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1. Introduction
Problems of higher-order elliptic equations involving the polyharmonic operator (−∆)m where m is an integer 

greater than 2, arise in the study of models for stationary surface diffusion flow, thin elastic plates, the Paneitz-Branson 
equation and the Willmore equation are also known as Helfrich model in membrane biophysics [1]. Accordingly, the 
consideration of the polyharmonic operator has been investigated several years ago, we refer to [2-7]. Furthermore, 
many authors have done a lot of work dealing with the existence of positive solutions for nonlinear polyharmonic 
equations in different domains with various boundary conditions; see [8-14] and the references therein.

Boggio [2] proved that Gm, n, the Green function of (−∆)m on the unit ball B of Rn (n ≥ 2), under Dirichlet boundary 

conditions 
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where 
ν
∂

∂
 is the outward normal derivative, km, n > 0 and [x, y]2 = |x − y |2 + (1 − |x |2)(1 − | y |2), x, y in B.

From its expression (1), it is obvious that Gm, n is positive on B2. We observe that unlike the elliptic case (m = 1), the 
positivity result of Green’s function isn’t always true. In fact, many counter-examples [3-7] have shown that the Green’s 
function of (−∆)m, m ≥ 2, does not necessarily keep a constant sign, even when considered with respect to bounded 
domains.
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In [9], due to the properties of the Green function Gm, n, the authors introduced the Kato class denoted by Km, n and 
defined as follows.

Definition 1 ([9])
Let q be a Borel measurable function on B.
The function q is in the Kato class Km, n if the following hypothesis is fulfilled:
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( )lim sup ( , ) | ( ) | d 0.
( )
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δ
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∫

From here on, δ(x) = 1 − |x | denotes the Euclidian distance from x ∈ B to the boundary ∂B = {x ∈ Rn : |x | = 1}.
Remark 1 We note that the Kato class Km, n is a linear space. Besides, if q ∈ Km, n and p is a Borel measurable 

function on B such that | p| ≤ |q | almost everywhere, then p ∈ Km, n.
As a typical example of functions belonging to the class Km, n, we quote.
Example 1 ([10])
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The investigation of coupled higher-order systems involving the polyharmonic operator (−∆)m, m ≥ 2, has recently 
appeared in the literature [15-17].

In [15], the authors considered the following system:
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Here λ, µ are parameters in [0, ∞) and ϕ , ψ are two non-trivial functions in C(∂B, [0, ∞)).
In order to describe the framework of [15], which is a motivation for our work, we need to outline some notations 

that are also necessary for the rest of the paper. For any function ϕ  ∈ C(∂B, [0, ∞)), we set Hϕ  the continuous bounded 
solution satisfying,

/
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.B

H
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We remark that the map 2 1(1 | | ) ( ),mx x H x x Bϕ−− ∈ , is a continuous bounded solution of the boundary value 
problem,

2 1
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In the sequel, we fix ϕ  and ψ two non-trivial functions in C(∂B, [0, ∞)).
Put Φ and Ψ the functions defined on B respectively by:

(2)
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2 1 2 1( ) (1 | | ) ( ) and ( ) (1 | | ) ( ).m mx x H x x x H xϕ ψ− −Φ = − Ψ = −

We refer to Vm, n f the m-potential of a Borel measurable function f on B defined by :

, ,( ) ( , ) ( )d , .m n m nB
V f x G x z f z z x B= ∈∫

As usual, let B+(B) be the collection of nonnegative Borel measurable functions on B, L1
Loc(B) refers to the 

collection of real measurable and locally integratable functions in B. We also denote by C(B ) the collection of 
continuous functions on B . The set C0(B) is the subclass of C(B ) vanishing continuously at ∂B. We remark that 
C(B ) and C0(B) endowed with the uniform norm ||u ||∞ = sup

x B∈
|u(x)|, are Banach spaces. For ( , ) ( ) ( )u v C B C B∈ ×  (resp. 

C0(B) × C0(B)), let || (u, v)||  = max(|| u || ∞, || v || ∞). Then clearly (C(B ) × C(B ), || (. , .) || ) and (C0(B) × C0(B), || (. , .) || ) are 
Banach spaces.

