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Abstract: In response to application demands in vehicle dynamics and control, traffic engineering, urban planning, 
and logistics, the generation of an adequate artificial road profile in terms of the diversity of geometric scenarios has 
been addressed in the current manuscript. The underlying mathematical principles for generating a geometrically 
comprehensive, yet logically meaningful, 3D road profile have been taken from high and unbiased sweeping factors 
of random number sequences over their domain of interest. And to generate such random number sequences, the 
mathematically manipulated output signal of a well-established chaotic system has been utilized, namely that of the 
Chua’s circuit. Having defined the target road profile mathematically with all its geometrical complexities, a suitable 
scheme derived from the mentioned chaotic signal has been used to generate the required random number sequences as 
defining parameters of the road profile. The scheme has been otherwise tested and proven to show the demanded level 
of randomness in literature. Several attempts have been made to create a diverse range of road profiles, considering the 
constraints imposed by vehicle dynamics. To generate the road geometries, the limitations imposed by the vehicle’s 
motion, such as the limitations on corresponding curvatures, slopes, and banking angles are negotiated, in terms of 
vehicle dynamics and available tire-road friction forces, by evaluating how close a vehicle will be to its tire force 
capacity limits as it travels on sections of the generated road.
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Nomenclature
Latin Letters

BP  Breakpoint of current      [v]
C  Capacitor      [F]
G  Slope of Chua’s diode     [A/v]
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i  Current       [A]
L  Self-inductance      [L]
R  Resistance      [Ω]
V  Voltage       [v]
x  Dimensionless state variable     [-]
y  Dimensionless state variable    [-]
z  Dimensionless state variable     [-]
V(xv, yv, zv) Vehicle body-fixed coordinate frame   [m]
R(xr, yr, zr) Road coordinate frame     [m]
G(X, Y, Z) Global coordinate frame     [m]
ui  Unit vectors      [m]
r0  Last position vector of center of curvature   [m]
r  New position vector of center of curvature   [m]
rA,B  Position vector from A to B    [m]
Cijk  Center of curvature of the arc ijk    [-]
Ru,α  Rotation about u with angle α transformation matrix  [-]
g  Gravitational acceleration     [m/s2]
ax,y,z Acceleration along x, y, z axes    [m/s2]
ac  Centripetal acceleration     [m/s2]
v  Vehicle translational velocity    [m/s]
Fx,y,z Forces along x, y, z axes     [N]
m  Vehicle mass      [kg]

,  ,  F F Fi j k
∧ ∧ ∧

 Unit vectors of frame F     [m]

Greek Letters

α  Dimensionless parameter     [-]
β  Dimensionless parameter     [-]
ψ  Road waypoints’ angular increment    [rad]
θ  Center of curvature angular position   [rad]
φ ij  Vertical road slope between points i, j   [rad]
ρ  Radius of curvature     [m]
μ  Friction coefficient     [-]
γ  Road bank angle      [rad]
ζ  Elevation angle of center of curvature in vehicle frame [rad]
τ  Independent road variable     [-]

Abbreviations

RNG Random Number Generator
TRNG True Random Number Generator
PRNG Pseudo Random Number Generator
LFSR Linear Feedback Shift Registers
TFU Tire Friction Usage
CoC Center of Curvature
FPGA Field-Programmable Gate Array
NIST National Institute for Standards and Technology
GIS Geographic Information System
LSODA Livermore Solver for Ordinary Differential Equations
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Subscripts

1  Numbering index
2  Numbering index
a  Inner slope
b  Outer slope
L  Inductor
R  Resistance

1. Introduction
Considering the ever-increasing trend for creating simulation conditions as close to the actual physical setting 

as technologically possible, generation of road profiles and systems are of great importance in traffic flow simulation, 
vehicle dynamics and control studies as well as simulations of logistics. As a road profile diverges from a 1D curved 
function in 2D or 3D space and approaches its actual conditions, a more comprehensively diverse ansatz should be 
implemented to define it for the specific application in question. 

Artificial random road geometries that resemble real roads are of great significance in certain simulation studies, 
especially when the information regarding real roads is unavailable or a system is to be evaluated or designed based on a 
generic road profile representing a wide range of real situations, rather than being limited to a particular already-existing 
road. For instance, a randomly auto-generated road geometry may be used in training a neural network for a specific 
task such as vehicle directional control or energy management. More to the point, a randomly generated road may be 
used to evaluate a certain developed vehicle control system to assess its efficacy in any potential scenario. Although 
manual road generation could be done using computer software and user inputs, a manual process will not guarantee 
the randomness and diversity of the resulting road geometries, which is crucial in certain applications such as training 
artificial intelligence systems.

With the above considerations in mind, such details of the mathematical approach and algorithms towards defining 
a functionally adequate road geometry for the purposes of vehicle dynamics and traffic flow simulations using a 
previously established random number generator is to be addressed in the current manuscript.

1.1 Literature survey-chaos theory

A chaotic system, similar to any dynamical system, consists of deterministic rather than underlying probabilistic 
rules, which every future state of the system must follow. In addition, such systems must behave in specific conditions 
known to the experts in the field, to be called chaotic. First, they are unstable with respect to slight modifications. This 
sensitivity to the initial conditions causes them to evolve into a considerably different state when a slight perturbation 
is applied [1]. This particular fact makes a long-term prediction mostly impossible, and the future state could be known 
only to a finite degree of precision. Also, nonlinearity and aperiodic behavior should be observed in a signal for it to 
completely fit into the chaotic category [2]. 

The Analytical studies of planetary motion with a geometric approach by Poincare (1890) led to the development 
of nonlinear dynamics and chaos [3]. After all the investigations on nonlinear dynamics, the chaos theory was born 
in Lorenz’s identification of ordinary nonlinear differential equations designed to represent dissipative hydrodynamic 
flows [4]. Formerly, Lorenz’s achievements and his interpretation of chaos were reflected in applied engineering [5], 
economics and biological studies.

