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Abstract: In this paper, it is considered the existence of solutions for a quasilinear system involving the p-Laplacian 
operator and gradient terms. The approach is based on sub-supersolution arguments and the Schauder’s Fixed Point 
Theorem. The results in this paper allow to consider several growth conditions in the gradient and complete some recent
contributions.
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1. Introduction
In the last decades, elliptic problems involving gradient terms have been attracting the attention of several 

researchers due to interesting difficulties which arise when one intends to consider this kind of problem, see for instance 
[1-3].

For example in [1], it was applied the Galerkin method to show the existence of a solution for the elliptic problem 
given by

( , ) ( , ) in ,
0 on ,                    

u h x u g x u
u

λ−∆ = + ∇ Ω
 = ∂Ω

where λ ≥ 0 is a parameter, h is a function with singular and sublinear terms and g is a continuous function satisfying 
certain conditions.

In [3], it is considered the problem

( ) | | ( , ) in ,
0 on ,                   

p
pu h u u g x u

u
−∆ = ∇ + Ω


= ∂Ω

where 2: div(| | )p
pu u u−−∆ = − ∇ ∇ , p > 1 and h and g are functions satisfying certain technical conditions. By means 
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of a Kazdan-Kramer change of variable, the equation is reduced to a quasilinear one without gradient term which is 
approachable by variational methods. Such a method allowed the authors to obtain several existence and multiplicity 
results.

In the reference [2], through the sub-supersolution technique and the Schauder’s Fixed Point Theorem, it was 
obtained the existence of positive solutions for the following problem

( , ) ( , , ) in ,
0 on ,                        

pu h x u f x u u
u

λ β−∆ = + ∇ Ω
 = ∂Ω

where h is a sublinear function and f  may exhibit a growth higher than p in the gradient variable. For other interesting 
papers which consider problems involving gradient terms see [4-8] and the references therein.

In this work, which was motivated by [2], we are interested to obtain the existence of positive solutions for the 
quasilinear system

( , ) ( , , ) in ,
( , ) ( , , ) in ,
0 on ,                   

p

q

u h x u f x u u
v k x v g x u u
u v

λ β
λ β

−∆ = + ∇ Ω
 −∆ = + ∇ Ω
 = = ∂Ω

where Ω is a bounded domain in RN (N ≥ 2) with C1,ξ boundary, for some ξ ∈ (0, 1), 1 < min{p, q} ≤ max{p, q} < N, λ 
and β are positive parameters, h, k : Ω̄ × R → R and  f , g : Ω̄ × R × RN → R are continuous functions satisfying

(H1) There are 1 < r < p, 1 < s < q with max{r, s} < min{p, q}, 0 ≤ ω1(x)t r −1 ≤ h(x, t) ≤ ω2( x)t r −1 and 0 ≤ w1(x)
t s−1 ≤ k(x, t) ≤ w2(x)t s−1 for all (x, t) ∈ Ω̄ × [0, +∞);

(H2) There exist a, b, c, d > 0 such that 0 ≤  f (x, t, ξ ) ≤ ω3(x)t a |ξ | b, 0 ≤ g( x, t, ξ) ≤ ω3(x)t c|ξ | d for all (x, t, ξ ) ∈ 
Ω̄ × [0, +∞) × RN,
where ωi : Ω̄ → R, i = 1, 2, 3 are nonnegative continuous functions.

