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1. Introduction

The first who systematically studied Brauer-Severi varieties was Chatelet in his seminal work [1] and under the
name of “variétésde Brauer”. The term ‘“Severi-Brauer variety” comes from Beniamino Segre [2], who suggested
that Chatelet had omitted previous work by Severi [3], where he studied Brauer-Severi varieties in a more classical
geometric context.

In the literature one finds different theoretical constructions of Brauer-Severi varieties: for the classical approach
of Chatelet via varieties of left ideals embedded into Grassmannians, which gives a canonical construction, see [1, 4,
5]. When trying to produce explicit equations of Brauer-Severi varieties, this projective embedding is far from being
“optimal”: for instance, Brauer-Severi varieties of dimension 1 are realized not as plane conics, but as curves in P’
defined by 31 equations, see [4].

Another approach is that of Grothendieck, which is based on general techniques in descent theory. It does not give
explicit information on the projective embedding. But when trying to compute it, it yields the same one that in Chatelet
idea: see [6].

Even if not canonical, since it is going to depend on the representant of the cocycle class we choose, we will follow
the Twisting Theory approach.

Denition 1.1 (Brauer-Severi variety) Let K be a perfect field, K its Galois closure and X/K a projective irreducible
smooth variety of dimension n. We say that X is a Brauer-Severi variety if there exists an isomorphism X, =5 P¢. Let
us denote the set of Brauer-Severi varieties of dimension 7 defined over K and up to K-isomorphism by BSy.

Denote by Aut(PP;) the automorphism group of the projective space P} over K, which is isomorphic to the
projective general linear group PGL,, (K). Then, we clearly have that
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BS?. = Twist, (P2) = H' (G, Aut(P})) = H' (G, ,PGL, ,, (K)),

where G, denotes the absolute Galois group Gal(K/K). If K is a finite field or the function field of an algebraic curve
over an algebraically closed field, then H'(G,, PGL,. (K)) is trivial (Tsen’s Theorem) and there are no non-trivial
Brauer-Severi varieties.

The first and only previously known equations of a non-trivial Brauer-Severi variety (n > 2) were shown in [7]. It is
defined over Q((;) where (; is a third primitive root of unity.

For an application of the explicit construction of a non-trivial Brauer-Severi surface  see [8]. One could construct
a nontrivial cubic surface with a Galois stable set of 6 pairwise skew lines starting from 5, see Manin’s contruction [9].
This would help to determine whether the condition (a) in the following Theorem of Swinnerton-Dyer is really needed.

Theorem 1.2 (Swinnerton-Dyer [10]) Let S be a smooth cubic surface defined over a number field K. S is
birationally trivial if and only if

(a) the cubic S contains a point defined over K and,

(b) the cubic S contains a Gal((Q/K)-stable set of 2, 3 or 6 pairwise skew lines.

As it was already noticed by Swinnerton-Dyer, a smooth cubic surface containing a stable set of 2 lines contains a
rational point, and then it is birationally equivalent to the projective plane. Whether this is also true for a stable set of 3
or 6 lines is still unknown.

Another application of the explicit construction presented in this paper is to the computation of generators of the
Picard group of cyclic Brauer-Severi varieties as explained in [11].

In order to compute explicit equations of Brauer-Severi varieties, we need to compute explicite quations of twists
of the projective space . As it is shown in [7] for smooth plane curves, in [12] for hyperelliptic curves, and in [13]
and [14] for non-hyperelliptic curves, the best idea to compute equations of twists of a variety X/K is to embed its
automorphism group Aut(X) into GL,(K) for some N e N as a Gy-module, and then apply Hilbert’s Theorem 90.

Hence, in order to compute non-trivial Brauer-Severi varieties, we will follow this strategy:

« In Section 2, we will describe the set Twist . (P ) = H'(G,PGL,,,, (K)).

* In Section 3, we will give an embedding of Ggz-modules PGL,,,(K) = GL,, (K) for some N e N that will allow
us to compute explicit equations for Brauer-Severi varieties by explicitly using Hilbert’s Theorem 90 [Originally due to
Kummer (1855), this result on the vanishing of some first Galois cohomology takes its name from the fact that it is the
90th theorem in David Hilbert’s Zahlbericht (1897)].

