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Abstract: In this paper, it is considered the existence of solutions for a quasilinear system involving the p-Laplacian
operator and gradient terms. The approach is based on sub-supersolution arguments and the Schauder’s Fixed Point
Theorem. The results in this paper allow us to consider several growth conditions in the gradient and complete some
recent contributions.
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1. Introduction

In the last decades, elliptic problems involving gradient terms have been attracting the attention of several
researchers due to interesting difficulties which arise when one intends to consider this kind of problem, see for instance
[1-3].

For example in [1], it was applied the Galerkin method to show the existence of a solution for the elliptic problem
given by

—Au =h(x,u)+Ag(x,Vu) in Q,
u=0 on 0Q,

where 4 > 0 is a parameter, /4 is a function with singular and sublinear terms and g is a continuous function satisfying

certain conditions.
In [3], it is considered the problem

A u=h()|Vul” +g(x,u) in Q,
u=0 on 0Q,

. . _2 . . . . . ..
where —A u:=—div(|Vu | Vu), p > 1 and / and g are functions satisfying certain technical conditions. By means
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of a Kazdan-Kramer change of variable, the equation is reduced to a quasilinear one without gradient term which is
approachable by variational methods. Such a method allowed the authors to obtain several existence and multiplicity
results.

In the reference [2], through the sub-supersolution technique and the Schauder’s Fixed Point Theorem, it was
obtained the existence of positive solutions for the following problem

=A u=Ah(x,u)+ B f(x,u,Vu) in Q,
u=0 on 0Q,

where / is a sublinear function and f may exhibit a growth higher than p in the gradient variable. For other interesting
papers which consider problems involving gradient terms see [4-8] and the references therein.

In this work, which was motivated by [2], we are interested to obtain the existence of positive solutions for the
quasilinear system

=A ju=Ah(x,u)+ B f(x,u,Vu) in Q,
—A v =k(x,v)+ Bg(x,u,Vu) in Q, (1)
u=v=0 on 0C,

where Q is a bounded domain in R" (V> 2) with C"* boundary, for some & e (0, 1), 1 <min{p, ¢} <max{p, ¢} <N, 1
and f are positive parameters, 1, k: Q x R — R and £, g : Q x R x RY — R are continuous functions satisfying

(H,)) There are | <r<p, 1 <s < g with max{r, s} <min{p, ¢}, 0 < w,(x)t"" < h(x, ) < wy(x)t"" and 0 < w,(x)
£ <k(x, t) <w,(x)'" forall (x, 1) € Q x [0, +0);

(H,) There exist a, b, ¢, d > 0 such that 0 < f(x, ¢, &) < w3(x)t”|§|b, 0 <g(x, t, &) < wy(x)t|&€]! for all (x, t, &) e
Q x [0, +0) x R",
where w,: Q@ — R, i =1, 2, 3 are nonnegative continuous functions.

A weak solution for (1) is a pair (1, v) € W, where W := W,"” (Q)x W, (Q), with u(x), v(x) > 0 a.e in Q such that

jﬂ| Vu P2 VuV @ dx = jﬂ Ah(x,u)p+ Bf (x,v,Vv)p dx
and
J;)| Vv VvV dx = IQ Ak(x,v)n+ Bg(x,u,Vu)n dx,

for all (p,n) € W.

An important fact is that a direct approach via Variational arguments is not applicable due to the presence of the
convection terms in (1). Since we are also interested to study problems with a superlinear growth in the gradient, it
is expected that the Galerkin method will not be effective due to technical difficulties that arise in concave-convex
problems, see for instance the commentaries in [9]. The goal of this manuscript consists in to study (1) via a sub-
supersolution approach by using the ideas of [2]. Note that additional mathematical difficulties arise due to the fact
that we are considering the system version of the scalar problem considered in [2]. Such difficulties are handled by a
careful application of Lemma 2.2 which allows constructing convenient sub-supersolutions. At this point, we quote that,
to the best of our knowledge, it is the first time that the system (1) is considered under the conditions (H,)-(H,). This
manuscript also completes the study done in [2] due to the fact that a system version of the problem in [2] is studied and
the papers [1, 3-8] in the sense that different hypotheses can be considered to study systems with convection terms and
involving the p-Laplacian operator.

The main result of this manuscript is provided below.

Theorem 1.1 Suppose that 4, k, f'and g are continuous functions satisfying (H,) and (H,). There exists a set R in
the 2f-plane such that, if (4, f) € R, then the problem (1) has a solution.

Contemporary Mathematics 320 | Leandro S. Tavares



2. Preliminaries

Before we present the proof of Theorem 1.1 it will be considered some auxiliary facts.

Unless otherwise stated Q will denote a bounded domain in R” (N > 2) with C"* boundary, for some & e (0, 1). The
next result, which can be found in [2], will be needed for our purposes.