We recall that if  f ∈ L1
Loc(B) and Vm, n f ∈ L1

Loc(B), then we have (see [13])

( ) ,( ) in the distributional sense.m
m nV f f−∆ =

To investigate system (2), the authors in [15] assumed the following conditions:
(C1) The functions g, h : [0, ∞) → [0, ∞) are continuous and nondecreasing.
(C2) The maps a, b are in B+(B) such that
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(C3) The constants:
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are positive.
By the Schauder fixed point method, the authors [15] proved that for (λ, µ) ∈ [0, λ*) × [0, µ*) system (2) has a 

positive continuous solution (u, v) which is controlled by (Φ, Ψ), the solution of the homogeneous system associated to 
(2). In this paper, we consider the following nonlinear coupled polyharmonic system:
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where parameters λ, µ ∈ [0, ∞) and ϕ , ψ ∈ C(∂B, [0, ∞)) are non-trivial functions. 
Motivated by the paper [15], we aim to investigate the existence of continuous bounded positive solutions of (3) 

without imposing any special structures on the inhomogeneous terms. Furthermore, we give more general conditions 
ensuring the existence of solutions. Indeed, as it will be seen, our hypotheses improve and expand those of the previous 
work [15].

To study (3), we work with the assumptions:
(H1) The functions g, h : B × [0, ∞) → [0, ∞) are nondecreasing and continuous in the second variable.
(H2) The maps,

(3)
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( ) ( )., .,
: and : ,

g h
p q
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are in Km, n.
Applying a fixed point argument, we achieve our main result as follows.
Theorem 1
Suppose that (H1) − (H2) are fulfilled. Then there exist λ* > 0 and µ* > 0 such that for each (λ, µ) ∈ [0, λ*) × [0, µ*) 

the system (3) has a positive continuous solution (u, v) satisfying on B,

*1 ,uλ
λ

 − Φ ≤ ≤ Φ 
 

*1 .vµ
µ

 
− Ψ ≤ ≤ Ψ 

 

We note that for the parameters λ* and µ*, it is not a simple existence result.
As in [15] we provide explicit terms of them, see Lemma 1 below.
We point out that this work improves the previous result in [15] since our hypotheses are more general. As it can 

be seen, the nonlinearities in system (2) are imposed to be separable in their variables while in our system (3) no special 
structure is required on g(x, v) and h(x, u). Besides, our hypotheses (H1) − (H2) imply the conditions (C1) − (C3).

First, (H1) implies clearly (C1).
Secondly, if (H1) − (H2) are satisfied and g(0), h(0) > 0, then (C2) is fulfilled.
In fact, in case of the system (2) assumption (H2) can be formulated as:

( ) ( ): and : ag bhp qΨ Φ
= =

Φ Ψ

are in Km, n.
We claim that the functions

1 1

( ) ( )and
( ( )) ( ( ))m m

a x b xx x
x xδ δ− − 

belong to Km, n.
Let x ∈ B,

1 1

( ) ( ) ( ) .
( ( )) ( ( )) ( ( ))m m

a x p x x
x x g xδ δ− −

Φ
=

Ψ

Since g is nondecreasing, then we have for x ∈ B,

1

1

2( )0 ( ).
(0)( ( ))

m

m

Ha x p x
gx

ϕ
δ

−
∞

−≤ ≤
‖ ‖

Similarly, we obtain for x ∈ B,

1

1

2( )0 ( ).
(0)( ( ))

m

m

Hb x q x
hx

ψ
δ

−
∞

−≤ ≤
‖ ‖

(4)

(5)



Contemporary Mathematics 308 | Zagharide Zine El Abidine, et al.

The assertions (4) and (5) imply that (C2) is satisfied.
Moreover, we remark that due to Lemma 1 stated below, our hypotheses imply condition (C3).
For the rest of the paper, the letter C will denote a generic positive constant which may vary from line to line.
The plan of the article is arranged as follows. In Section 2, we state some preparing results concerning the Green 

function and the Kato class Km, n. Section 3 is dedicated to the proof of our Theorem 1. Some examples illustrating our 
main result are presented in Section 4.

2. Preliminaries
In this paragraph, we state a key result on the Green function Gm, n. Then, we give some properties of the functions 

belonging to the polyharmonic Kato class Km, n and a careful analysis about continuity is performed.
Proposition 1 ([9])
Let r > 0. If x, y ∈ B satisfies |x − y | ≥ r, then there is C > 0 such that

( )
,

( ) ( )
( , ) .
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m n n

x y
G x y C

r
δ δ

≤

In the following proposition, we provide some useful properties of functions in Km, n, which are taken from [9, 11].
Proposition 2
Let q ∈ Km, n. Then the following holds:
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Proposition 3
Suppose that hypotheses (H1) − (H2) are satisfied. Let