Finally we present our algorithm to compute equations of Brauer-Severi varieties starting by a cocycle in 4. These
algorithmic construction is made explicit in Section 5 for the case of n = 2. The output of the algorithm in 4 is smaller
than in the construction by Chatelet but still big. This is why in Section 6 we present in Theorem 6.2 nicer equations but
of a singular model of Brauer-Severi varieties.

2. Brauer-Severi varieties and central simple algebras

The set of isomorphism classes of central simple algebras of dimension n” over K and split over L is denoted by

Azf/K . The set of isomorphism classes of central simple algebras of dimension #” over K is denoted by Az?.
Theorem 2.1 (Serre, chap. X, §5, Prop. 8, [15]). Let L/K be a finite Galois extension of fields, G = Gal(L/K) its
Galois group, and 7 be a natural number. Then there is a natural bijection of pointed sets

a’* . AZM% 5 HY(G,PGL,(L)).
Notice that previous Theorem implies

AZN =y, AZE'F =H'(G,,PGL,(K)) =BS}".

It is well-known that for n = 2, 3 all the algebrasin Azf are cyclic algebras [16]. We show the equivalent definition
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for cyclic simple central algebras given in [17].

Proposition 2.2 There is a bijection between the set of isomorphism classes of cyclic algebras of degree n over K
and the set of equivalence classes of pairs (y, a) where y : Gal(L/K) = Z/nZ is a group isomorphism with L a cyclic
Galois extension of degree 1 of K and ¢ e K. The equivalent relation is ( y, @)~ (', a') if and only if y = ¥’ and a'a”
Nm, ().

Moreover, given a pair (x, a), the corresponding algebra is given (by Theorem 2.1) by the cocycle in H'(Gal(L/K),
PGL, (L)) that maps

S
S =
(e}

PO

[ O
O =

3. The key embedding

The following lemma will be the key point for constructing equations dening Brauer-Severi varieties via Hilbert’s
2n+1 —

Theorem 90. The n-Veronese embedding, 7, : P — P” with m = nn — 1 induces an embedding PGL,, (K) —

PGL,,,,(K) of Gal(K/K)-modules. See for instance Theorem 5.2.2 in [17] for a slightly variation of it. We go a little bit

further:
Lemma 3.1 For every n e N, there exists an embedding of Gal(K/K)-modules i, : PGL,,,(K) = GL,,,,(K)

2n+1
wherem=| , |—1.

Example 3.2 The case n = 1 is Proposition 3.5 in [12] and it was used to compute twists of hyperelliptic curves. In
this case, the Veronese embedding has degree n + 1 = 2 and it is given by

Vi P' 5> P?: (x:y) > (x7 :xy: 7).
It induces the embeddin
a>  2apf P

1
>—7ay ad+ o |.
H det(A) Z Pr ﬁz
/4 295 o

B

_ _ a
4 : PGL,(K) = GL;(K) : [A]:Ky 5

Remark 3.3 The case n = 2 is implicitly used in [7] for computing the only previous known equations for a non-
trivial Brauer-Severi variety of dimension greater than 1.

Proof. (Lemma 3.1) Let us consider the Veronese embedding of dimension » and degree n+1:V,: P" - P"
2n+1
with m = "n+ — 1. We name the coordinates as follows V,: P" ->P": (x,:..: x,)—> (@, : ... : @,), where the w,

are equal to the products @ ,, , = Hix,-a" with Ziai =n+1 numbered in lexicographical order.
Xo o X"

The embedding ¥, induces another embedding on automorphism groups [z,] : PGL,,,(K) — PGL,,,,(K). We will
see that indeed we can lift it

ln : PGLn+I (E) - GLm+I (E)

Let be [4] =[a;] € PGL,, (K), then [1,]([A]) = [(L");_, ] is the matrix whose rows are L, where again named in
lexicographical order, the coordinates of L* are given by the formula
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H(Zatj X)) = Z By X0 X

(Bo--

Hence, the matrix [z,]([4]) is a matrix whose entries are polynomials of degree 7 in the entries of 4. We can now fix
a lift of [1,]([4]) to GL,(K) by doing [1,]([4]) = @+(A) (LYo - This is an embedding of Gal(K /K )-modules.