Lemma 2.1 Ifu € W,"(Q), 1 <m < N is a solution of the problem

A u=ginQ,
u=0 on 0Q,

where g € L”(Q), then there exists a positive constant XC,,, depending only on m, N and Q, such that

1
I Vul, <l gl @)

Consider m(x) : = max{w,(x), ,(x), 5(x)}, x € Q, the first eigenpair of the p-Laplacian with weight w, and the
first eigenpair of the g-Laplacian with weight w,; that is,

—A u, = "inQ, “A v, =0wy"" inQ,
{ L =Awu” in and{ M =0wy" in 3)

u, =0 on 0Q,

which satisfy u,(x), v,(x) >0 a.e in Q and ||u, ]|, || v, ]l.. = 1. Let g € W 2(Q) N C*(Q), w € W (Q) N C*(Q), a € (0,
1) be the solutions of the problems

-A$ = 0inQ, d -Ay = oinQ,
¢ =0 on 0Q, o wv=0 on 0Q.

Define

1 1
Il 1
I wliz? e, ITwll K,

lgl, ™ Iyl

e “)

¥ :=max

where K, and K, are the positive constants obtained by applying Lemma 2.1 with m = p and m = g respectively. We
emphasize that y depends only on w, p, g, N, Q and w.

The next result, which is based on [2], will play an important role in our arguments.

Lemma 2.2 There exists a set R in the 45-plane such that, if 4, >0 and (4, f) € R, then

AM™ 4 By M < (M) $lI)",

5)
AM 4 B M < (Ml

for some constant M > 0.

Proof. Consider the function W(¢) : = 24¢t"™* + pBt"™*, t > 0, where 4 : = (min{(1/||¢|.)"", (M||y|.)*"' ", 1:=
max{r—1,s— 1}, k:=min{p — 1, ¢ — 1}, B := Ay"” with m : = max{b, ¢} and n : = max{a + b, ¢ + d}. It will be proved
that P(M) < 1 for a constant M > 1, which replies the result.

Case 1 n > k. In such case, we obtain that lirg W)= tlirg Y (¢) = +oo, which implies that ¥ has a minimum value.
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Since the only critical point M of ¥ is given by

M:{M(k—l) }nl,
BB(n—k)

we obtain for such point that

1k

— n—l
AA(k 0} + BBM™ =

BB(n—k)M"*
PB(n—k)

+ BBM"*
k-1 P

W(M)= ﬂA[

(6)

n—1[

= ﬂBMn_ (m) < lIl(t),

forall > 0.
In order to have M > 1, it is necessary that

A B(n-k) _
B Ak-D)

Note that since M > 1 the inequalities in (5) will occur simultaneously. Now we need to obtain conditions on 4 and
f to get (M) < 1 or, equivalently,

ES

] 240D 2"[”"J<1
BB(n—k) k-1)"

Rewriting the above inequality it follows that

ln_kﬁk_lS(n—kj"_k(k—ljk_l Ly
A B (n—-0""

Case 2 n = k. In this case we have that W(¢) : = 14¢t"" + B is a positive and strictly decreasing function, which
satisfies

lim W (¢) = 4+ and lim ‘Y (¢) = #B.
t—>+0

t—>0"

To obtain W(M) <1 for some M > 1, we need that fB < 1. If
A>0and f< B,

it is possible to choose M > 0 such that ¥(M) = 1, that is,

M:( A4 j“.
1- BB
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Note that M > 1, for A4 + fB > 1.
Case 3 1 < k. In this case we have that ¥ is a strictly decreasing function with 11m Y(t) =+ and hm Y(#)=0.
Then, we conclude that for any positive parameters A and S, there is M > 1 with ¥(M) < < 1
Thus, it follows that there is a constant M > 1 such that W(M) < 1 whenever (4, ) € R, where
{(AL,B>0;4>pCand 1" B <K} if n>k,
R=1 {1, B>0;8<B ' and A4+ pB>1} ifn=k, (7
{4, 5 >0} if n<k.

For each pair (u, v) € X, where X : = C'(Q) x C'(Q), define the continuous nonlinearities
F'(x,t) 1= Aot + A(h(x,u(x)) —wu(x) ")+ B f(x,v, V),
G (x,t) := Aayt"™ + A(k(x,v(x)) = ww(x)') + Bg(x,u, Vu).
Consider (u, v) € X and the system
-A,w=F'(x,w) in Q,

-A,z=G/(x,z) in Q, ®)
w=z=0 on 0Q,

where a solution for (8) is understood to be a pair (w,z) € Z := (W,"* (Q) N L™ (Q)) x (W, (Q) " L*(Q)) such that
jg| Vw2 VwV o = jﬂF;‘ (x, W)
and
q-2 _ u
JQ\ Vz|"* VzVndx = IQ G! (x,z)n dx,

for all (¢, n) € W.
We say that (u,v), (,v) € Z is a sub-supersolution for (8) if 0 <u(x) <u(x), 0<v(x)<V(x) a.e in Q and the
inequalities

JQ| Vu |P?VuV ¢ dx

IA

[ F (g dx, [ |V P vy dx
and
[ Grawmar | [ |VPIVEVy dx

\%

jQ FY(x,i0)¢ dx
[ G ax,

IA
vV

IQ| Vv |["*Vy V1 dx

hold for all nonnegative functions ¢ € W,”(Q) and 7 € W *(Q).
Now we are in position to prove Theorem 1.1.