Pseudo Random Number Generators (PRNGs), such as Linear Feedback Shift Registers (LFSRs) and software-
based random number generators are widely used in deterministic random number generation systems. The random 
numbers, however, are repeatable. True Random Number Generators (TRNGs) rely on physical sources of randomness 
to ensure unpredictability. Thermal noises, Magnetic Tunnel Junctions, chaotic phenomena, free-running oscillators, 
photo cameras are example sources of TRNGs [6-8].

Random sequences generated by chaotic systems in electronic circuits are considered as an excellent source for 
cryptographic applications due to their unpredictable nature [9]. In order to derive sophisticated PRNGs from the 
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datasets extracted from a classical Chua’s system, 8 mathematical schemes were designed with the outputs of binary 
sequences. Then, NIST statistical tests were applied to evaluate the randomness level of each sequence. Three of which 
were chosen as standard PRNGs that satisfied the mandatory criteria. Moreover, many attempts have been established to 
evaluate the validity of random outputs extracted from chaotic signals, from which certified random number generators 
are selected in the current manuscript [10-11].

The idea of deriving RNGs from chaotic systems has been popularized by numerous research attempts, addressing 
the legitimacy of this approach. Regarding cryptographic applications, it has been demonstrated in [12], that chaotic 
systems could be successfully applied as building blocks for random number generators. A configurable PRNG template 
that is parametrized using a chaotic map is presented in the cited research. In earlier research by [13], two algorithms 
were designed to produce pseudo random number sequences from a single generalized Lorenz system, which were 
subsequently evaluated with the NIST statistical tests. In addition, since numerous possible variations for analyzing the 
output signal of a chaotic system exist, the feasible options for schemes to derive PRNGs and TRNGs differ widely. 
In [14], four different chaotic attractors have been generated from Lorenz and Lü chaotic systems. Furthermore, the 
PRNG is set to a new reconfiguration embedded in an FPGA cascaded encryption processor; a relatively commonplace 
approach to exploit reconfiguration features [15-16]. On the other hand, TRNG circuits play a critical role in hardware 
security. TRNGs based on dual oscillator architecture and a chaotic ring oscillator have been proposed in [17-18], 
respectively.

1.2 Literature survey-road application

The random nature of the road geometry has been studied for many years, with a wide majority of studies being 
conducted on the road surface roughness, aiming at modelling the road surfaces stochastically, to be used in vehicle ride 
comfort as well as Noise-Vibration-Harshness studies [19-27], where some of the earliest works in this regard could be 
attributed to [28-30].

Besides the road surface roughness modeling, a number of studies have focused on the detection of real road data, 
including the road boundaries and curvature profile based on the information gathered through vehicles’ cameras, and 
performing image processing, mainly for the purpose of identifying the surrounding environment in autonomous and 
semi-autonomous vehicles [31-35]. Furthermore, the conversion of GIS data from real roads into three dimensional 
geometries has been conducted in [36-38].

Huang et al. [39] constructed an artificial road geometry based on real road data to provide a basis for optimizing a 
vehicle powertrain control system to minimize fuel consumption.

Jo and Sunwoo [40] developed a method to construct a model of real road geometries by means of a probe vehicle 
and using its GPS and inertial measurements, to be used for path detection of autonomous vehicles, when such data are 
temporarily unavailable.

Mao and Li [41] developed a method to automatically generate road segments based on the arbitrary user inputs to 
construct road curves using cubic Hermite interpolation algorithm. 

Although the above methods were introduced to develop road geometry information, a majority of them are 
focused on modeling already-existing roads or are incapable of producing randomly generated roads automatically.

Zeng and Wang [42] used stochastic road grade information for the stochastic dynamic programming optimization 
within their model predictive controller to optimize the energy efficiency of hybrid electric vehicles. However, the 
model does not include road curvatures and does not possess three-dimensional features. 

Khayyam [43] introduced an artificial road modeling algorithm using stochastic data to mimic real three-
dimensional road geometries, mainly for the purpose of being used in the energy management of hybrid electric 
vehicles. The model is capable of generating slopes, bends, and wind direction based on proper distribution functions. 
Although the model is efficient in providing random scenarios for vehicle energy management studies and longitudinal 
dynamics, the model is based on independent generation of this information, which may not necessarily represent a 
certain curve in 3D space, therefore may not be sufficient for lateral vehicle dynamics considerations. 

Johannesson et al. [44] developed a stochastic road topology modeling based on the Gaussian AR(1) process, 
which is able to generate realistic artificial road slope information. Based on this methodology, Odrigo et al. [45] 
introduced a road generation algorithm capable of generating independent slope, curvature, and roughness information 
based on the Volvo Global Transport Application. Although three-dimensional road profiles are obtained, each feature (i.e. 
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slope, curvature, roughness) is generated independently, and the curvature construction is based on connecting straight 
sections to constant curvature sections via transition curves, which may limit the diversity in the resulting road sections.

Focusing on the longitudinal vehicle motion, Pettersson [46] developed the required information for the individual 
road data in a mid-level description of the road, based on the methods described above, which rely on the stochastic 
curvature, topographic, road roughness, or even the traffic signage data to develop operating cycles and speed profiles 
for vehicle emission and energy management studies; however, the lateral vehicle dynamics and three-dimensional 
characteristics of the road have not been addressed.

Torabi [47] used Bezier curves to model the elevation along the road via control points from real measurement 
data. This information is used to develop a speed profile optimization scheme with the objective of energy consumption 
of vehicles; therefore, the main focus of the work is on longitudinal vehicle motion and energy balance. 