Remark 3.4 The anticanonical sheaf in P is equal to O(n + 1) [18] and it gives the Veronese embedding of degree
2n+1
n+ 1 of P" into " with m = nn — 1. So, previous embeddings can be seen as the natural action of the automorphism

group of " on the vector space of global section of the anticanonical sheaf O(n + 1).
Proposition 3.5 The equations of the image of the Veronese embeddin 7, : P" > P": (x: ... x,)

(@ : ... : ®,), where the w, are equal to the products @ ,, , = H,xf‘i with Z ‘o, =n+1 in lexicographical order,
Xo o X" 1 1

arc

n=a, _ 0] %n-1
ay nil = @O no
*n *n X0Xn Xn—1%n

0
L7

together with the equations given by permuting the indices by {c, ¢°, ..., 6"} where 5 : {0, 1, ..., n} > { 1,2, .., n,0}.
Proof. Let us call V the variety in P" defined by this set of equations that we call .7-" fw,= o i #0, we

make w, =x, =1, thenx,= @ , and @, , = ®”, ... 0" ,. Themap V,: P"\{x, = 0} —>V\{a),,, 0} is
iXn Xy LLxn X0Xp Xp_1X, ,,,

clearly a bijection. If w,, = 0, then x, = 0 and at least for another i we have w e # 0 and we repeat the previous
argument with the transformed equations. This proves that V,(IP") = V and that ¥/ . 1s a bijection. We finally check

that 7 is a non-singular variety: Let F be the set of equations in the statement of the proposition, we need to

check that the matrix (af / Ox; )f <F.0<icn Das rank at least m — n. If o, = @ i1 #0, the set of m — n columns
olox (@, , o -0, 1 Yizo...n With @, < n has maximal rank m — n. Ifa) = w,,, =0, we take an i with
X0 LLxptoxy, xoxn n—1%, n Xy

@0 #0 and we repeat the previous argument with the permutated equations.

Example 3.6 For n = 1, we get the equation of the conic wyw, = 7.
For n =2, we get the equations:

2_ 3 2_ 3 2 2
WDyy = s, Wy = W5, W30 = Oy,
2 2 2 2 2
005 = 050y, 00 = @5 O, 0,0 = Wy, 0,
2 2 2 2 2 2
0,0 = @50, 0,0, = @50, 5@y = OO,
V. (IP’Z): 2 2 2 2_ 3 9
2 0,05 = Os0% , 0,0 = Oy050;, W = @ cP
2 2 2 2 2
0,0y = W5y, W50 = W37, W00y = W O,
2_ 3 2 2 2 2
W Wy = g, QW = W07, R0y = 00,
2 2 2 3 2 3
W70y = Wy Wy, Wy W = 7, W0y = 0,

4. The algorithm

Given a cocycl & in H' (G,,PGL,,,(K)), it defines a Brauer-Severi variety as in Theorem 2.1. This algorithm gives
equations dening the Brauer-Severi variety.

(i) Transform the cocycl & into a cocycle & in H'(G,, GL,,.,(K)) with Lemma 3.1.
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(i1) Use an explicit version of Hilbert’s Theorem 90 to get ¢ € GL,. ((K) such that E =g ¢’1 for all o € Gy.
This can be done by taking a sufficiently general matrix in GL,,,,(K) and applying the recipe in [15], or by searching for
a basis of fixed vectors of a special action of GL,,. ,(K) on K", see [13, 14].

(iii) Get the equations of the Brauer-Severi variety in P” by using the computed ¢ in (ii) and the equations of
V,(P") < P" in Proposition 3.5.

5. The case n = 2 made explicit

In this section, we look closer at the output of the previously presented algorithm for the case n = 2. In particular,
a nice parametrization of degree 3 cyclic extensions is given in Subsection 5.1. This allows to explicitly give the first
known equations of a non-trivial Brauer-Severi variety of dimension greater than 1 defined over QQ in Subsection 5.2.
The Veronese embedding of dimension 2 and degree 3 looks like

szIP’2 SPi(xiyi) e (P Xy Xzt iz ixzt izt 2.

