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Abstract: Initial boundary value problems for the three-dimensional Kuramoto-Sivashinsky equation posed on 
unbounded 3D grooves (that may serve as mathematical models for wildfires) were considered. The existence and 
uniqueness of global strong solutions as well as their exponential decay have been established.
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1. Introduction
This work concerns the existence and uniqueness of global strong solutions as well as exponential decay rates of 

solutions to initial boundary value problems for the three-dimensional Kuramoto-Sivashinsky equation (K-S):

(1)2 21 | | 0.
2tφ φ φ φ+ ∆ + ∆ + ∇ =

Here ∆ and ∇ are the Laplacian and the gradient in R3. In [1], Kuramoto studied the turbulent phase waves, and 
Sivashinsky in [2] obtained an asymptotic equation which modeled the evolution of a disturbed plane flame front. 
See also [3]. Moreover, K-S equation has applications in the study of dynamics of plasma and flow of liquid films on 
inclined planes, [4]. In [5-8], mathematical results on initial and initial boundary value problems for one-dimensional 
(1) are presented, see references there for more information. Multi-dimensional problems for various types of (1) can be 
found in [9-15] with some results on the existence, regularity and, nonlinear stability of solutions. In [10-13], stability of 
global solutions for the K-S equation posed on a rectangle with the width L2 and the length L1, where L2 is a decreasing 
function of L1 and initial data depend on L1, was studied. This did not allow to study initial boundary value problems 
posed on strips. Absence of published results on three-dimensional problems, motivated us to study the existence, 
uniqueness, and stability of global solutions for the three-dimensional K-S equation. Our approach does not include 
dependence of L2 on L1. This allows to prove the existence, uniqueness, and exponential decay of global solutions in 
two and three dimensions making use of the same approach with the unique restriction on the width of a domain. The 
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shortage of this approach is smallness conditions for the initial data. 
For three dimensions, (1) can be rewritten in the form of the following system:

(2)
3

2 2

1

1( ) ( ) 0,
2 jj t j j i x

i
u u u u

=
+ ∆ + ∆ + =∑

(3)( ) ( ) ,  ;  , 1, 2,3,
i jj x i xu u i j i j= ≠ =

where uj = φ xj
. The first essential problem that arises while one studies either (1) or (2)-(3) is a destabilizing effect of 

∆uj that may be damped by a dissipative term ∆2uj provided a domain has some specific properties, see condition (13) 
of Theorem 3.1. Naturally, the so-called “thin domain” appears where some dimensions are small while the others may 
be arbitrarily large. The second essential problem is the presence of semi linear interconnected terms in (2). This does 
not allow to obtain first estimate independent of solutions and leads to a connection between geometric properties of a 
domain and initial data, see (14) of Theorem 3.1. 

Our work has the following structure: Section 1 is Introduction. Section 2 contains notations and auxiliary facts. 
In Section 3, formulation of an initial boundary value problem for (2)-(3) posed on unbounded grooves is given. The 
existence and uniqueness of a global strong solution, exponential decay of the L2-norm have been established. Section 4 
contains ideas of applications results obtained in our paper to some practical problems. Section 5 contains conclusions.

2. Notations and auxiliary facts
Let Ω be a domain in R3 and x = (x1, x2, x3) ∈ Ω. We use the standard notations of Sobolev spaces W 

k, p, L 
p and H 

k 
for functions and the following notations for the norms [16]: for scalar functions f (x, t)

1{ ; 0},t t+ = ∈ > 

2 2| | ,f f d
Ω

= Ω∫‖ ‖

( )
| | ,p

p p
L

f f d
ΩΩ

= Ω∫‖ ‖

, ( ) ( )0
,k p p

p p
W Lk

f D fα

αΩ Ω≤ ≤
= ∑‖ ‖ ‖ ‖

,2( ) ( )
 .k kH W

f f
Ω Ω

=‖ ‖ ‖ ‖

When p = 2, W 
k, p(Ω) = H 

k(Ω) is a Hilbert space with the scalar product

( ) ( )
| |

(( , )) ( , ), | ( ) | .k
j j

H L
j k

u v D u D v u ess sup u x∞ ΩΩ Ω
≤

= =∑ ‖‖

We use a notation H0
k(Ω) to represent the closure of C0

∞(Ω), the set of all C 
∞ functions with compact support in Ω, 

with respect to the norm of H 
k(Ω).