Although the above studies developed road identification, reconstruction, and auto-generation algorithms, they 
have mainly focused on vehicle vibrations and energy management studies, while no particular attention has been made 
to lateral vehicle dynamics, which is key in dealing with autonomous driving systems and vehicle stability analysis. 
This may also be observed by usually ignoring the banking of the road segments in corners. As a major research gap in 
the area of random road generation algorithms based on mathematical geometry and linear algebra, a comprehensive 
three-dimensional road geometry generation algorithm based on regulated random data is needed in order to integrate 
the curvature, slope, and banking information into a realistic three-dimensional road profile to be used in evaluation and 
training procedures using simulated scenarios. In addition to that, the limits of vehicle traction forces and consideration 
of feasibility of the generated roads in terms of vehicle dynamics have not been previously established. 

Therefore, the goal and scientific contribution of this study is to develop and introduce a framework for generation 
of realistic and controllable random road geometries with focus on three-dimensional spatial curves and required 
considerations of the road design, including curvature continuity, slope limitations, and road banking, in order to 
propose a more inclusive solution to random road modeling that can be used in both vehicle energy management studies 
and vehicle lateral control/stability investigations. Special attention is given to making sure the resulting geometries 
satisfy the predefined necessary conditions (i.e. design limits) and the anticipated high diversity of the output road 
geometries is achieved. To construct the intended road geometries in a creative and novel way, and to ensure the 
required curvature continuity, the manipulated center of curvature of the road is directly used to draw different segments 
of the road in small increments.

To the best of the authors’ knowledge, there is currently no published work that is able to generate all this 
information regarding the road geometry with regulated random numbers, while considering the physical limitations 
and feasibility of the road geometry for vehicle dynamics; therefore, the presented approach marks a novel algorithm 
development for studies requiring random yet realistic and feasible environment for vehicle dynamics simulations, 
training of AI systems, or control system validation. From a scientific point of view, the proposed approach contributes 
to the existing literature by utilizing a numerical process and linear algebra to develop a physically meaningful 
geometry, representing a real-life situation, which facilitates the development and evaluation of smart control systems, 
by providing a realistic diverse virtual simulation environment.

1.3 Paper summary

The paper opens with insights on the mathematical definition of a road and its geometric manifestations. This 
includes the model of the road and concerns regarding its limitations in terms of continuous variation of its geometric 
parameters. In the section on methodology, first, the source of the random number sequences, namely the chaotic 
output signal of Chua’s circuit, is discussed. Then, the specifics of the algorithm designed to generate the road profile 
based on the required inputs from specially manipulated sets of random number sequences are introduced, leading to 
the hypothetical results and evaluation criteria for the resulting road profiles. Finally, the paper is to be closed with 
extensive discussions on the road profiles as the actual results of the work.
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2. Mathematical definition of the road
2.1 Road modeling

In order to completely define a three-dimensional road profile, a number of parameters need to be known at every 
point on the trajectory. These points on the road profile may be defined using an independent parameter τ which varies 
between zero and one as the object moves from the initial point towards the destination (i.e. the end point of the road). 
Each value of 0 ≤ τ ≤ 1 corresponds to a specific point on the road as a three-dimensional curve in space. The curve 
could be viewed as the centerline of the road on which a vehicle is supposed to be traveling. Such a representation 
requires three coordinates to be known/determined at each value of the independent parameter τ, namely those of the 
x(τ), y(τ), and z(τ).

For a 3D curve, the osculating plane is defined as the plane passing through three differentially adjacent points on 
the curve (see Figure 1). The osculating plane contains the circle created using these three points, and consequently, the 
center of curvature of the road profile at that specific vicinity, which is coincident with the center of the aforementioned 
circle. This circle may be called the “osculating circle”. 

P = (x(τ), y(τ), z(τ))

X
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β
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α
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β

α

Y
Z

G

z

Figure 1. Road as a 3D curve with the osculating circle and the center of curvature

To employ the effect of the road bank angle, an additional parameter γ(τ) is also required to represent the degree of 
tilting at each point on the road, with respect to a reference horizontal plane. Note that the bank angle information is not 
included in the osculating circle in Figure 1, as a curve does not include any information on the orientation of the road 
surface itself, but it only provides the coordinates of the road’s centerline. The degree of tilting represents the lateral 
slope of the road surface, which will be constructed using the curve in Figure 1, measured about the tangent line to the 
road. In other words, there are a total of four degrees of freedom in the mathematical modeling of the road profile. It 
is worth mentioning that, in this paper, we assume the road surface to be smooth and the road roughness modeling for 
vehicle ride comfort studies to be beyond the scope of this work.

Therefore, a complete mathematical representation of a road profile contains an independent parameter τ and four 
parameters as functions of τ, namely x(τ), y(τ), z(τ), γ(τ), which need to be defined with a certain resolution of 0 ≤ τ ≤ 1 
along the road and be presented/stored as a numerical table.

There are limitations on how sharp the corners of the road could be in order for a passenger vehicle to track 
the road without experiencing loss of tire-road friction. These limits may be translated and defined in the vehicle’s 
coordinate frame V, which is attached to the vehicle’s mass center and rotates with it as a rigid body, shown in Figure 2, 
and the road-fitted coordinate frame R. These limits are discussed in the methodology section.
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Figure 2. Vehicle coordinate frame

3. Methodology
3.1 Research strategy

The current manuscript revolves around the mathematical ansatz in generating a road profile with meaningful 
geometric configuration from a vehicle dynamics point of view. 

The chaotic output signal of the classical Chua’s circuit is manipulated mathematically to provide useable, 
functionally adequate random number sequences. These sequences are then inserted into the methodical generation 
algorithms introduced in the current section, for numerical generation of the road profile coordinates, local radii 
of curvature and its planar orientation. The resulting road profiles are either the direct outcome of having the two 
mentioned parameters being the random number sequences in each step of the road, the product of their first derivative 
being the random sequence or that of their second derivative being the level at which the randomness is introduced to 
the system. 