0 0{( , ) ( ) ( ) such that 0 and 0 }S u v C B C B u v= ∈ × ≤ ≤ Φ ≤ ≤ Ψ

and

, ,{( ( (., )), ( (., ))) : ( , ) }.m n m nV g v V h u u v SΓ = ∈

Then Γ is relatively compact in C(B ) × C(B ). In particular, Γ is relatively compact in C0(B) × C0(B).
Proof.
Let (u, v) ∈ S then by hypothesis (H1), we get:
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Applying Proposition 2 (iii) with H = Hϕ , we reach:
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∞
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Using (6) and (7), we obtain that:
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Thus, the family Γ is uniformly bounded.
Now, we shall prove that Γ is equicontinuous on B.
Let ε > 0 and x0 ∈ B. From Proposition 2 (iv), there is r > 0 such that,
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Let x, y ∈ B ∩ B(x0, r), then for any (u, v) ∈ S, we get:
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On the other hand, if | z − x0| ≥ 2r, then |z − y| ≥ r and |z − x| ≥ r. Hence, by applying Proposition 1, we obtain that
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 Gm, n(x, z) is continuous on B ∩ B(x0, r), we deduce from Proposition 2 (ii) and 
Lebesgue’s dominated convergence theorem

2 0 as | | 0. I x y→ − →

Hence, {Vm, n(g (., v)), (u, v) ∈ S} is equicontinuous on B.
Similarly, {Vm, n(h(., u)), (u, v) ∈ S} is equicontinuous on B.
Thus, the family Γ is equicontinuous on B.
Then, we claim that Vm, n(g (.,  v)) → 0 and Vm, n (h(., u)) → 0 as x → ω ∈ ∂B uniformly in (u, v) ∈ S.
Consider ε > 0 and ω ∈ ∂B. Proposition 2 (iv) gives that there is r > 0 such that,
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Let x ∈ B ∩ B(ω, r). Then for any (u, v) ∈ S, we get from (6) and (9),
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For y ∈ B ∩ Bc(ω, 2r) we have |x − y| ≥ r. So, Propositions 1 and 2 (ii) imply that 
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as x → ω.
By the same arguments, we have Vm, n(h(., u)) → 0 as x → ω ∈ ∂B uniformly in (u, v) ∈ S.
So, the Arzela-Ascoli Theorem implies that the set Γ is relatively compact in C(B ) × C(B ). Then, since Γ ⊂ C0(B) 

× C0(B) which is a Banach space included in C(B ) × C(B ), we conclude that Γ is relatively compact in C0(B) × C0(B).

3. Proof of Theorem 1
Before getting started with the proof of our Theorem 1, we give the following preliminary result.
Lemma 1
If g, h satisfies (H2), then
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=
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 and (., )hq Φ
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Ψ
 belong to Km, n. As in the proof of Proposition 3, we obtain 

that on B:
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These estimates imply that for each x ∈ B:
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Now, we are prepared to show Theorem 1.
Proof of Theorem 1 We consider the non-empty convex closed set Λ given by:
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We define the operator T on Λ by:
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We attempt to show that T admits a fixed point in Λ.
From Proposition 3, we have that {(Vm, n(g(., v)), Vm, n(h(., u))), (u, v) ∈ Λ} is relatively compact in C0(B) × C0(B). 

Since Φ and Ψ are in C0(B), we deduce that TΛ is also relatively compact in C0(B) × C0(B).
Next, we intend to show that T is a compact operator from Λ into itself.
Let (u, v) ∈ Λ. Then by hypothesis (H1), the maps g, h are nondecreasing in their second variables. So, we obtain:
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Now, we establish that T : Λ → Λ is continuous in norm || (. , .) ||.
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On the other hand, since the function g is nondecreasing in the second variable, we get for k ∈ N and (x, ξ ) ∈ B2,
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With the same arguments as before, we get that for each x ∈ B, |zk(x) − z(x) | → 0 as k → +∞.
The relative compactness of TΛ in C(B ) × C (B ) yields the uniform convergence, that is
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Thereby we have shown that T is a compact operator from Λ into itself.
Therefore, Schauder’s fixed point theorem implies the existence of a point (u, v) ∈ Λ satisfying:

( ), (., ) ,m nu V g vλ= Φ −

and

( ), (., ) .m nv V h uµ= Ψ −

The pair (u, v) is clearly positive continuous satisfying:

* *  1 and 1 .u vλ µ
λ µ

 
 






− Φ ≤ ≤ Φ − Ψ ≤ ≤ Ψ 
 

As the rest of the proof, we need to prove that (u, v) is a solution of system (3).
We have Vm, n( g(., v)) ∈ C0(B) which implies Vm, n(g (., v)) ∈ L1

loc(B). On the other hand,

( ) 110 (., ) 2 (.) .mmg v H pϕ δ −−
∞

≤ ≤

Since we have ( )2 1 1( ) ( ) L ( )mx x p x Bδ −→ ∈ , we get g(., v) ∈ L1
loc(B).