Lemma 2.1 (Steklov’s Inequality [17]). Let v ∈ H0
1(0, L). Then
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(4)
2

2 2
2 .xv v

L
π

≤‖‖ ‖ ‖

Lemma 2.2 (Differential form of the Gronwall Inequality. See [18], Lemma 2.2.). Let I = [t0, t1]. Suppose that 
functions a, b : I → R are integrable and a function a(t) may be of any sign. Let u : I → R be a differentiable function 
satisfying

(5)0 0( ) ( ) ( ) ( ),  for  and ( ) ,tu t a t u t b t t I u t u≤ + ∈ =

then

0 0
0

( ) ( )
0( ) ( ).

t s
t ta d a r drt

t
u t u e e b s ds

τ τ∫ ∫
≤ + ∫

The next Lemmas will be used in estimates: 
Lemma 2.3 (See [19], Lemma 3.5.). Let v ∈ H0

1(Ω) and n = 3, then

(6)
4

1 1 3
2 4 4

( )
2 .

L
v v v

Ω
≤ ∇‖‖ ‖‖‖ ‖

3. K-S system posed on a groove
Define a groove

3 1
1 2 3{ ; , (0, ), ( 0), }, (0, ) .tD x x x B B x Q t D+= ∈ ∈ ∈ > ∈ = ×  

Lemma 3.1. Let  f  ∈ H0
2(D). Then

(7)2 2 2 2 2 2 2,  ,  ,a f f a f f a f f≤ ∇ ≤ ∆ ∇ ≤ ∆‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

(8)
2

2where .a
B
π

=

Proof. By definition,

3
2 2

1
.

ix
i

f f
=

∇ = ∑‖ ‖ ‖ ‖

Making use of Steklov’s inequalities, we get

2

2
2 2 2 2

2 .xf f f a f
B
π

∇ ≥ ≥ =‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

On the other hand,
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2 2 .
D

a f f f fdx f f≤ ∇ = − ∆ ≤ ∆∫‖ ‖ ‖ ‖ ‖ ‖‖ ‖

This implies

2 2 2 and .a f f a f f≤ ∆ ≤ ∆‖ ‖‖ ‖ ‖ ‖ ‖ ‖

Consequently, a||∇ f ||
2 ≤ ||∆ f ||

2. Proof of Lemma 3.1 is completed.
In Qt consider the following initial boundary value problem:

3
2 2

1

1( ) ( ) 0,
2 jj t j j i x

i
u u u u

=
+ ∆ + ∆ + =∑ (9)

(10)( ) ( ) , , 1,..., ;, 3
j ii x j xu u j i i j= ≠ =

(11)| | 0, 0,j D j Du u t
N∂ ∂
∂

= = >
∂

(12)0( ,0) ( ), 1,...,3, ,j ju x u x j x D= = ∈

where 
N
∂

∂
 is an exterior normal derivative on ∂D.

Theorem 3.1. Let

(13)
2

2
1, , 1 0.B a
aB

ππ θ< = = − >

Given uj0 ∈ H 
4(D) ∩ H0

2(D),  j = 1, 2, 3 such that

(14)
3

2
03

12

48 0.i
i

u

a

θ

θ
=

− >∑‖ ‖

Then the problem (3.3)-(3.6) has a unique strong solution

2 2 2
0( ; ( )), ( ; ( ));j ju L H D u L L D∞ + ∞ +∈ ∆ ∈ 

2 2 2
0( ; ( )) ( ; ( )), 1, 2,3.jtu L L D L H D j∞ + +∈ ∩ = 

Moreover, uj satisfies the following inequality

(15)
3 3 3

2 2 2
00

1 1 1
( ) ( ) ,

2
( )t

j j j
j j j

u t u d uθ τ τ
= = =

+ ∆ ≤∑ ∑ ∑∫‖ ‖ ‖ ‖ ‖ ‖
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(16)
23 3

2 2
0

1 1
( ) exp{ }.