The final section of the paper is, then, dedicated to the presentation of the resulting road profiles, while being 
subjected to a vehicle dynamics analysis to validate the preliminary justifications of the profiles. 

3.2 Chua’s circuit

L

+ + +

- - -

(a) (b)

R
R1 R4

R5R2
R3 R6

C2 C1

Figure 3. Chua’s circuit a) amplifier base configuration b) diode base configuration
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Chua’s circuit plays an important role in the field of chaos and nonlinear dynamics. The simplest form of Chua’s 
circuit could be manufactured using both linear and nonlinear elements. The linear elements include an inductor, 
a resistor, and two capacitors. The nonlinear section mainly consists of Chua’s diode which was assembled with 
operational amplifiers for the purpose of current research [48]. However, another implementation of the mentioned 
element using diodes has been frequently applied in Chua’s circuit. Both of the mentioned configurations can be 
observed in Figure 3.

Chua’s circuit nonlinear differential equations can be formulated as below [49];

(1)2
1 ( ),C RR

R
V VdVC f V

dt R

-
= -

(2)2 2
2 ,C C R

L
dV V V

C i
dt R

-
= -

2
,L

C
di

L V
dt

= - (3)

where VC1
, VC2

 and iL represent the voltages of the C1 and C2 capacitors and the current of the inductor L, respectively, 
and  f (VR) is a nonlinear function defined as;

(4){ }( ) | | | |
( )

2
a b R P R P

R b R
G G V B V B

f V G V
- × + - -

= +

iR

VR

Gb

Gb

Ga

Region-1 Region-2 Region-3

Bp

-Bp

Figure 4. Current vs voltage alteration of Chua’s diode graph [10]

( ) ,  b R b a P R PG V G G B V B+ - < - (5)

(6),  a R P R PG V B V B- ≤ ≤

( ) ,  b R a b P R PG V G G B V B+ - > (7)
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f (VR) represents the nonlinear part of the equations in which Ga and Gb are considered as the inner and outer slopes 
of Chua’s diode, respectively, and +BP are the breakpoints in iR (Figure 4). 

Having dimensionless equations will make them easier to use. This is accomplished by defining variables as x =

1 2,  ,  ( )C C

P P P

V V Rx y z
B B B

= = =, and 1 2,  ,  ( )C C

P P P

V V Rx y z
B B B

= = = . iL, and parameters like 
2

2 2

1
 and 

C R C
α β

C L
= =  without physical dimensions [48].

(8)/ ( ( ))dx dt α y x f x= - -

(9)/dy dt x y z= - +

(10)/dz dt βy= -

Since Chua’s circuits are classified as chaotic systems with high dependency on initial values, another way to 
demonstrate Chua’s circuit’s chaotic stability is by analyzing its strange attractors. Alteration of the parameter β when 
the other parameters are fixed can finally result in the occurrence of the chaotic behavior reflected in the so-called 
double scrolls (Figure 5).

(a)

(d)

(b)

(e)

(c)

(f)

Figure 5. Fixed parameters are α = 15.5, 8 5, and .
7 7a bG G= =  The attracting set starts to variate as parameter β changes. a) β = 50, two periodic orbits. b) 

β = 40, the orbits have “period-doubled”. c) β = 35, another doubling of the period. d) β = 34, a pair of chaotic attracting orbits. e) β = 33, the chaotic 
attractors expand and move towards one another. f) β = 28, a “double scroll” chaotic attractor [11]

3.3 Road generation algorithm

Based on the mathematical road modeling remarks in section 2, a systematic methodology is described here, 
which enables the generation of such a road profile considering the constraints imposed by the vehicle dynamics on the 
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feasibility of the road, in terms of the friction forces between the tires of a vehicle and the ground.

3.3.1 Generating the road centerline

The concept of the osculating circle may be used to draw (generate) a parametric 3D curve step by step through a 
controlled process, i.e. a controlled movement/orientation of the osculating circle. In this case, the osculating circle may 
also be called a “drawing circle”, which acts as a tool by which a parametric 3D curve could be created.

To come up with the coordinates of the parametric curve as x(τ), y(τ) and z(τ), we would first need to fix two initial 
points, that would serve as the reference. Next, the drawing circle needs to be configured for the creation of the third 
point. The drawing circle may be defined generally using three variables, defining its orientation and radius. Two angles 
α(τ) and β(τ) are required to define the orientation of the drawing circle in the 3D space, namely the local roll and pitch 
rotations. Note that the yaw rotation does not add any information to the orientation of the circle, naturally. We may take 
the order of global rotations as α about the X axis and then β about the Y axis. This rotation is schematically shown for a 
sample point on the curve in Figure 1. A rotation matrix may be defined to relate the local coordinate frame C attached 
to the drawing circle, and the global frame G attached to the ground, using the rotation sequence [50]; 

(11)

, ,

cos 0 sin 1 0 0
0 1 0 0 cos sin

sin 0 cos 0 sin cos

C
G y β x α

β β
R R R α α

β β α α

-   
   = =    
   -   

cos sin sin cos sin
0 cos sin .

sin sin cos cos cos

β α β α β
α α

β α β α β

- 
 =  
 - 

Since the rotation matrices are orthogonal, the inverse transformation from frame C to G is obtained as;

(12)1 .G C C T
C G GR R R-= =

The third parameter required to completely define the drawing circle is its radius ρ(τ), which needs to be defined 
independently. 