A weak solution for (1) is a pair (u, v) ∈ W, where 1, 1,
0 0: ( ) ( )p qW W W= Ω × Ω , with u(x), v(x) > 0 a.e in Ω such that

2| | . ( , ) ( , , )pu u dx h x u f x v v dxϕ λ ϕ β ϕ−

Ω Ω
∇ ∇ ∇ = + ∇∫ ∫

and

2| | . ( , ) ( , , ) ,qv v dx k x v g x u u dxη λ η β η−

Ω Ω
∇ ∇ ∇ = + ∇∫ ∫

for all (ϕ , η) ∈ W.
An important fact is that a direct approach via Variational arguments is not applicable due to the presence of the 

convection terms in (1). Since we are also interested to study problems with a superlinear growth in the gradient, it 
is expected that the Galerkin method will not be effective due to technical difficulties that arise in concave-convex 
problems, see for instance the commentaries in [9]. The goal of this manuscript consists in to study (1) via a sub-
supersolution approach by using the ideas of [2]. Note that additional mathematical difficulties arise due to the fact 
that we are considering the system version of the scalar problem considered in [2]. Such difficulties are handled by a 
careful application of Lemma 2.2 which allows constructing convenient sub-supersolutions. At this point, we quote that, 
to the best of our knowledge, it is the first time that the system (1) is considered under the conditions (H1)-(H2). This 
manuscript also completes the study done in [2] due to the fact that a system version of the problem in [2] is studied and 
the papers [1, 3-8] in the sense that different hypotheses can be considered to study systems with convection terms and 
involving the p-Laplacian operator.

The main result of this manuscript is provided below.
Theorem 1.1 Suppose that h, k,  f and g are continuous functions satisfying (H1) and (H2). There exists a set R in 

the λβ-plane such that, if (λ, β) ∈ R, then the problem (1) has a solution.

(1)



Contemporary MathematicsVolume 2 Issue 4|2021| 321

2. Preliminaries
Before we present the proof of Theorem 1.1 it will be considered some auxiliary facts.
Unless otherwise stated Ω will denote a bounded domain in RN (N ≥ 2) with C 1,ξ boundary, for some ξ ∈ (0, 1). The 

next result, which can be found in [2], will be needed for our purposes.
Lemma 2.1 If u ∈ W 0

1,m(Ω), 1 < m < N is a solution of the problem

 in ,         
  0 on ,
mu g
u

−∆ = Ω
 = ∂Ω

where g ∈ L∞(Ω), then there exists a positive constant Km, depending only on m, N and Ω, such that

1
1  .m

mu g −
∞ ∞∇ ≤‖ ‖ ‖ ‖

Consider ω(x) : = max{ω1(x), ω2(x), ω3(x)}, x ∈ Ω̄, the first eigenpair of the p-Laplacian with weight w1 and the 
first eigenpair of the q-Laplacian with weight w1; that is,

1 1
1 1 1 1 1 1 1 1

1 1

 in ,  in , 
and

0 on , 0 on ,

p q
p qu w u v w v
u v

λ θ− − −∆ = Ω −∆ = Ω 
 

= ∂Ω = ∂Ω  

which satisfy u1(x), v1(x) > 0 a.e in Ω and ||u1||∞, || v1 ||∞ = 1. Let φ  ∈ W 0
1, p(Ω) ∩ C1,α(Ω̄ ), ψ ∈ W 0

1, q(Ω) ∩ C1,α(Ω̄ ), α ∈ (0, 
1) be the solutions of the problems

     in ,            in ,          
    0 on , 0 .

p q

on
φ ω ψ ω
φ ψ

−∆ = Ω −∆ = Ω 
 = ∂Ω = ∂Ω 

Define

1 1
1 1  

: max , , 1 ,
  

p q
p qw w

γ
φ ψ

− −
∞ ∞

∞ ∞

 
 

=  
 
 

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖



where Kp and Kq are the positive constants obtained by applying Lemma 2.1 with m = p and m = q respectively. We 
emphasize that γ depends only on ω, p, q, N, Ω and ω.