2
[ ]j j

j j

a tu t u θ

= =
≤ −∑ ∑‖ ‖ ‖ ‖

(17)
23 3

2 2

1 1
( ) (0) exp{ },

2
( )jt jt

j j

a tu t u θ

= =
≤ −∑ ∑‖ ‖ ‖ ‖

(18)
3 3 3

2 2 2
0

1 1 1
( ) ( ) (0),

2
( )t

jt j jt
j j j

u t u d uτ
θ τ τ

= = =
+ ∆ ≤∑ ∑ ∑∫‖ ‖ ‖ ‖ ‖ ‖

where

2
00, (0) ( ), 1, 2 ,3. jt j Wt u C u j> ≤ =‖ ‖ ‖ ‖ ‖

Proof. Define the space W = H 
4(D) ∩ H0

2(D) and let {wi(x), i ∈ N} be a countable dense set in W. We can construct 
approximate solutions to (9)-(12) in the form

1
( , ) ( ) ( ); 1, 2,3.

N
jN

j ii
i

u x t g t w x j
=

= =∑

Unknown functions gi
j(t) satisfy the following initial problems:

(19)
3

2

1

1( , )( ) ( , )( ) ( , )( ) (( ) , ( ) )( ) 0,
2 j

N N N N
j j j j j j i j x

i

d u w t u w t u w t u w t
dt =

+ ∆ ∆ − ∇ ∇ − =∑

(20)0(0) , 1, 2,3; 1,2,...Ј .j j
i ig g i= = =

By Caratheodory’s existence theorem, [20], Theorems 1.2 of Chapter 1, there exist solutions of (19)-(20) at least 
locally in t. All the estimates we will prove will be done on smooth solutions of (9)-(12). Naturally, the same estimates 
are true also for approximate solutions uj

N. 
Estimate I Multiply (9) by 2uj to obtain

(21)
3

2 2 2 2

1
( ) 2 ( ) 2 ( ) ( , ( ) )( ) 0, 1, 2,3.

jj j j i j x
i

d u t u t u t u u t j
dt =

+ ∆ − ∇ − = =∑‖ ‖ ‖ ‖ ‖ ‖

Since a||∇uj||
2(t) ≤ ||∆uj||

2(t), taking into account (13), we get

(22)
3

2 2 2 2

1
( ) ( ) ( ) ( , ( ) )( ) 0.

jj j j i j x
i

d u t u t u t u u t
dt

θ θ
=

+ ∆ + ∆ − ≤∑‖ ‖ ‖ ‖ ‖ ‖

Making use of Lemmas 2.3, 3.1, we estimate
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4 4

3 3
2

( ) ( )
1 1
( , ( ) ) ( )

j ji j x i i j xL D L D
i i

I u u u u u
= =

= ≤∑ ∑‖ ‖‖ ‖ ‖ ‖

1 3 1 33
4 4 4 4

1
2 i i i j j

i
u u u u u

=
≤ ∇ ∇ ∆∑ ‖ ‖‖ ‖‖ ‖‖ ‖‖ ‖

3 3
2 2

1/4 1/4
1 1

1 1 12 ( )i i j j i i
i i

u u u u u u
a a= =

≤ ∇ ∆ ≤ ∆ + ∇∑ ∑


‖ ‖‖ ‖‖ ‖ ‖ ‖ ‖ ‖‖ ‖

3
2 2 2

1/2
1

4 ||j i i
i

u u u
a =

≤ ∆ + ∇∑


‖ ‖ ‖‖ ‖

3
2 2 2

3/2
1

4 || ,j i i
i

u u u
a =

≤ ∆ + ∇∑


‖ ‖ ‖‖ ‖

where ϵ is an arbitrary positive number. Taking 2ϵ = θ, substituting I into (22) and summing up over  j = 1, 2, 3, we get

3 3 3 3
2 2 2 2

3/2
1 1 1 1

24( ) ( ) ( ) ( ) 0.
2

[ ]j j i j
j j i j

d u t u t u t u t
dt a

θ θ
θ= = = =

+ ∆ + − ∆ ≤∑ ∑ ∑ ∑‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ (23)

Condition (14), positivity of the second term in (23) and standard arguments guarantee that

(24)
3

2
3/2

1

24 ( ) 0, 0.[ ]i
i

u t t
a

θ
θ =

− > >∑‖ ‖

This transforms (23) into the following inequality:

(25)
3 3

2 2

1 1
( ) ( ) 0.

2j j
j j

d u t u t
dt

θ

= =
+ ∆ ≤∑ ∑‖ ‖ ‖ ‖

Integrating (25), we obtain

(26)
3 3 3

2 2 2
00

1 1 1
( ( ) .