Although (11) formally relates the orientation of the osculating plane with respect to the global frame in a general 
case, based on the first assumed pair of road coordinates, we may not be free to choose any combination of α and β for 
the drawing circle; therefore, an alternative approach in defining the drawing circle would be to directly use the first 
pair of points to find the center of the drawing circle associated with them to ensure all geometrical constraints are 
automatically satisfied. Figure 6 demonstrates the loci of the potential curvature center associated with points 1 and 2 
denoted by C123 with the dotted circle. The potential curvature center is located at the radius ρ(τ), which is a separate 
input to the algorithm. Next, an angle θ(τ) is needed to fix the location of C123 on this circle. Note that the angle θ(τ) is 
measured with reference to the previous curvature center C012 which is assumed to be in a certain location consistent 
with the initial points 1 and 2. For this purpose, the vector r0 is defined as;

(13)012

012

1, 1,2

1, 1,2
.

| |
C

C
ρ

×
=

×

r r
r

r r0
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Figure 6. Geometrical Calculation of Point 3 from Points 1 and 2

Note that the argument (τ) is omitted in the equations for the sake of simplicity. To obtain C123, we should rotate the 
vector r0 about the unit vector u1 by the angle θ. Rodriguez rotation formula may be used to obtain vector r in the global 
frame [50];

(14)1,2

1,2
,

| |
=

r
u

r1

(15)
13 12

13 11

12 11

0
0 ,

0

u u
u u
u u

- 
 = - 
 - 

u1

(16)
1,

(1 ) ,
θuR cosθ cosθ sinθ+ - +T= I u u u1 1 1

1,
,

θuRr = r0 (17)

where u1 is the unit vector along the rotation axis, Ru1,θ is the rotation matrix, and the coordinates of the middle point 

between points 1 and 2 are obtained from 
2
+r r1 2 .

Having the size and orientation of the drawing circle defined, one may obtain the next point (point 3) on the curve 
in the global frame by using the Rodriguez formula once more, this time rotating rC123,2 by the angle ψ about the unit 
vector u2 (Figure 6);
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r r
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ψuR cosψ cosψ sinψ+ - +T= I u u u2 2 2
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Note that angle ψ represents the proceeding step of the curve generation and holds the same value between points 1-2 
and 2-3. Therefore, according to the definition of dot product of vectors r1,C123

 and rC123,2, it may be calculated as;

123 123

123 123

1, ,21

1, ,2
cos .

| || |
C C

C C
ψ -  ⋅

 =
 
 

-r r

r r
(22)

Similarly, the next point (point 4) could be calculated using points 2 and 3 and so on. It is important to note that an 
upper and/or lower limit on the value of ψ may be imposed to have more control on the increments (i.e. road centerline 
resolution), without the loss of generality.

Note that we have not yet provided any information on the road bank angle γ(τ). This angle may be independently 
imposed on the road profile to complete its mathematical definition. In an alternative approach, one may define two 
separate curves and connect the corresponding points together to create a bank angle; such an approach may complicate 
the process and impose more restrictive constraints.

3.3.2 Constraints and limits

It is worth emphasizing that in terms of the road geometry, the location of the center of curvature only affects the 
longitudinal slope of the road; in other words, the lateral slope (bank angle) is inherently independent of the center 
of curvature. However, for the purpose of making the road safer and more comfortable for the drivers/passengers of 
turning vehicles, a certain bank angle as a function of the road curvature may be introduced by the designer. First, let us 
introduce the required limitation on the longitudinal slope of the road. Typical flat urban roads normally have a slope of 
less than ±10% [45], which may be written mathematically as;

1 1tan 0.1 tan 0.1.- -- ≤ ≤φ (23)

In terms of the variables depicted in Figure 6, the angle φ  is obtained as;

(24)1 2 1
12

1,2
sin .

| |
Z Z- -

=
r

φ

Although some limitations on the angle θ may be imposed to avoid excessively large slopes, this limitation on 
the slope is imposed on the resulting road geometry through a post-processing step in order to avoid unnecessary 
discontinuities in the location of the center of curvature. To realize this, after compilation of the whole road geometry, 
the maximum generated slope is measured and the whole sequence of road coordinates are vertically compressed 
(flattened), if necessary, to abide by the maximum allowable slope. This flattening is done by multiplying the 
z-coordinates of the points by the ratio of maximum allowable slope to the current observed maximum. It is worth 
mentioning that such a flattening will slightly distort the geometry from the initially intended one, but the consequences 
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are easily manageable, as discussed in the following sections.
Furthermore, because of the discrete nature of path generation in the proposed method, in order for the algorithm 

to be capable of changing the direction of turns, the allowable variation in θ denoted by Δθ must be a monotonically 
increasing function of the radius of curvature. In other words, if the road is highly curved, i.e. the radius of curvature 
is small, the variation in the location of center of curvature must be small to satisfy curvature continuity. On the other 
hand, when the road is close to a straight line, i.e. a very large radius of curvature, the variation in the center of curvature 
may be very large so that it even completely changes the direction of rotation, without causing any continuity issue. The 
following expression is used to relate the allowable variation in θ in each step;

(25)(1 ( 68) ) Δ (1 ( 68) ).
180 180

E Eπ πk ρ θ k ρ- + - ≤ ≤ + -

As for the constraints on the radius of curvature, let us consider two extreme cases; first, assuming the center of 
curvature to be on the horizontal plane, the limit of achievable lateral acceleration for a vehicle may be estimated as;

(26)
2

.y
va μg
ρ

= <

Therefore, there is a minimum achievable radius of curvature;

(27)
2

.vρ
μg

>

The other extreme condition for ρ appears when considering driving over a hill, where the center of curvature 
is located vertically below the vehicle. In this case, the only existing force that can provide the required centripetal 
acceleration is the gravity. Similarly, one may write;

(28)
2 2

.z
v va g ρ
ρ g

= < → >

Which is less limiting compared to ay, due to the typical range of friction coefficient as μ < 1. The conditions for 
combined vertical and lateral accelerations sit in between the above two extreme cases, therefore taking the lateral 
acceleration limit as the worst-case scenario guarantees that the vehicle will remain within the physically achievable 
limits of accelerations.