The next result, which is based on [2], will play an important role in our arguments.
Lemma 2.2 There exists a set R in the λβ-plane such that, if λ, β > 0 and (λ, β) ∈ R, then

1 1   ( /  ) ,r b a b pM M Mλ βγ φ− + −
∞+ ≤ ‖ ‖

1 1  ( /  ) ,s c c d qM M Mλ βγ ψ− + −
∞+ ≤ ‖ ‖

for some constant M > 0.
Proof. Consider the function Ψ(t) : = λAt l−k + βBt n−k, t > 0, where A : = (min{(1/||φ ||∞) p−1, (1/||ψ ||∞)q −1})−1, l : = 

max{r − 1, s − 1}, k : = min{p − 1, q − 1}, B : = Aγm with m : = max{b, c} and n : = max{a + b, c + d}. It will be proved 
that Ψ(M) ≤ 1 for a constant M ≥ 1, which replies the result.

Case 1 n > k. In such case, we obtain that 
0

lim ( ) lim ( )
tt

t t
+ →+∞→
Ψ = Ψ = +∞ , which implies that Ψ has a minimum value. 

(2)

(3)

(4)

(5)

and
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Since the only critical point M of Ψ is given by

1

( ): ,
( )

n lA k lM
B n k

λ
β

− −
=  − 

we obtain for such point that

( ) ( )( )
( )

l k
n kn l

n k n kA k l B n k MM A BM BM
B n k k l

λ βλ β β
β

−
−−

− − − −
Ψ = + = + − − 

( ),n k n lBM t
k l

β − − = ≤ Ψ − 

for all t ≥ 0.
In order to have M ≥ 1, it is necessary that

( )  : .
( )

B n k C
A k l

λ
β

−
≥ =

−

Note that since M ≥ 1 the inequalities in (5) will occur simultaneously. Now we need to obtain conditions on λ and 
β to get Ψ(M) ≤ 1 or, equivalently,

( ) 1.
( )

n k
n lA k l n lB

B n k k l
λβ
β

−
− − −  ≤  − −  

Rewriting the above inequality it follows that

1  : .
( )

n k k l
n k k l

n l

n k k l K
A B n l

λ β
− −

− −
−

− −   ≤ =    −   

Case 2 n = k. In this case we have that Ψ(t ) : = λAt l−k + βB is a positive and strictly decreasing function, which 
satisfies

0
lim ( ) and lim ( ) .

tt
t t Bβ

+ →+∞→
Ψ = +∞ Ψ =

To obtain Ψ(M ) ≤ 1 for some M ≥ 1, we need that βB < 1. If

10 and ,Bλ β −> <

it is possible to choose M > 0 such that Ψ(M) = 1, that is,

1

.
1

k lAM
B

λ
β

− 
=  − 

(6)
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Note that M ≥ 1, for λA + βB ≥ 1.
Case 3 n < k. In this case we have that Ψ is a strictly decreasing function with 

0
lim ( )
t

t
+→
Ψ = +∞  and lim ( ) 0

t
t

→+∞
Ψ = . 

Then, we conclude that for any positive parameters λ and β, there is M ≥ 1 with Ψ(M) ≤ 1.
Thus, it follows that there is a constant M ≥ 1 such that Ψ(M) ≤ 1 whenever (λ, β) ∈ R, where

1

{ , 0; and } if ,
: { , 0; and 1} if ,

{ , 0} if .

n k k lC K n k
B A B n k

n k

λ β λ β λ β
λ β β λ β

λ β

− −

−

 > ≥ ≤ >
= > < + ≥ =
 > <

 1

{ , 0; and } if ,
: { , 0; and 1} if ,

{ , 0} if .

n k k lC K n k
B A B n k

n k

λ β λ β λ β
λ β β λ β

λ β

− −

−

 > ≥ ≤ >
= > < + ≥ =
 > <



For each pair (u, v) ∈ X, where X : = C1(Ω̄) × C1(Ω̄), define the continuous nonlinearities