2
t

j j j
j j j

u t u d uθ τ τ
= = =

+ ∆ ≤∑ ∑ ∑∫‖ ‖ ‖ ‖ ‖ ‖

On the other hand, Lemma 3.1 allows us to rewrite (25) in the form

(27)
23 3

2 2

1 1
( ) ( ) 0.

2j j
j j

d au t u t
dt

θ

= =
+ ≤∑ ∑‖ ‖ ‖ ‖

From this, (16) follows.
Estimate II Differentiate (9) with respect to t, then multiply the results respectively by 2(uj)t to get
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(28)
3

2 2 2

1
( ) 2 ( ) 2 ( ) 2 ( , ( ) )( ), 1, 2,3.

jtjt jt jt i it j x
i

d u t u t u t u u u t j
dt =

+ ∆ − ∇ = =∑‖ ‖ ‖ ‖ ‖ ‖

Making use of Lemmas 2.4 and 3.1, we estimate

4 4

3 3

( ) ( )
1 1

2 ( , ( ) )( ) 2 ( ) ( ) ( )
jti it j x i it jtL D L D

i i
I u u u t u t u t u t

= =
= ≤ ∇∑ ∑‖ ‖ ‖ ‖ ‖ ‖

1 3 1 33
4 4 4 4

1
4 i it it it it

i
u u u u u

=
≤ ∇ ∇ ∆∑‖ ‖‖ ‖‖ ‖‖ ‖‖ ‖

3 3
2 2

1/4 1/4
1 1

1 4 14 ( )i it it it i it
i i

u u u u u u
a a= =

≤ ∇ ∆ ≤ ∆ + ∇∑ ∑


‖ ‖‖ ‖‖ ‖ ‖ ‖ ‖ ‖‖ ‖

3
2 2 2

1/2
1

16
it i it

i
u u u

a =
≤ ∆ + ∇∑


‖ ‖ ‖ ‖‖ ‖

3
2 2 2

3/2
1

16 .it i it
i

u u u
a =

≤ ∆ + ∆∑


‖ ‖ ‖ ‖‖ ‖

Taking 2ϵ = θ, substituting I into (28) and summing up over  j = 1, 2, 3, we get

(29)
3 3 3 3

2 2 2 2
3/2

1 1 1 1

48( ) ( ) ( ) ( ) 0.
2

[ ]jt jt i jt
j j i j

d u t u t u t u t
dt a

θ θ
θ= = = =

+ ∆ + − ∆ ≤∑ ∑ ∑ ∑‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

Taking into account (14), rewrite (29) in the form

(30)
3 3

2 2

1 1
( ) ( ) 0.

2jt jt
j j

d u t u t
dt

θ

= =
+ ∆ ≤∑ ∑‖ ‖ ‖ ‖

This implies

(31)
3 3 3

2 2 2
0

1 1 1
( ) ( ) (0),

2
(t

jt j jt
j j j

u t u d uτ
θ τ τ

= = =
+ ∆ ≤∑ ∑ ∑∫‖ ‖ ‖ ‖ ‖ ‖

where ||ujt||
2(0) ≤ C(||u0j||W). Making use of Lemma 3.1, rewrite (30) as

(32)
23 3

2 2

1 1
( ) ( ) 0.

2jt jt
j j

d au t u t
dt

θ

= =
+ ≤∑ ∑‖ ‖ ‖ ‖

Integrating this, we find
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(33)
23 3

2 2

1 1
( ) (0) exp{ }.

2
( )jt jt

j j

au t u tθ

= =
≤ −∑ ∑‖ ‖ ‖ ‖

Estimates (3.20) and (3.25) imply that uj ∈ L∞(R+; H0
2(D)),

2 2 2
0( ; ( )) ( ; ( )), 1, 2,3.jtu L L D L H D j∞ + +∈ ∩ = 

These inequalities guarantee the existence of strong solutions {uj(x, t)} to (9)-(12) satisfying the following identity:

(34)
3

2

1

1(( ) , )( ) ( , )( ) ( , )( ) ( ) , )( ) 0, 0,
2 jj t j j i x

i
u t u t u t u t tφ φ φ φ

=
+ ∆ ∆ + ∆ − = >∑

where φ (x, y) is an arbitrary function from H0
2(D).