Taking the maximum design speed for the vehicle as vmax = 20 m/s and minimum friction coefficient of μmin = 0.6 
for a wet road, the constraint on the radius of curvature becomes;

(29)
220 68 .

(0.6)(9.81)
ρ m> =

Furthermore, a maximum radius may be defined, indicating an upper limit on the radius of curvature above which 
the road may be deemed as a straight line. Here, a maximum of ρ = 1000 m is assumed for this purpose. Thus, Δρ will 
be adjusted in each step according to the current value of ρ.

It is important to note that the flattening process explained above for maintaining the required slopes may result 
in some segments of the road having unrealistically small radii of curvature after post-processing. This is because the 
segments of the road with too steep slopes may become highly curved sections, when the flattening occurs. However, 
this can be easily compensated by multiplying the x, y and z coordinates of the road waypoints with the proper 
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multiplier to scale up the whole road profile, if necessary. This way, although the continuity of the road and its curvature 
is maintained, a random entity is also introduced in the scale of the resulting geometry, making it less predictable, but in 
a controlled manner. Note that the final radius of curvature can be simply obtained using the radius of the circumscribed 
circle of the triangle constructed by each set of three consecutive waypoints with a, b and c denoting the sides of that 

triangle and 
2

a b cs + +
=  [51];

.
4 ( )( )( )

abcρ'
s s a s b s c

>
- - -

(30)

In addition to the scaling mentioned above, it is also advisable to define a threshold for maximum slope before 
accepting a certain resulting road geometry as an eligible one to be flattened; this way, the cases requiring too much 
flattening will be automatically discarded, eliminating the outliers.

3.3.3 Bank angle calculation

Normally, the road bank angle is calculated based on the principle that the vehicle would not need any steering 
action from the driver at the design speed to remain on the track. In other words, the required lateral force is generated 
through the vertical reaction forces under the tires [52]. In case of a 3D road geometry, the center of curvature may be 
located above/below the horizontal surface, creating a situation shown in Figure 7, assuming the mass center is on the 
road centerline.
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Figure 7. A turning vehicle on a road with a bank angle

In such a situation, for the bank angle to completely eliminate lateral tire force requirements, equations of motion 
along and perpendicular to the centripetal acceleration vector are;

(31)cos( ) cos ,zF ζ γ mg ζ+ =

(32)
2

sin( ) sin ,z
vF ζ γ mg ζ m
ρ

+ = +

which yields;
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(33)
2
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ρg ζ
-  

= + -  
 

This ultimate bank angle in the general case follows the surface plot of Figure 8, according to the values of ρ and ζ.
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Figure 8. Unconstrained bank angle calculation in a general case

However, for realistic road design which also takes into account the passenger comfort, a threshold for acceptable 
bank angle needs to be defined. A typical bank angle observed at a regular design speed for highways may be designated 
as the maximum allowable bank angle. Consider a turning section of a road in the horizontal plane ζ = 0. For a regularly 

experienced lateral acceleration of 
2v
ρ

 = 0.75 m/s2 =0.08 g [53], using (33) the required bank angle becomes;

(34)
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1 1
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(35)
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where sat(x, L) is the saturation function and defined as;

sat( , ) ,
L x L

x L x L x L
L x L

>
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(36)
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Note that the final bank angle in equation (34) uses the saturation function as described in (35) to choose between 
the theoretical bank angle in (32) or the maximum allowable bank angle in (33); therefore not allowing the banking 
angle to grow excessively large. The design speed of the road is set to v = 20 m/s, and the angle ζ(τ) is obtained from the 
location of center of rotation relative to the road as;

3 ˆ( ) ( )
( ) atan2 ,  ,

( ) ( )
rr τ j τ

ζ τ
ρ τ ρ τ

 ⋅
=  

 

r (37)

where r3 is the z-coordinate of the road at point τ, and the unit vectors of the road coordinate frame are;
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3.4 Chaotic data acquisition and implementation

An entirely numerical approach has been chosen to derive the datasets for the road generation algorithm. This is 
primarily due to the need for many datasets with optional variations in the signal’s time steps that were critical to the 
proper behavior of random number generation. Otherwise, extracting data from an electronically built circuit would be 
impractical in our case. As the first step, the system of differential equations denoting Chua’s circuit has been solved 
numerically by Livermore Solver for Ordinary Differential Equations (LSODE) algorithm. Then, in order to achieve a 
somewhat uniform distribution within the dataset, different time steps were evaluated for reading chaotic data, which 
was later incorporated into the main algorithm for generating roads.

In the aforementioned geometrical approach, there are certain parameters that have a critical impact on the random 
nature of the generated road profile. Rotation angle θ and radius ρ are obtained indirectly from the chaotic data of 
the numerically solved Chua’s circuit equations. By considering a typical road and tire compound on dry asphalt, the 
maximum allowable curvature of the road is obtained. Thus, the limitated boundaries of the radius are allocated. As the 
next step, after normalizing the chaotic signal, a dataset featuring acceptable radius values which are practically random 
is obtained. The dataset for parameter θ went through the same approach with differences in the acceptable range of 
the rotation angle. For having a rather smoother curve for the road, several time steps for extracting the chaotic data 
experimented as trial-and-error attempts, and the value t = 0.37 s was considered as the fittest value. 

