LeschV, Ziifle M, Bauer A, Ifflinder L, Krupitzer C, Kounev S. A literature review of loT and CPS-What they are,
and what they are not. Journal of Systems and Software. 2023; 200: 111631.

[51 Zhao W, Jiang C, Gao H, Yang S, Luo X. Blockchain-enabled cyber-physical systems: A review. [EEE Internet of
Things Journal. 2020; 8(6): 4023-4034.

[6] Fernandez-Caramés TM, Fraga-Lamas P. A review on the use of blockchain for the internet of things. /[EEE Access.
2018; 6: 32979-33001.

[71 Ali MS, Vecchio M, Pincheira M, Dolui K, Antonelli F, Rehmani MH. Applications of blockchains in the Internet
of Things: A comprehensive survey. I[EEE Communications Surveys and Tutorials. 2018; 21(2): 1676-1717.

[8] Dai HN, Zheng Z, Zhang Y. Blockchain for internet of things: A survey. IEEE Internet of Things Journal. 2019;
6(5): 8076-8094.

[9] Sengupta J, Ruj S, Bit SD. A comprehensive survey on attacks, security issues and blockchain solutions for IoT and
oT. Journal of Network and Computer Applications. 2020; 149: 102481.

[10] Nakamoto S. Bitcoin: A Peer-To-Peer Electronic Cash System. Satoshi Nakamoto; 2008.

[11] Zheng G, Gao L, Huang L, Guan J. Ethereum Smart Contract Development in Solidity. Berlin/Heidelberg,
Germany: Springer; 2021.

[12] Thibault LT, Sarry T, Hafid AS. Blockchain scaling using rollups: A comprehensive survey. [EEE Access. 2022; 10:
93039-93054.

[13] Baheti R, Gill H. Cyber-physical systems. The Impact of Control Technology. 2011; 12(1): 161-166.

[14] Xu H, Wu J, Pan Q, Guan X, Guizani M. A survey on digital twin for industrial internet of things: Applications,
technologies and tools. I[EEE Communications Surveys and Tutorials. 2023; 25(4): 2569-2598.

[15] Zhao W, Aldyaflah IM, Gangwani P, Joshi S, Upadhyay H, Lagos L. A blockchain-facilitated secure sensing data
processing and logging system. [EEE Access. 2023; 11: 21712-21728.

[16] Musleh AS, Yao G, Muyeen SM. Blockchain applications in smart grid-review and frameworks. /EEE Access.
2019; 7: 86746-86757.

[17] Rawlins CC, Jagannathan S. An intelligent distributed ledger construction algorithm for IoT. /EEE Access. 2022;
10: 10838-10851.

[18] Srinivasan P, Sabeenian RS, Thiyaneswaran B, Swathi M, Dineshkumar G. OTP-based smart door opening system.
In: Intelligent Communication Technologies and Virtual Mobile Networks: Proceedings of ICICV 2022. Singapore:
Springer Nature Singapore; 2022. p.87-98.

[19] Han D, Kim H, Jang J. Blockchain based smart door lock system. In: 2017 International Conference on
Information and Communication Technology Convergence (Ictc). IEEE; 2017. p.1165-1167.

Cloud Computing and Data Science 78 | Vitor Jesus, et al.