We can rewrite (34) in the form

3

1
( , )( ) ([( ) ( ) ], )( ).

jj j t j i i x
i

u t u u u u tφ φ
=

∆ ∆ = − + ∆ + ∑

Since uj ∈ L∞(R+; H0
2(D)), it follows from here and estimates (26), (31) that

3
2

1
[( ) ( ) ] ( ; ( )), 1, 2,3,

jj t j i i x
i

u u u u L L D j∞ +

=
+ ∆ + ∈ =∑ 

hence

2 2( ; ( )), 1, 2,3.ju L L D j∞ +∆ ∈ =

This proves the existence part of Theorem 3.1.
Lemma 3.2. The strong solutions of (9)-(12) is unique.
Proof. Let uj and vj,  j = 1, 2, 3, be two distinct solutions to (9)-(12). Denoting w = uj − vj, we come to the following 

system:

(35)
4

2 2 2

1
( ) 2 ( ) 2 ( ) ({ } , ( ) )( ),

jj j j i i i j x
i

d w t w t w t u v w w t
dt =

+ ∆ − ∇ = +∑‖ ‖ ‖ ‖ ‖ ‖

(36)( ) ( ) , ,
j ji x i xw w i j= ≠

(37)| | 0, 0,j D j Dw w t
N∂ ∂
∂

= = >
∂

(38)( ,0) 0, 1,2,3.jw x j= =

Making use of Lemmas 2.3, 3.1, we estimate
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4 4( ) ( )
({ } , ( ) ) ( )

j ji i i j x j x i i iL D L D
I u v w w w w u v= + ≤ +‖ ‖ ‖ ‖‖ ‖

1 3 1 3
4 4 4 42 ( ) ( ) ( )

j ji j x j x i i i iw w w u v u v≤ ∇ + ∇ +‖ ‖‖ ‖‖ ‖‖ ‖‖ ‖

1/4
2 ( ) ( )i j i iw w u v

a
≤ ∆ ∇ +‖ ‖‖ ‖‖ ‖

2 2 2
3/2
1( ) ( ) .j i i iw w u v

a
≤ ∆ + ∆ +


‖ ‖ ‖ ‖‖ ‖

Substituting I into (35), taking 2ϵ = θ and summing over  j = 1, 2, 3, we get

3 3 3 3
2 2 2 2 2

1 1 1 1
( ) ( ) { ( ) ( )} ( ) .( )j j i i j

j j i j

d w t w t C u t v t w t
dt

θ
= = = =

+ ∆ ≤ ∆ + ∆∑ ∑ ∑ ∑‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

Due to (26), ||∆ui||
2(t) + ||∆vi||

2(t) ∈ L1(R+), i = 1, 2, 3. 
Applying Lemma 2.2, we obtain that

( ) 0, 0, 1,2,3.jw t t j≡ > =‖ ‖

This proves Lemma 3.2 and consequently Theorem 3.1.
Remark 3.1. We can define other grooves:

3
1

1 2 3 1 2 3 3 3{ ( , , ); , , (0, ), ( 0),}xD x x x x x x x L L+= = ∈ ∈ ∈ > 

1
1

1 2 3 1 1 1 2 3{ ( , , ); (0, ), ( 0), , }xD x x x x x L L x x += = ∈ > ∈ ∈ 

and obtain results similar to ones of Theorem 3.1.

4. Possible applications of theorem 3.1
Since by [2], the Kuramoto-Sivashinsky equation describes instabilities in laminar flame fronts, it can be used 

to create mathematical models of wildfires. On the other hand, the Kuramoto-Sivashinsky equation describes also 
the dynamics of turbulent phase waves and flow of liquid films on an inclined plane [4]. This can be used to create 
mathematical models for the stability of processes in river flows.
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6. Conclusions
In this work, we studied the stability of global solutions for initial boundary value problems to the three-

dimensional Kuramoto-Sivashinsky system (1) posed on unbounded grooves. We defined a set of admissible domains 
which eliminate destabilizing effects of terms ∆uj by dissipativity of ∆2uj. Since these problems do not admit the first 
a priori estimate independent of t and solutions, in order to prove the existence of global solutions, we put conditions 
connecting geometrical properties of domains with initial data. We proved the existence and uniqueness of a strong 
solution as well as exponential decay of L2-norms.
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