1 1
1 1( , ) : ( ( , ( )) ( ) ) ( , , ),u r r

vF x t t h x u x w u x f x v vλω λ β− −= + − + ∇

1 1
1 1( , ) : ( ( , ( )) ( ) ) ( , , ).u s s

vG x t t k x v x w v x g x u uλω λ β− −= + − + ∇

Consider (u, v) ∈ X and the system

( , ) in ,
( , ) in ,

    0 on ,  

u
p v

u
q v

w F x w
z G x z

w z

−∆ = Ω
 −∆ = Ω
 = = ∂Ω

where a solution for (8) is understood to be a pair 1, 1,
0 0( , ) : ( ( ) ( )) ( ( ) ( ))p qw z Z W L W L∞ ∞∈ = Ω ∩ Ω × Ω ∩ Ω  such that

2| | . ( , )p u
vw w F x wϕ ϕ−

Ω Ω
∇ ∇ ∇ =∫ ∫

and

2| | . ( , ) ,q u
vz z dx G x z dxη η−

Ω Ω
∇ ∇ ∇ =∫ ∫

for all (ϕ , η) ∈ W.
We say that ( , ),  ( , )u v u v Z∈  is a sub-supersolution for (8) if 0 ( ) ( ),  0 ( ) ( )u x u x v x v x< ≤ < ≤  a.e in Ω and the 

inequalities

2 2

2 2

| | . ( , ) , | | . ( , )
and

| | . ( , ) | | . ( , ) ,

p u p u
v v

q u q u
v v

u u dx F x u dx u u dx F x u dx

v v dx G x v dx v v dx G x u dx

ϕ ϕ ϕ ϕ

η η η η

− −

Ω Ω Ω Ω

− −

Ω Ω Ω Ω

 ∇ ∇ ∇ ≤ ∇ ∇ ∇ ≥ 
 

∇ ∇ ∇ ≤ ∇ ∇ ∇ ≥  

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

hold for all nonnegative functions ϕ  ∈ W 0
1,p(Ω) and η ∈ W 0

1,q(Ω).
Now we are in position to prove Theorem 1.1.

3. Proof of Theorem 1.1
Proof of Theorem 1.1. Consider (λ, β) ∈ R, where the set R was defined in (7). Let M, γ > 0 be the constants given 

in Lemma 2.2 and in the equation (4) respectively. Define the set

(7)

(8)
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1 1: {( , ) ; ( /  ) , ( /  ) ,  and  },u v X u u M v v M u M v Mφ φ ψ ψ γ γ∞ ∞ ∞ ∞= ∈ ≤ ≤ ≤ ≤ ∇ ≤ ∇ ≤‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖  

where u1 and v1 are given in (3) and

1 1 1 1
1 1 1 1

1 1 1 1 1 1 00 min{1, ( / ) , ( / ) ,  ,  , ( )/  , ( )/  } : .p r q s p qu v M Mλ λ λ θ λ φ θ ψ
− −

− −− − − −
∞ ∞ ∞ ∞< < =‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖ 

The proof will be considered in some steps.
Step 1 It will be proved for each (u, v) ∈ U there is a unique pair of positive functions (w, z) ∈ X which solves the 

system (8) and satisfies

1 1( /  )  and ( /  ) .u w M v z Mφ φ ψ ψ∞ ∞≤ ≤ ≤ ≤‖ ‖ ‖ ‖ 

The uniqueness follows from [10], due to the fact that (8) consists of two sublinear equations at w and z 
respectively for each pair (u, v) ∈ U. Regarding the existence of the solution, it will be proved that 1 1( , ) ( , )u v u v=    and 
( , ) (( /  ) ,  ( /  ) )u v M Mφ φ ψ ψ∞ ∞= ‖ ‖ ‖ ‖  is a sub-supersolution and then by applying [11], we will obtain a solution (w, z) 
∈ Z for (8) satisfying (9). From Lemma 2.2 and the fact that   u v M∞ ∞= =‖ ‖ ‖ ‖  we have

1 1
1 1( , ) ( ( , ) ) ( , , ) u r r

vF x u u h x u u f x v vλω λ ω β− −≤ + − + ∇

1 1
1 2 1  ( )

