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Abstract: The net Laplacian matrix of a signed graph Ġ
 
 is defined to be N(Ġ

 
) = D±(Ġ

 
) − A(Ġ

 
), where D±(Ġ

 
) and A(Ġ

 
) 

are the diagonal matrix of net-degrees and the adjacency matrix of Ġ
 
, respectively. In this paper, we prove that n (resp., 

−n) is a net Laplacian eigenvalue of the signed complete graph with the multiplicity at least t if there are t vertices 
whose all incident edges are positive (resp., negative). We establish a relationship between the net Laplacian eigenvalues 
of the signed complete graph K̇n and the graph consisting of negative edges of K̇n. Additionally, we characterize signed 
complete graphs which have just two distinct net Laplacian eigenvalues.
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1. Introduction
A signed graph Ġ

 
 is an ordered pair (G, σ), where G = (V, E) is a simple graph, called the underlying graph, and 

σ : E → {1, −1} is a sign function. A signed graph is positive (resp., negative) if all of its edges are positive (resp., 
negative) and denoted by (G, +) (resp., (G, −)). Throughout the paper, we interpret an unsigned graph as a signed graph 
with all its edges being positive. The order of G is |V(G)|. The complement of G is denoted by G 

c. Let S 
+(Ġ

 
) (resp., S 

−(Ġ
 
))

denote the set of vertices of Ġ
 
 whose all incident edges are positive (resp., negative). More notions and applications 

about signed graphs see [1-2].
For any v ∈ V(Ġ

 
), the number of positive (resp., negative) edges incident with v is called the positive (resp., 

negative) degree of v and denoted by d 
+
v (resp., d 

-
v ). The net-degree of v is defined to be d 

±
v  = d 

+
v  − d 

-
v . The net-

degree matrix of a signed graph Ġ
 
 is a diagonal matrix D±(Ġ

 
), whose i-th diagonal entry is d 

±
i . The degree matrix of a 

underlying graph G is a diagonal matrix D(G), whose i-th diagonal entry is degree di = d 
+
i  + d 

-
i . The adjacency matrix 

of Ġ
 
 is obtained from the adjacency matrix of its underlying graph by reversing the sign of all is that correspond 

to negative edges. The net Laplacian matrix of a signed graph Ġ
 
 is a symmetric matrix N(Ġ

 
) = D±(Ġ

 
) − A(Ġ

 
). The 

Laplacian matrix of Ġ
 
 is defined L(Ġ

 
) = D(G) − A(Ġ

 
). In the case of Ġ

 
 = (G, +), we have L(Ġ

 
) = N(Ġ

 
). The adjacency 

matrix and the Laplacian matrix of a signed graph have been received a great deal of attention in the theory of spectra 
of signed graphs. The net Laplacian matrix appears very recently and there are few results about it. In [3] Stanić gave 
some basic results on the spectrum of the net Laplacian matrix of a signed graph and obtained the applications of the net 
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Laplacian eigenvalues in control theory [4]. It is well-known that two switching equivalent signed graph have the same 
spectrum of adjacency matrices and Laplacian matrices. However, the net Laplacian spectra of two switching equivalent 
signed graphs are different. For example, (C4, +) and (C4, −), which are switching equivalent, but have distinct net 
Laplacian spectra.

As N(Ġ
 
) is a symmetric matrix, its eigenvalues are real number and denote them by µ1, µ2, ··· , µn, of course, 

which include possible repetitions. We also assume that µ1 = 0 and do not assume any ordering of the remaining ones. 
If the distinct net Laplacian eigenvalues of Ġ

 
 are µ1, ··· , µm and their multiplicities are m(µ1), ··· , m(µm), respectively, 

then we use Spec(Ġ
 
) = {µ1

m(µ1), ··· , µm
m(µm)} to denote the net Laplacian spectrum of the signed graph Ġ

 
.

Let G be a (signed) graph and H be a subgraph of G. Then G\V(H) denotes the subgraph of G by removing all 
vertices of H. Let Kn be the complete graph of order n and Kr, s be the complete bipartite graph with parts of size r and s. 
The matrix Jr × s is an all-one matrix of size r × s.

Let K̇n = (Kn, −Hk) be a signed complete graph whose negative edges induce a graph Hk of order k, then Hk has 
no isolated vertex. If K̇n = (Kn, +) then Hk is empty. In this paper, all signed complete graphs are assumed to contain at 
least a negative edge and hence 2 ≤ k ≤ n. In [5] Akbar, Dalvandi, Heydari, and Maghasedi investigated the adjacency 
eigenvalues of signed complete graphs.

In this paper, we investigate the net Laplacian eigenvalues of signed complete graphs. In Section 2 we give some 
basic results on the net Laplacian eigenvalues of a signed complete graph, we prove that n (resp., −n) is a net Laplacian 
eigenvalue of the signed complete graph with the multiplicity at least t if there are t vertices whose all incident edges 
are positive (resp., negative). We establish a relationship between the net Laplacian eigenvalues of the signed complete 
graph K̇n and the graph consisted by negative edges of K̇n. In Section 3, we characterize signed complete graphs with 
just two distinct net Laplacian eigenvalues.