To illustrate the road generating algorithm, simplified pseudocode is represented as below. The algorithm starts 
with randomly initializing of the first two points on the curvature namely P1 and P2, and an additional necessary point 
for locating the center of a circle in the first iteration namely C012. Initialized variables are mostly calculated by trial 
and error to provide an acceptable realistic road profile. the algorithm then calculates the values of theta and rho for 
each iteration based on their initialized values and configured limitations which are discussed in detail in sub-section 
3.3.1. Other parameters are computed as well, with respect to the stated formulae in sub-section 3.3, until the next point 
on curvature is reached in every iteration. It is necessary to limit φ 23, indicating the slope of the curvature, so that it 
falls inside the appropriate boundary that prevents our algorithm to result in an unrealistic road profile with sudden or 
extreme jumps in the slope of the generated road. The limitation is applied by a flattening method using the kz variable. 
Also, the banking angle is calculated at the last level as an extra evaluation parameter of the generated curvature. These 
steps take place for each ρ and θ, and the sequence of obtained points forms the road 3D curve eventually. 
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Block algorithm for road generating using chaotic data

1 INPUTS: ρ-series, θ-series 

2 OUTPUTS: road-coordinates

3 INIT P1, P2, C012 (randomly)

4 INIT ρmax with 1000

5 SET ρ = ρmax

6 INIT θ with π/2

7 INIT ψ with |p2 - p1|/ρ

8 INIT φ  with asin (p1 × z - p2 × z)/|p2 - p1|

9 INIT dθ with 0

10 INIT dρ = avg (10 * (2 * ρ-series)) with kernel size 100 

11 FOR i FROM 1 TO size(ρ-series) 

12          SET ρ = min (ρmax , max (68 , r + dρ[i]))

13          SET k = 90/(ρmax - 68) ^ 40

14          SET dθ = π/180 * (1 + k * (ρ - 68) ^ b) * (2 * θ-series[i])

15          SET θ = mod (π/2 + dθ , 2 * π)

16          COMPUTE r0 using eq. 13

17          COMPUTE u1 using eq. 14

18          SET u~1 = [[0, -u1[2], u1[1]] = [u1[2], 0, -u1[0]] = [-u1[1], u1[0], 0]]

19          COMPUTE Ru1, θ using eq. 16

20          COMPUTE r using eq. 17

21          LOCATE C123

22          COMPUTE ψ using eq. 22

23          SET ψ = max(ψ, π/180 * 0.01)

24          COMPUTE u2 using eq. 18

25          SET u~2 = [[0, -u2[2], u2[1]] = [u2[2], 0, -u2[0]] = [-u2[1], u2[0], 0]]

26          COMPUTE Ru2, ψ using eq. 20

27          COMPUTE rC123, 3 using eq. 21

28          LOCATE P3

29          APPEND C123 to centers 

30          APPEND p3 to road-coordinates

31          COMPUTE φ23 using eq. 24

32          APPEND φ23 to φ

33 END FOR

34 SET kz = min(1, tan(0.1)/max(|tan(φ )|))

35 SET φ  = atan(tan(φ ) * kz)

36 SET road-coordinates.z = raod-coordinates.z * kz

37 PLOT road-coordinates

38 COMPUTE γ(τ) using eq. 35
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3.5 Hypothetical results and evaluation criteria

To ensure the resulting road profile is feasible in terms of vehicle dynamics and tire-road friction considerations, 
a Tire Friction Usage (TFU) function is defined in this section, which will be calculated along the generated path to 
evaluate its consistency with vehicle dynamics. The TFU is defined as the ratio of current friction force to maximum 
tire force capacity according to the vertical tire load, assuming a linear relationship between the available tire friction 
and the vertical load. Any value of TFU less than unity is considered feasible, while the values larger than unity 
indicate conditions beyond the handling capacity of the vehicle. Referring back to Figure 7, the vertical force Fz may be 
calculated by considering equilibrium along zv axis;

(41)
2 2
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2z

v π vF m g γ γ ζ m g γ γ ζ
ρ ρ

   
= + - - = + +   

      

The maximum achievable friction force, assuming the minimum value of friction coefficient to represent a wet 
surface, becomes;

(42)max min .zF μ F=

Although certain bank angles γ(τ) are introduced, portions of the lateral force may still be required to be generated 
through lateral tire friction forces. Along the lateral vehicle axis yv, one may write;

(43)
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(44)

4. Results and discussion
A vivid illustration of the alteration patterns in the chaotic signal of Chua’s circuit, after being converted to the 

range between 0-1, is presented in Figure 9. In compliance with the upcoming sections of the representation of the 
results, Figure 9 illustrates 20 samples of the chaotic signal. As the chaotic/random nature of the core signal allows, 
there is no inherent distinction between re-running the numerical data acquisition process or starting the sampling 
process simply from different starting points in a rather longer signal. The latter has been opted for the generation of 
the signals illustrated in Figure 9, and later implementation in the road generation algorithm. It is to witness, that not 
only the data points along each sequence show scattered, random (seemingly) behavior, but each sequence also shows 
excessive individuality in comparison with the other signals in the set.
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Figure 9. Heatmap of chaotic data converted to the range between 0 and 1
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In Figure 10, the raw data derived from Chua’s circuit equations are observed. For applying the random sequence 
to the main algorithm of the road generation, its range should have been converted to [0, 1]. For this purpose, a two-step 
conversion was designed. First, the signal was converted to [0, 2π], then the data were inserted into the sin function to 
have the arbitrary range of [0, 1] (Figure 11).
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To present and analyze the resulting road geometries, the proposed road generation algorithm is applied to a fixed 
number of waypoints. Figure 12 shows a sample road generated using 30,000 waypoints (resolution). The transversal 
lines along the road centerline are schematic indicators of the bank angles and the road surface. The color spectrum 
along the road also indicates the values of TFU, and shows the amount of used tire force capacity to negotiate each 
segment of the road. As indicated in the figure with a circle, the road starts at (0, 0, 0), and the waypoints are produced 
step-by-step to construct the centerline. The banking of the road is also constructed following the procedure explained 
in the previous section, with consideration of smoothening the variations in the bank angle, as it is not a hard constraint 
to be met, but rather a helpful feature to minimize the tire usage. It is evident from the figure that the most difficult 
segments of the road, in terms of tire force requirement, are associated with large curvatures or a relatively sudden 
decrease of the slope, as expected. The figure shows a clear example of how the slopes and curvatures may vary along 
the path, by producing both left and right turns, as intended. The length of the road in this sample is around 3500m.