 

a
r r a b b

a

Mu u Mλω λ ω ω β ψ γ
ψ

− −

∞

≤ + − +
‖ ‖

1 1  ( )    ( /  )r b a b pM M Mω λ βγ φ ω− + −
∞≤ + ≤ ‖ ‖

  pu= − ∆

and ( , )    u
v qG x v v≤ − ∆  in Ω. From the definition of 0  > 0 we obtain that

1 1 1
1 1 1 1 1 ( , )p p r r r u

p vu u u u F x uλ ω λ ω λω− − − −−∆ = ≤ ≤ ≤

and     ( , )u
p vv G x v−∆ ≤  in Ω for all 0 <  < 0 . Since 0 <  < 0 , we get

1 1 1
1 1 1        ( /  )     p p p

p pu M uλ ω λ ω φ ω− − −
∞−∆ ≤ ≤ ≤ = − ∆‖ ‖ 

and p pv v−∆ ≤ −∆  in Ω. From the weak comparison principle it follows that ( )  ( ) and ( )  ( )u x u x v x v x≤ ≤  a.e in Ω.
Step 2 We will prove that the solution (w, z) ∈ X obtained in the last step satisfies || ∇w ||∞, || ∇z ||∞ ≤ γM. From 

Lemma 2.1 we have 1 1 ( , )p p u
p vw F x w− −

∞ ∞∇ ≤‖ ‖ ‖ ‖  and 1 1 ( , ) q q u
q vz G x z− −

∞ ∞∇ ≤‖ ‖ ‖ ‖ . Applying (H1), (H2), Lemma 2.2 and 
the definition of γ, we have

1 1
1 10 ( , ) ( ( , ) ) ( , , )u r r

vF x w w h x u u f x v vλω λ ω β− −≤ ≤ + − + ∇

1 1
1 2 1 3  ( ) | |r r a bw u v vλω λ ω ω βω− −≤ + − + ∇

1
2 3  ( /  ) ( /  ) ( )r a bM M Mλω φ φ βω φ φ γ−

∞ ∞≤ +‖ ‖ ‖ ‖

(9)
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1 1  ( )     ( /  )r b a b pM M Mω λ βγ ω φ− + −
∞ ∞≤ + ≤‖ ‖ ‖ ‖

1  ( / ) p
pMγ −≤ 

and 10 ( , ) ( / )u q
v qG x z Mγ −≤ ≤   in Ω, which imply that || ∇w ||∞, || ∇z ||∞ ≤ γM.

Step 3 From the regularity results of [12] and the uniform boundedness of w , | ∇w |, z  and | ∇z | in L∞(Ω), which 
depends only on the pair (λ , β ) ∈ R , it follows that w , z  ∈ C1, θ(Ω̄), for some 0 < θ  < 1.

Step 4 Consider X endowed with the norm | · | : = || · || + || · ||, where || · || denotes the usual norm in C 1(Ω̄). The 
previous steps imply that the operator

:T X X⊂ →

( , ) ( , ),u v w z→

where (w, z) ∈ X is the unique solution of (8) is well defined. In fact, from Step 1 we have that for each (u, v) ∈ U 
there is a unique pair of positive functions (w, z) ∈ X which solves the system (8). The regularity obtained in Step 3 
implies that such solution belongs to X and the claim is verified. From Step 2 we have that T(U ) ⊂ U. Recall from 
Step 3 that we have uniform boundedness of w , | ∇w |, z  and | ∇z | in L∞(Ω), which depends only on the pair (λ, β) ∈ 
R and implies the boundedness of the set U. The compact embedding C1, θ(Ω̄), → C1(Ω̄) provides that T is continuous 
and compact. Thus, by the Schauder’s Fixed Point Theorem it follows that T admits a fixed point, which is a solution 
for (1).

Remark 3.1 We quote that the problem (1) admits a solution for λ, β > 0 small enough in all the cases considered 
in Lemma 2.2. In fact, note that for a fixed M > 0 the inequality (5) holds for λ, β > 0 small. Repeating the arguments of 
the proof of Theorem 1.1, we have the result.
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