Hence we have

( ),( ) (., ) (., )  in (in the distributional sense).m
m nV g v g v B−∆ =

In the same way

( ),( ) (., ) (., )  in (in the distributional sense).m
m nV h u h u B−∆ =

Now, applying the operator (−∆)m in (10) and (11) we obtain that:

(10)

(11)
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( ) (., ),m u g vλ−∆ = −

( ) (., ).m v h uµ−∆ = −

Finally we have

( )2 1 2 1
,lim (1 | | ) ( ) ( ) lim (1 | | ) (., ) ( ).m m

m nx B x B
x u x x V g v x

ω ω
ϕ ω λ− −

→ ∈∂ → ∈∂
− = − −

Since for x ∈ B, we have

( )
1

2 1 1
, ,

( )0 (1 | | ) (., ) ( ) 2 ( , ) ( )d ,
( )

m
m m

m n m nB

zx V g v x H G x z p z z
x

δϕ
δ

−

− −
∞

 
 ≤


≤


− ∫

we deduce by Proposition 2 (v) that

( )2 1
,lim (1 | | ) (., ) ( ) 0.m

m nx B
x V g v x

ω

−

→ ∈∂
− =

Hence

2 1lim (1 | | ) ( ) ( ).m

x B
x u x

ω
ϕ ω−

→ ∈∂
− =

Similarly,

2 1lim (1 | | ) ( ) ( ).m

x B
x v x

ω
ψ ω−

→ ∈∂
− =

This completes the proof.

4. Examples
In this section, we present two examples for the illustration of our Theorem 1.
Example 2 Let ϕ , ψ be two continuous positive functions on ∂B, λ, µ be nonnegative constants and α, β > 1. We 

consider the functions a and b defined on B by:

( )
1( ) , w ith 2

( )
a x m

x γ γ
δ

= <

and

( )2

1( ) , with .
2( ) log

 

( )
m

b x

x
x

ν ν

δ
δ

= ∈
 


 
 
 


 



We consider the system,
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2 1

2 1

( ) ( ) 0, in B,
( ) ( ) 0, in B,

lim (1 | | ) ( ) ( ),

lim (1 | | ) ( ) ( ).

m

m

m

x B
m

x B

u a x v
v b x u

x u x

x v x

α

β

ω

ω

λ
µ

ϕ ω

ψ ω

−

→ ∈∂
−

→ ∈∂

 −∆ + =
 −∆ + =
 − =

 − =

Here g(x, t) = a(x)t α and h(x, t) = b(x)t β, (x, t ) ∈ B × [0, ∞).
It is clear that (H1) is satisfied.
On the one hand, for x ∈ B,

( ) ( )
( )

2 ( 1)( 1), ( ) (1 | | ) ( )
    .

( ) ( ) ( )

mg x x x H x
x x H x

αα

γ

ψ

δ ϕ

− −Ψ −
=

Φ

Since the functions ϕ  and ψ are positive and continuous on the compact ∂B, the functions Hϕ  and Hψ are bounded 
and bounded away from zero. 

Hence, there is C > 0 such for x ∈ B,

( )
( )

, ( )
.

( ) ( )

g x x C
x x γδ

Ψ
≤

Φ

By Example 1 and (13) we obtain that

,
(., ) .m n

gp KΨ
= ∈

Φ

On the other hand for x ∈ B,

( ) ( ) ( )

( )

( 1)( 1)

2 ( 1)( 1)

, ( ) 1 | | ( )
0     

( ) 2( ) log ( )
( )

m

m m

h x x x H x
x

x H x
x

β β

ν
β

ϕ

δ ψ
δ

− −

− − −

Φ +
≤ =

Ψ  
 


 
 
 

( )2 ( 1)( 1)

  .
2( ) log
( )

m m

C

x
x

ν
βδ

δ
− − −

≤
 
 


 
 
 