This embedding induces another one

a b ¢
4, : PGL,(K) = GL,((K): [4] = Z Z f p—)det(A).M(A)

where the matrix M(4) is given by
@ 3a’h 3a’c 3ab® 6abc 3ac® b’ 3b*c 3bc*

a’d a*e+2abd a’f +2acd 2abe+b*d 2abf +2ace+2bcd 2acf +c*d b*e b f +2bce 2bcf +c’e ¢ f
a’g a’h+2abg a’i+2acg 2abh+b*g 2abi+2ach+2bcg 2aci+c’g b*h b%i+2bch 2bci+c*h i
ad* 2ade+bd* 2adf +cd® ae® +2bde 2aef +2bdf +2cde af* +2cdf be* 2bef +ce* bf* +2cef cf*
adg adh+aeg +bdg adi+afg +cdg aeh+bdh+beg aei+
afh+bdi + bfg +cdh+ceg afi+cdi+cfg beh bei+bfh+ceh bfi+cei+cfh cfi
ag® 2agh+bg® 2agi+cg® ah®+2bgh 2ahi+2bgi+2cgh ai* +2cgi bh* 2bhi+ch* bi* +2chi ci*
d* 3d’e 3d*f 3de* 6def 3df* & 3e*f 3ef* f?

d*g d*h+2deg d*i+2dfg 2deh+e*g 2dei+2dfh+2efg 2dfi+ f1g €*h e’i+2efh 2efi+ f*h f7i

dg® 2dgh+eg® 2dgi+ fg* dh* +2egh 2dhi+2egi+2fgh di* +2fgi eh® 2ehi+ fh* ei* +2fhi fi*

g 3g’h 3g%i 3gh® 6ghi 3gi* h’ 3h% 3hi* P

This matrix has been computed with Magma [19], we show below the code that is easily generalizable to other n € N.
K<x,y,2,a,b,c,d, e, f g h, i>:=PolynomialRing(Rationals (), 12);
X:=ax+tby+tcz;Y:=dxtey+1{z Z:=gx +hy+iz;
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XA3; XM2Y; X275 XY2; XY Z; XZ2/2; Y3, Y22, Y22, 7703,
By Theorem 2.1, the fact that all the elements in Az’ are cyclic and Proposition 2.2, we need to study the image by
1, of the matrix

a
Il
R o o
o o -
[

So,inthiscase:b=1,f=1,g=0a,a=c=d=e=f=i=0,and

0 0000O0TILa 0 0 O
0 00000 O l/la 0 0
0 00100 0 0 0 0
0 00000 O 0 lla 0
0 00010 0 0 0 0
CM)=l 0 s 0000 0 0 0 o0
0 00000 0 0 0 lla
000001 0 O 0 0
0 0a 000 0 O 0 0
> 00000 0 0 0 0

Lemma 5.1 Let L/K be a degree 3 Galois extension of number fields. Write L = K(/,, ,, [;) and Gal(L/K) = <o>
with (1)) = I, and o(l,) = I,. Let a € K and let us define a cocycle & € H'(Gal(L/K), GL4(L)) by its value &, = 1,(4,) at a
generator of Gal(L/K) and extended by the cocycle condition. Then &, = ¢o” ¢~ for all 7 € Gal(L/K) with

L0 0 0 0 0 L 0 0 I
o 4L 0 0 0L 0 L 0 0
o 0 L L 0 0 0 0 4 0
0O 0 L 4L 0 0 0 0 L 0
0O 0 0 0 1 0 0 0 0 0
= La 0 0 0 La 0 La 0 0
Lbae 0 0 0 0 O fa 0 0 La
0 La 0 0 0 La O La 0 0
0 0 La La 0 0 0 0 la O
La> 0 0 0 0 0 Lo 0 0 Lo

Proof. It is easily checked that the matrix ¢ satisfies the equation &, = ¢o” o

Theorem 5.2 The set of isomorphism classes of Brauer-Severi surfaces defined over QQ is in bijection with the set
of equivalence classes of pairs (y, o) where L is a Galois extension of degree 3, y : Gal(L/Q) = Z/37Z is an isomorphism
and a € Q. Two pairs (y, «) and (), &) are equivalent if and only if y = y"and a’a' € Nm, (L"). Given (y, &) with L
= Q(/,, L, I;) where the /; are conjugate numbers, the corresponding Brauer-Severi variety B is given by the intersection
N, ccawo X, where X/L is the variety in PP’ defined by the set of equations:

a(l,@, + Loy + Loy Lo, +Log + 1o, = (Lo, + Lo, +Lo,)’
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@ (o, + Lo +1L,w, (Lo, + Lo +Lay) = (Lo, + Lo +Lo,)* (ho, + Lo +Lao,)
o’ (L, + Lo, + Loy (Lo, +Log +10,)° = (Lo, + Lo, +Lo,) (Lo, + Lo, +Lo,)
a(Lo, + Lo, + Loy ) Lo, + Lo, +Lo,)" = (Lo, +Los +Lo,) (Lo, + Lo, +La)’
@, (Lo, +Log +10y)* = (Lo, + Lo, +1L,0,) (Lo, + Lo, + o) (Lo, + Lo, +1a,)
o’ (L, + 1,0 + Loy (Lo, + Lo, +Lay) = (Lo, + Lo, + o)’

a(boy +Los + Lo, ) (Lo, + Lo +lla)9)2 = (Lo, + Lo, + 1o, )2 (L, +Log + 1 wy).

Proof. By Theorem 2.1 we know that all the Brauer-Severi surfaces are parametrized by Az>. We also know that
all the elements in Az are cyclic algebras [16]. We use the description in Proposition 2.2 for cyclic algebras.

In order to compute the equations, we plug the equation of the isomorphism ¢ in Lemma 5.1 into the equations of
V,(P*) = P? given in Corollary 3.6. These equations are, a priori, not defined over Q, even if the ideal generating 1 is.
Notice that after plugging ¢ in the equations in the second and the third columns in Corollary 3.6, we get the conjugate
equations to the ones appearing in the first column and shown here. Hence, the intersection N,_g.q X gives the
equations for B/Q.

5.1 Degree 3 cyclic extensions of Q

In order to show equations defined over QQ for the Brauer-Severi surfaces shown in Theorem 5.2, we need to work
with a good basis for the degree 3 cyclic extensions L of Q. Ideally, we would like to find a basis /,, 1,, [; of L/Q such
that we could easily write each equation in Theorem 5.2 as [ f, + L. f, + f; = 0 with f; € Q[w,, ..., ®,]. Then, since the
matrix

Lo L kL
L L
Loho

is invertible, the equations of the Brauer-Severi surface would be given by f, =f, =f;=0.

In this subsection we will find an element ¢, in L such that /,, /,, /; with [, = ¢, is a basis in which we can easily write
the equations in Theorem 5.2 as I;f; + I, f, + f; = 0 for some f;, € Q[w,, ..., w,].

Proposition 5.3 Let L/Q be a cyclic degree 3 extension given by the decomposition field of the polynomial P(¢) =
£+ At* + Bt + C with 4, B, C e Z. Let t, be a fixed root of P(¢) = 0. Then there exists a, 5, 7, d € Z such that ¢, = ah +f

74 +0
928 are the other two roots of P(1)=0.
ity +0

Proof. Since L/Q is Galois and of degree 3, there exists a, b, ¢ € Q such that t, = at; + bt, + ¢. We want to look for
a, B, 7, 0 e 7 such that (at; + bt, + c)(at, + ) = (yt, + ). We can take a equal to the product of the numerator and the
denominator of @ and we make S = (aad — ba)/a, y = pb + co. — aaB and d = ¢ff — aaC. Now, it is easy to check that t; =

25 i the third root and that LELFLEL.
yty +6

Lemma 5.4 With the notation above, M : = (a g] € My(Z) has order 3, 5 = —(a+ 1) and By = —(’ + a + 1). Moreover,
if we have A=0, then B=3£ and €= 22522,

and t; =

jzjg so M* = 1, which implies ad — fy =1, a+d=—1, o’ + fy = d and

& + By = a. For the last statement, we just write 0 = —A4 = £, + t, + t,.

v
Proof. It is enough with checking that 7, =

Volume 2 Issue 4|2021| 285 Contemporary Math tics



5.2 A particular example

Letustake 4 =0, B=-3 and C= 1, thatis,a=y=—1, f =1 and J = 0, and the cocycle given by

010
oc—>|0 0 1],
200

where o(t,) = t,,,. Notice that 2 is not a norm in the decomposition field Q,(#) since 2 is inert in Q,(¢). We prove it by
checking that 2 does not divide the discriminant A, = 81 and that the polynomial P(¢) = > — 3¢ + 1 is irreducible in F,.
The equations in Theorem 5.2 for this particular example look like:

3 2 2 3 2 2 2 2 3 2 2
(2w + 6wy g — 6w w; =3 + 60 ws +3w; W, — 6w,05 — 3w w; +3w; —3w; w, +3w;05 +
3 2 2 3\ 42 3 2 2 2 2
4y, — 65wy + 6wy —205)t” + (2w — 6wy w, + 6w,y + 30 w5 — 30 v, -
2 2 3 2 2 3 2 2 3 3
3w,05 + 30,05 +3w; —6w; @, + 60505 +2w; — 6w 0y +6wswy —3w; —4w;)t
+20; —18w) s + 1205 0y + 240,05 —12 — 6,05 + 70 —180f w5 -
@ @, s @, Wy @)W Wy Ws Wy — 0Dy + /0y o s
30 0, + 150,05 +6 =50; —3ws07 —100; + 60, 0y + @5 + 20 =0
0 @, 005 + 00 W50y — IW5 — 30500, W + 00 Wy + 07 + 2009 =
(R20; 0, + 60, @5 — by, 0, + 40, 0,0, — 80,0503, — 40050, + 80,050, —
30} 0, +20] @, + 0] o + 40,0,0, + 20,0,0, — do,0,0, + 20,0; —
40,0500 — 20,0, — 20,02 — 0,07 + 30,05 — 20,050, + ;07 — OF O +
0 D Wy | (07 0% hWs — 0,0, 3 Ws 3 W50y + W3 007 — (s (g
d,F + 200,00, + 20,08 — 60 @, + 40, 0,05 — 20,00 )t
5 Ds 5 (07 (g 5o s 07 507 Wy 7
2 2 2
+QRwy o = 2wy @, —4wy,w,05 — 40,50 + 40y W50y + 40y 0s 07 + & @5 —
O 0y +20,0,05 — 20,0,0, — 20,0,05 + 40,0, — 80,00, + 20,0,0 +
2 2 2 2 2 2 2
6w, 05 — w,0; + w,; + 30,05 —4W,W50; + 20,05 — 205 Wy + 20,08 + 40,05 —
20,08 — 60 0 + 80,00, —30° 0, —da,0l )t
5@ s 07 6070 7 (g 7@
F20) 0, — 140} 05 + 120} 0, — 40,0,0, + 240,050, + 40,050, — 200,0,0, — 40,0, 0, +
70 o, —6a)12a)3 —a)lzao8 -120,0,05 - 2m,0,0; +100,0;05 + 20,0,0; + 20,0505 +

2 2 2 2 2
4oy, w05 — 20,05 + 50,05 + 20,050, — S0,05 — wy0; — 10005 —4wswgm, —
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20,0,0, + 100, 0, + 02 0 + 20,05 =0
(~@p 0, + 30}, — 20,0y — 30,07 + 40,005 + 20,0,0, + 20,0,0, — 4wy, —
2 2 2 2
20,0y — 20,05 + 4wy 0,04 — 0y @7 + 207 W + W) Wy — W, W50, — 20,0, +
2 2 2 2 2
W, — 20,004 + 20,05 + W04 + 305 W5 — OF Wy — 205 W 0; + 20505y —
307 0y + g2 + 20,050, — W05 )t
2 2
+Hwy w, — 0y vy +20,0,05 — 20,0,0, — 200, By — 2000 + 20,050y —
242 + w02 + o, — of o, 2 +2 +20,07 -
Wy Ws + 20y W Wy + Wy Wy + O W — O Wy — 20 W5 + 2007 Dy + 20, D
4w, w40, +3w,05 + a)3a)62 — 0,05 + 302 0 — 202 0y — 40,00, +
b0,y —30p 0 + 20,07 + 40,000, — 307 0y — 20,0 )1t
2 2 2 2
+apy @, —Toyw; + 60w +71o,0; —12m,0,0; — 20,00, —20,0,0 +
2
120,0,0, + 20,0,04 + 50,05 + 20,0;0, =100, 0,05 — 20,00 —
2 2
60 W, — @ @y +100,050 + 20,050y + 20,007 + 20, 0,0y —

2 2 2 2 2, 2 2 _
W, 04 — 50,005 — 20,050y — 505 Wy — 2050, W + 505 Wy — W07 + W5 0y + gy =0
(~40} o, —20)3603 + 60 @y + 8w, w, W, + 4w, w0, — 8w, wew; — 4wy wzw, 3,05 +