Figure 13-a shows the variations of θ associated with this sample output, respectively. Note that although the 
variations in θ seem abrupt and have high frequencies, this does not negatively affect the curvature continuity of the 
road due to two reasons: 1-the magnified subplots indicate the continuous variations of θ around two sample points on 
the figure, showing reasonable continuity between adjacent waypoints; 2-the amplitude of variations is controlled using 
(29), which allows the CoC to turn considerably more, when the radius of curvature is large (see the magnified plot 
around point 5000), resulting in microscopic changes of direction for the incremental road segments to be compared 
with very small variations in the CoC, when the radius of curvature is small (see the magnified plot around point 6000).

Figure 13-b demonstrates the variations in the radius of curvature ρ, both for the originally generated values and 
after the flattening process. The original radius is limited between the minimum and maximum set values. However, 
the potential flattening, which was necessary in this sample to ensure the slopes fit in the desired limit, cause distortion 
in the range of radii of curvature along the path, as explained in the previous sections. The flattened radii are still 
reasonably smooth in variations, especially at small radii. It is worth mentioning, that although larger variations with 
higher frequencies are observed in radii of larger than 1000 m, such variations are considered reasonable and do not 
cause curvature discontinuity in the path, because they refer to considerably large radii of curvature, similar to the 
discussion on θ variations. 

Figure 13-c demonstrates the slope along the road, both for original and flattened cases. It can be seen that the 
original slope was well-beyond the set limit of around 5.7 deg. However, the fattening process has forced the slopes to 
remain within the boundaries of the allowable values. Figures 13-d and 13-e demonstrate the rotational increment angle 
ψ, and the bank angle γ, respectively. An applied lower limit of 0.01 deg on the angle ψ is evident in the figure. The 
banking of the road is also shown to be limited by the upper limit of 4.5 deg, as intended. 

The TFU values are plotted in Figure 13-f, indicating that the resulted road is completely feasible to be tracked by 
a vehicle, by having TFU values of less than 1.0 along the road. Note that the non-banked curve is included to compare 
the effect of introducing banking as per (35), with a road that does not feature any banking. It can be seen that although 
the non-banked case also satisfies the feasibility conditions, introducing banking generally reduces the tire usage ratio as 
well as expanding the safety margin throughout the turns.

Figure 14 illustrates the TFU values of the same road if it was to be negotiated with three different velocities of 
20, 25, and 30 m/s. Note that the road is designed to be compatible with a maximum velocity of 20 m/s. However, it 
can be seen that even traveling at 25 m/s is feasible as the peak TFU value is just below 1.0, demonstrating a slightly 
conservative design. This is due to the fact that the minimum radius of curvature was calculated with a worst-case 
scenario assumption, that the CoC is on the horizontal plane; however, the actual curvature can be thought of having 
both horizontal and vertical components, therefore not necessarily imposing such big risks of lack of lateral tire force. 
Nevertheless, the speed of 30 m/s has peak TFU values much larger than 1 (vertical axis range is limited for the sake of 
enabling visual comparison), therefore infeasible. Furthermore, it is worth noting that the TFU value does not increase 
in proportion to speed, because the vertical tire forces become smaller when the vehicle passes through peaks of the 
hills, causing the denominator of the TFU (i.e. the maximum achievable lateral force) to approach zero. Consequently, 
the vehicle gets close to losing tire-road contact and becomes uncontrollable.
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Several resulting road geometries with 30,000 waypoints are depicted in Figure 15. All the roads are generated 
using iterations of the same algorithm with no alteration of design parameters. The figure indicates the diversity of 
the resulting road geometries through a wide variety of different curvatures, slopes, and even road lengths, which are 
affected by the random nature of the road generation algorithm.

5. Conclusions
A stochastic random road generation algorithm was developed and introduced, which uses properly generated 

random number sequences to construct a physically meaningful complex three-dimensional road geometry to be used 
in future studies requiring simulated versatile road shapes. The proposed method is able to produce realistic curvature 
and slope properties and was also equipped with a banking geometry, making it more suitable for the vehicles to 
track. The proposed process can be done in an offline setting, where a virtual environment is required to be developed 
prior to simulating the motion of the vehicle for vehicle control, stability, energy management, or any other particular 
investigation. 

It is worth noting, that the proposed method is a novel fundamental approach towards road modeling; therefore, its 
scope is limited to only include the most important aspect of the vehicle environment, namely the road geometry, and is 
able to generate a complex three-dimensional road geometry. However, the proposed method is expandable, and it may 
be complemented with additional information, such as the road signage data, speed limits, city traffic scenarios, driving 
cycles, road roughness data, etc. to represent a more comprehensive simulation environment for evaluation and testing. 

A comprehensive function describing the feasibility level of the generated road is introduced, which compares 
the required tire friction with the maximum available friction based on the vertical tire forces and the road geometry 
in three-dimensional space. The outputs of the road generation algorithm show promising results both in terms of 
feasibility of the road segments and versatility of the produced geometries, which are crucial for training AI-based 
controllers. The results also demonstrate complete consistency with road design principles, including the slope and 
curvature limit and continuity.

It was shown that the proposed method is capable of producing random roads with predefined constraints. Based 
on the design principles and the requirements of each individual application, the user may decide on the parameters 
involved and then allow the algorithm to generate the outputs in a huge number of iterations, eliminating the need 
for manually producing such complex geometries and increasing the fidelity of the study by removing operator 
bias. Therefore, the proposed methodology contributes to the field of applied mathematics and vehicle dynamics by 
introducing a mathematical approach for developing a physically meaningful geometry, representing real-life situations, 
and facilitating the evaluation of vehicle and traffic control systems in simulations.
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Figure 15. Samples of the resulting random road geometries
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