2. The eigenvalues of a signed complete graph K̇
 
n

In this section and next section we mention the eigenvalues of Ġ
 
 are the net Laplacian eigenvalues of Ġ

 
.

In this section, we give some basic results on the eigenvalues of a signed complete graph K̇n, such as the lower 
bound for the multiplicity of n (resp. −n) as an eigenvalue of K̇n, the relationship between eigenvalues of K̇n and the 
graph Hk consisted by its negative edges.

The join of two signed graphs Ġ
 

1 and Ġ
 

2, denoted by Ġ
 

1 ∇* Ġ
 

2, is the signed graph obtained from the disjoint 
union of Ġ

 

1 and Ġ
 

2 by adding the edges {uv : u ∈ V(G1), v ∈ V(G2)}, where the signs of all adding edges are * and * ∈ {+, 
−}. The next lemma gives the eigenvalues of the join Ġ

 

1 ∇
* Ġ

 

2 of two signed graphs.
Lemma 2.1 ([4, Theorem 3]) Let Ġ

 

1 and Ġ
 

2 be two signed graphs whose eigenvalues are ν1(Ġ
 

1), ··· , νn1
(Ġ

 

1) = 0 
and ν1(Ġ

 

2), ··· , νn2
(Ġ

 

2) = 0, respectively. For * ∈ {+, −}, we have that the eigenvalues of Ġ
 

1 ∇
* Ġ

 

2 are *(n1 + n2), ν1(Ġ
 

1) 

* n2, ··· , νn1−1(Ġ
 

1) * n2, ν1(Ġ
 

2) * n1, ··· , νn2−1(Ġ
 

2) * n1, 0.
Theorem 2.2 Let K̇n be a signed complete graph. If there exist |S 

+(K̇n)| vertices for which all edges attached these 
vertices are positive. Then m(n) ≥ |S 

+(K̇n)|.
Proof. Let t = |S 

+(K̇n)| and K̇n-t = K̇n\ S 
+(K̇n). Let (Kt, +) be a positive complete graph with the vertex set V(Kt) = 

S 
+(K̇n).

We can obtain that K̇n = (Kt, +)∇+K̇n-t. Let λ1 = 0, λ2, ··· , λn-t be the eigenvalues of K̇n-t. By Lemma 2.1 and 
Spec(Kt, +) = {0, t 

t−1}, we have Spec(K̇n) = {0, nt} ∪ {λi + t | i = 2, ··· , n − t}.
By Theorem 2.2, we have the following result.
Corollary 2.3 Let K̇n = (Kn, −Hk) be a signed complete graph whose all negative edges induce a graph Hk of order 

k(2 ≤ k ≤ n). Then m(n) ≥ n − k.
Proof. Since Hk is an induced graph of the negative edges of (Kn, −Hk) and |V(Hk)| = k, then |S 

+(K̇n)| = n − k. By 
Theorem 2.2, the result follows.
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Apply Theorem 2.2 to the signed graph −K̇n, we have
Corollary 2.4 Let K̇n be a signed complete graph and there exist |S 

-(K̇n)| vertices whose all incident edges are 
negative. Then m(−n) ≥ |S 

-(K̇n)|.
Next we establish a relationship between the spectra of the signed complete graph K̇n and graph Hk induced by all 

negative edges of K̇n.
Theorem 2.5 Suppose that K̇n = (Kn, −Hk) is a signed complete graph whose all negative edges induce a graph Hk 

of order k(2 ≤ k ≤ n). Then
(1). m(n) ≥ n − k.
(2). If the eigenvalues of Hk are µ1 = 0, µ2, ··· , µk. Then the eigenvalues of (Kn, −Hk) are {0, nn−k} ∪ {n − 2µi|i = 2, 

··· , k}.
Proof. Let Hk

c be the complement of Hk with respect to Kk and Kn-k = Kn\V(Hk). We have

( )

( ) ( ) ( )

( ) ( )
( , ) ,

( )

c
k k k n k

n k
n k k n k n k n n

A H A H J
A K H

J J I
× -

- × - × - ×

 -
 - =
 - 

where A(−Hk) = −A(Hk), A(Hk
c) = Jk×k − Ik×k − A(Hk). The vertices of Hk denoted by v1, ··· , vk and corresponding 

degrees are d1, ··· , dk. So the degrees of Hk
c are k − 1 − d1, ··· , k − 1 − dk. Let G1 be the signed complete graph which 

induced by V(Hk). Then

1

2
1

1 2 0 0
0 1 2 0

( ) ( 1) 2 ( ),

0 0 1 2

k k k

k

k d
k d

D G k I D H

k d

± ±
×

- - 
 - - … = = - -
 
 

- - 



   

and A(G1) = A(−Hk) + A(Hk
c) = −A(Hk) + Jk×k − Ik×k − A(Hk) = Jk×k − Ik×k − 2A(Hk). Thus we have