4 +2 20,05 — 0,0; +20;0 + W0, —4 —6m,0; +
00,03 + 2O, W — 20,03 — WDy + 200, W5 + (0, Wy — 70, (03005 — OO, W
400,050y — 20,0, 0 — 20,0 + 30} 05 — OF 0 — 20,050 + 20,00 —
2@ Do ) W7 g 2@y 3 W5 — 03 305 g 3@
4 2 ; +4w; 05 + 20,0 )t
Wy W0y + 20,0, 0 + W54 + 4w W + 20,5 )
2 2
—Lay o, +20; 0y + 4w,0,0 — 4w,0;0, — 40y W0 + 40030 + 20,0,y —
2 - 0,0} + 0,0} + 005 — O}, —2 —6w,w; +8 +
W0, — W03 + Wy + 0, W5 — 0 Wy — 200, D305 — DD, W ~+ 00, W Dy
2 2 2 2
20,0,0; — 4w, @5 + 305 05 — 205 @0; — 4wy0;05 + 4wy —

2 2 2 2 2
8w,y + 40,0, 05 + 60,05 + 20505 +20; 0y — 30,04 — 20,05 )t
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+120] 0, + 20} 0, —140; 0 —200,0,0, — 4a,0,0, — 40,0,0, + 240,0,0; +
LTONONON + 70,0 -120,0,0; - 20,0,0; +5(016032 + 20,005 —
60, 05 — 03 0, +100,0,05 + 20,0,0, + 20,050, +100,0; +20,0; —
507 0 + 40,050, — 20,0,05 — 20,05 — O50; —
100 0, — 40050, + @,08 =0
(@} 0, —30,0,0, + 20,0,0; + 0yo,0 + 20,0,05 +
Wy, W5 — 2@ 0305 + 20y W, W5 — Oy W70 + 20,0, D +
W0, 0y — 20,050 — O,V Dy — 20, W5 D5 — (D, (D, Dy + 303050 —
050y — D3040, + 30,0 — 20,0 Dy + D05 — D5 D@y + 5Dy + V0,0t
~(O} 0, + 00,0, — OO0 + Oy, 05 — VYD, — OYO,Ds + 20y, +
Wy 01O + Oy, W — @D, Dy — D D30 + O D Dy — O, DD +
0, 0,0 + 30,0505 — 20,050 — 20,050, + 2050, @y + D OF —
20,0,04 — 20505 + 2050, + 20500, — 3070505 )t

o) o, + To,0,0, — 6wy, — Wy, W5 — 60y W, 05 — Wy, W, +
5wy y05 + W30, — 60,0, — 20,0,y + VW53 — 6D, W, W —

W0,y + 50,3V + O, W30y + O, W5 + 50, D5 + W, W50y +

W, g7 — 50,0505 — 3070y + 20)46()62 +
200,0,05 — W5 W30 — W07 05 + ;05 =0
(8 + 120} g +120; 0y —120y0F 120,05 —30; +
660220)3 +3a)22w8 —6a)2a)32 -3w,0; +3a)33 -

3w; 04 + 30,08 + 4, + 4y )t
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+(—4a)g +12w§(o6 —12a)0w§ +3a)22w3 —30)22608 —3(020)32 +3a)2a)82 +
30, — 605wy + 60,05 +8w;, —120; @, +120,0; —30; — 40 )t
+240;, —36w; 0 —360, @, +120,0; +480,0,0, +
2awyw; +70; —18w; 0, — 305 0 +150,0; +60,0,0, -

50; - 3,08 — 120 0y — 120,05 +@; =0
(—46030)1 —Za)(fa)5 + 60)5(07 + 8w, w, o —3a)0a)22 +4wyw,0, +
20,0, — 20,07 + 40,050, — 8@, W,0, — 40,0, 0, — Vy0F — 60,0F +
4o, w,0, — 20,0 + 20,05 + 03 0 — 40,00 -2, w0, +3a)32a)6 -
7 0y — 20,050 + 20,0400 + 20507 — 0,00, + 403 0, + Oy + 20,05 )t
H20) 0, + 20] 05 + 40, 0,05 + 20,0, 0, — 200,04 — Oy07 — 40y DDy —
4, 0,0, + 40, 0,0, + 0y0F — 60,07 +8w,W,0, —40,0F +
W3 O — W3 Dy — 20,0,0 + 20,0 + 305 O — 207 0 —
40,0,05 + 40,00 + d0,0F — 80,050, + 600} + 20 0, +
20,08 — 20,05 — 305 @)t
+120; 0, + 20, w5 —140; 0, — 200,00, — 40,00, +
70,05 —120,0,0, — 200,04 + 50,05 +20,0,0; — 40,050, +
240,00, + 40y 0,0, +100,0F + 20,05 — 605 05 — Oy +
100, 0,04 + 20,0,0, + 20,0404 —50; O — 20,00, +

2 2 2 2
4w, — 20505 — 100 0; — w0,y — 0w; + @; wy = 0.