3. Proof of Theorem 1.1

Proof of Theorem 1.1. Consider (4, f) € R, where the set R was defined in (7). Let M, y > 0 be the constants given
in Lemma 2.2 and in the equation (4) respectively. Define the set
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U:={u,v)e Xseu, <u <M/ gll)g,ev, <v <M/ wl, ) w,ll Vull, <My andll Vv, < My},

where u, and v, are given in (3) and

1 1 1 Ry

R s L _ 1
0<e<min{l,(A1/4)"",(A/6)" N u 1751w I, (MA 2 gl (M6, I wll,}:=e,.

The proof will be considered in some steps.
Step 1 It will be proved for each (u, v) e U there is a unique pair of positive functions (w, z) € X which solves the
system (8) and satisfies

eu, <w< M/ @l )¢ and ev, <z <M/ wl ). 9)

The uniqueness follows from [10], due to the fact that (8) consists of two sublinear equations at w and z
respectively for each pair (i, v) e U. Regarding the existence of the solution, it will be proved that (u,v) = (eu,,ev,) and

@, v)=((M/N ¢ll)p, M/ wll,)w) is a sub-supersolution and then by applying [11], we will obtain a solution (w, z)
e Z for (8) satisfying (9). From Lemma 2.2 and the fact that [ @ ||, =l v, = M we have

F'(x,it) < dou"™ +A(h(x,u)—ou' ")+ Bf(x,v,VV)

a
b b

Ao + Uw, — o)u"™ +/5’” M”a viy'M
W o0

IA

IA

oM™ + By M) < (M g1l o

P

and G, (x,v) < —A, v in Q. From the definition of ¢, > 0 we obtain that
—Au= hou"" <o u" < dou < F/(x,u)
and —A v < G (x,v) in Q forall 0 < € < ¢,. Since 0 < € < ¢,, we get

~Au < e Qo <€ ho < M/ PIL) o = -Au
and —A v <—-A v in Q. From the weak comparison principle it follows that u(x) <u(x)and y(x) <v(x) a.e in Q.
Step 2 We will prove that the solution (w, z) € X obtained in the last step satisfies | Vw||,, || Vz .. < yM. From

Lemma 2.1 we have || Vw|?™ < IC;HH F'(x,w)ll, and || Vz[I”"" < IC:_]H G! (x,2)ll,. Applying (H,), (H,), Lemma 2.2 and
the definition of y, we have

0<F'(x,w) < Aow ™ + A(h(x,u)—ou™" )+ B f(x,v,VV)

IA

Aow ™ + U@, — o)’ + Ba,y' | Vv

< Aao,(M @/l $,) " + Bo,(M P/ Sl (yM)
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IN

@AM + gy M) <l ol (M $ll )"

IA

(yM /1)

and 0< Gy (x,2) <(yM /K, )" in Q, which imply that || Vw||,., || Vz||.. < yM.

Step 3 From the regularity results of [12] and the uniform boundedness of w, | Vw|, z and | Vz| in L™(Q), which
depends only on the pair (1, ) € R , it follows that w, z € C"%Q), for some 0 <8 < 1.

Step 4 Consider X endowed with the norm | - | : = - || + || - ||, where || - || denotes the usual norm in C'(Q). The
previous steps imply that the operator

T-Uc X —>X
(u,v) > (w,z), (10)

where (w, z) € X is the unique solution of (8) is well defined. In fact, from Step 1 we have that for each (u, v) ¢ U
there is a unique pair of positive functions (w, z) € X which solves the system (8). The regularity obtained in Step 3
implies that such solution belongs to X and the claim is verified. From Step 2 we have that 7({/) < U. Recall from
Step 3 that we have uniform boundedness of w, | Vw|, z and | Vz| in L™(Q), which depends only on the pair (4, f)
R and implies the boundedness of the set /. The compact embedding C"%(Q), — C'(Q) provides that T is continuous
and compact. Thus, by the Schauder’s Fixed Point Theorem it follows that 7 admits a fixed point, which is a solution
for (1).

Remark 3.1 We quote that the problem (1) admits a solution for 4, > 0 small enough in all the cases considered
in Lemma 2.2. In fact, note that for a fixed M > 0 the inequality (5) holds for 4, f > 0 small. Repeating the arguments of
the proof of Theorem 1.1, we have the result.
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