Since 2m − (m − 1)(β − 1) < 2m, we deduce from Example 1 and (14) that

,
(., ) .m n

hq KΦ
= ∈

Ψ

Hence, (H2) is fulfilled.
Then by Theorem 1, there exists λ*, µ* > 0 such that for each (λ, µ) ∈ [0, λ*) × [0, µ*), system (12) has a positive 

continuous solution (u, v) satisfying,

*(1 ) ,uλ
λ

− Φ ≤ ≤ Φ

(12)

(13)

(14)
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*(1 ) .vµ
µ

− Ψ ≤ ≤ Ψ

Example 3 Let ϕ , ψ be two continuous positive functions on ∂B, α > 0, β ≥ 1 and γ > 1. Consider the system

( )( )

( )2 ( 1)( 1)

2 1

2 1

( ) ( ) sin ( ( )) ( )  0,                    in ,

( )( ) ln 1 0,  in ,
2( ) log
( )

lim (1 | | ) ( ) ( ),

lim (1 | | ) ( ) ( ),

m

m

m m

m

x B
m

x B

u v x x v x B

u xv B

x
x

x u x

x v x

α

β

γ
β

ω

ω

λ δ

µ

δ
δ

ϕ ω

ψ ω

+ − −

−

→ ∈∂
−

→ ∈∂

 

 −∆ + − =

  
  
  −∆ + + =      

 
 − =

 


− =






where 

( )( )
( )2 ( 1)( 1)

( , ) sin ( )   and  ( , ) ln 1 .
2( ) log
( )

m m

tg x t t x t h x t

x
x

β
α

γ
β

δ

δ
δ

+ − −  
 

 
 
 = − = + 







 

We note that, since for (x, t) ∈ B × [0, ∞), |sin((δ(x))αt)| ≤ (δ(x))αt ≤ t, then g is a nonnegative function. It is clear 
that g is continuous in the second variable.

Moreover, we remark that for (x, t) ∈ B × [0, ∞),

( )( )( , ) 1 ( ( )) cos ( ) .g x t x x t
t

ααδ δ∂
= −

∂

Using the fact that, on B × [0, ∞), | (δ(x))αcos((δ(x))αt)| ≤ 1, we obtain that g is nondecreasing in the second 
variable.

On the other hand, it is obvious to see that the function h is a nonnegative function defined on B × [0, ∞), which is 
continuous and nondecreasing in the second variable.

Now, let’s verify that the hypothesis (H2) is fulfilled.
Let x ∈ B,

( )( ) sin ( ( ) ( ))
0 ( )    

( )
x x x

p x
x

αδΨ − Ψ
≤ =

Φ

( ) 2 1

2 1

sin ( ( ) (1 | | ) ( ))( )
( ) (1 | | ) ( )

 
m

m

x x H xH x
H x x H x

αδ ψψ
ϕ ϕ

−

−

−
≤ +

−

( )( )( ) 1 ( )
(

 
)

H x x
H x

αψ δ
ϕ

≤ +

( )( )) 1 ( .C x αδ≤ +

(15)
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By Example 1 and since α > 0, we deduce that the map x  1 + (δ(x))α belong to Km, n. This implies that p ∈ Km, n.
Besides, for x ∈ B,

( )2 ( 1)( 1)

( )ln 1
2( ) log
( )

0    ( )
( )

m m

x

x
x

q x
x

β

γ
βδ

δ
+ − −

 
 

Φ + 
 


 


 


 ≤ =
Ψ



( )2 ( 1)( 1)

( )

2( ) log ( )
( )

 
m m

x

x x
x

β

γ
βδ

δ
+ − −  

 


Ψ


Φ
≤

( )2

.
2( ) log
( )

 
m

C

x
x

γ

δ
δ

 
 
 

≤

Taking into account that γ > 1, we conclude from Example 1, that q ∈ Km, n.
Hence, Theorem 1 implies the existence of λ* , µ*  > 0 such that for each (λ, µ) ∈ [0, λ*) × [0, µ*), system (15) has a 

positive continuous solution (u, v) satisfying,

*1 ,uλ
λ

 − Φ ≤ ≤ Φ 
 

*1 .vµ
µ

 
− Ψ ≤ ≤ Ψ 

 

5. Conclusion
We have improved and expanded the result proved in [15]. We emphasize that notable features of this work are 

that the nonlinearities are not required to have any special structure and include a large class of functions. Our examples 
illustrate these facts. For instance, taking ψ = m + 1 in Example 2 we have found an example where 1

( )
( ( ))m

a xx
xδ −  is 

not in Km, n (thus (C2) is not fulfilled), yet Theorem 1 remains applicable. Furthermore, we may consider nonlinearities 
which are not separable in their variables, as demonstrated in Example 3.
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