Now the intersection N, g0 X i just generated by the equations /) = f, = f; = 0 where the previous equations
are written as f,£* = f,t = {3 = 0 with f, € Q[w,, ©,, ®,, ©3, ©,, s, g, ©5, Wy, D).
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6. Singular equations

As we have already seen, equations for smooth models of Brauer-Severi varieties are quite impractical since they
have many variables and terms. However, if we work with singular models we can show ‘“‘nicer”” models, meaning,
having less variables and shorter equations.

Lemma 6.1 Let X be a perfect field, and let be B, : X, X, ... X,,, = X" < P;"". Then B, is birationally equivalent to
P" over Q.

Proof. Let us consider de map v : P" — P : (xp:x; 1oix, ) B> () 12 1ot X,
between P” and w(PP"). Moreover, w(P") = B,. M

Theorem 6.2 Let (y, a) be a pair consisting of an isomorphism y : Gal(L/K) =» Z/(n + 1)Z, where L is a cyclic
Galois extension L/K of degree n + 1, and an element a e K. Let {l,, 15, ..., 1.} be anormal basis of L/K. Then, the
Brauer-Severi variety associated with (y, ) as in Theorem 2.1 and Proposition 2.2 is birationally equivalent over K to

x6t+1

). It gives a birational map

n+l
aNp e (hx +o+1,x,,,) =X

Proof. First of all, notice that this variety is birationally equivalent to B, in Lemma 6.1 over L. In particular, it is
birationally equivalent to " over L, and hence birationally equivalent to a Brauer-Severi variety over K. We will see
that indeed, it is birationally equivalent over K to the Brauer-Severi variety associated with (y, «) as in Theorem 2.1 and
)=x;*" to B, is given by the matrix

Proposition 2.2. We will see that a birational map from o N . (/,x; +...+1,,,%,,,

a 0 0 0 o0

0 L.
j= 0 al, a .. al._
0 al, al, .. al_,
0 al, al .. «a

Let us call ¢, to the composition of 5 with the inverse of the birational map y in Lemma 6.1 between B, and P".
Then the cocycle defined by &(a) = 4,79, is not equal, but equivalent, to the cocycle in proposition 2.2 defining the
Brauer-Severi variety attached to (x, a). Indeed, take

fxg X iix,)=(P: Ry B:..: P_)) € Auty,, (P"),
where P=x, - x, and P, = P% It is straightforward to check that f&(o)’f ' = g (0).
1
Remark 6.3 A weaker version of Theorem 6.2 appears in [20]. However, notice that the first version of Theorem 6.2
appeared in ArXiv two years before than the first draft of the aforementioned reference.
Corollary 6.4 Let B be a Brauer-Severi surface dened over Q. It corresponds to a pair (y, a) where y : Gal(L/Q)

=57/37 is an isomorphism, L is a cyclic Galois extension of degree 3 and a € Q. Write L = Q(l,, L,, [;) with /, a normal
basis for Z/Q with minimal polynomial x* + 4x” + Bx + C. Then B is given by the singular model

aNphx +hx, +1x;) = x <P,
or equivalently by

—C(xl3 +x;’ -i—)c§)+D1(xlzx2 +x22x3 +x32x1)+D2(x1x22 +x2x§ +x3x12)+
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+(34B - A)xx,x, =a'x) < PP,

where D, is the rational number 7L, + 51, + 151, and D, =11; +1L,1; + L1} . [The discriminant of the polynomial x* + Ax
+Bx+ C=0is (D, — D,y and D, + D, is a symmetric function on /,, ,, I, hence D, and D, are writtenable in terms of 4,
B and C].

Example 6.5 The singular model for the Brauer-Severi surface in subsection 5.2 is

2(x) X3 +23) = 12(x7x, + X3 X, + X3 x,) + 6(, X7 + x,X5 + x,x0) = x; < PP,
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