1 1 1( ) ( ) ( )N G D G A G±= -

( 1) 2 ( ) [ 2 ( )]k k k k k k k kk I D H J I A H±
× × ×= - - - - -

2[ ( ) ( )]k k k k k kkI D H A H J±
× ×= - - -

2 ( ).k k k k kkI J N H× ×= - -

Let β1 = jk = (1, 1, ··· , 1), β2, ··· , βk be the mutual orthogonal eigenvectors of N(Hk) and associated eigenvalues µ1 
= 0, µ2, ··· , µk, respectively. Since N(G1)βi = kIk×k βi − Jk×k βi − 2N(Hk)βi = (k − 2µi)βi, (i = 2, ··· , k), we have Spec(G1) 
= {0} ∪ {k − 2µi | i = 2, ··· , k}.

If k = n, then (Kn, −Hk) = (Kn, −Hn) = G1. Hence, Spec((Kn, −Hk)) = {0} ∪ {n − 2µi | i = 2, ··· , k}. 
If 2 ≤ k < n. Since Spec(Kn−k, +) = {0, (n − k)n−k−1} and (Kn, −Hk) = G1∇

+(Kn−k, +), it follows from Lemma 2.1 that
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( 1)( , ) { , ( ) ,0} { 2 | 2 , , }n k
n k iSpec K H n n k k k n k i kµ- -- = - + ∪ - + - = 

{ ,0} { 2 | 2, , },n k
in n i kµ-= ∪ - = 

This completes the proof.
Remark 2.6 Let K̇n = (Kn, −Hn) be a signed complete graph whose negative edges induce a graph Hn. If the 

eigenvalues of Hn
c are  µ'1 = 0,  µ'2 ≤ ··· ≤  µ'n. By Theorem 2.5 we conclude that the eigenvalues of (Kn, −Hn) are 0, 2µ'2 − 

n, ··· , 2µ'n − n.
Note that if K̇n = (Kn, −Hk) is a signed complete graph and Hk or Hk

c is a graph of order k, then the spectrum of K̇n 
can be obtained by Theorem 2.5. So we have the following results.

Corollary 2.7 Let K̇n = (Kn, −Hk) be a signed complete graph and s be the number of connected component of Hk. 
Then the multiplicity of eigenvalue n of (Kn, −Hk) is s + n − k − 1.

Corollary 2.8 Let K̇n = (Kn, −Hk) be a signed complete graph and s be the number of connected component of Hk
c. 

Then the multiplicity of eigenvalue −n of (Kn, −Hk) is s − 1.
At the end of this section, we give the multiplicities of eigenvalue 0 of (Kn, −Hk), which is also a direct result of 

Theorem 2.5.
Corollary 2.9 Let the multiplicity of eigenvalue 0 of (Kn, −Hk) be m(0) and the multiplicity of eigenvalue 2

n  of Hk 

be mHk
( 2

n ). Then m(0) = 1 + mHk
( 2

n ). Moreover, 1 ≤ m(0) ≤ n − 1, m(0) = 1 if and only if mHk
( 2

n ) = 0 and m(0) = n − 1 if 
and only if Hk = K

2
n  ∪ K

2
n .

3. K̇
 
n with two distinct net Laplacian eigenvalues

In this section, by the statement “Ġ
 
 has k eigenvalues” we mean that Ġ

 
 has exactly k distinct eigenvalues.

The signed graphs with two adjacency and Laplacian eigenvalues have been studied in [6-7] and [8], respectively. 
In this section, we would like to characterize the signed complete graphs with two net Laplacian eigenvalues.

By Theorem 2.5, if the signed complete graph (Kn, −Hk) has two eigenvalues, then Hk has at most three 
eigenvalues. Furthermore, it is well known that a connected graph has one eigenvalue if and only if it is an empty graph. 
It has two eigenvalues if and only if it is a complete graph. Additionally, a connected graph with just three distinct 
Laplacian eigenvalues has been studied in [9].

A graph G has constant µ = µ(G) if any two vertices that are not adjacent have µ common neighbors. G has 
constant µ and µ̄ if G has constant µ = µ(G), and its complement Gc has constant µ̄ = µ(Gc). Next lemma gives basic 
facts about the connected graph with constant µ and µ̄.

Lemma 3.1 ([9, Theorem 2.1]) Let G be a connect graph on n vertices. Then G has constant µ and µ̄ if and only if 
G has three distinct Laplace eigenvalues 0, θ1 and θ2. If so then only two vertex degrees k1 and k2 can occur, and θ1 + θ2 
= k1 + k2 + 1 = µ + n − µ̄ and θ1θ2 = k1k2 + µ = µn.

Moreover, we also need the following Lemmas to make further discussion.
Lemma 3.2 ([10, Proposition 7.3.3]) Let G be a graph with n vertices. Then v1(G) ≤ n, where v1(G) is the largest 

Laplacian eigenvalues of G.
Lemma 3.3 If Ġ

 
 is a signed graph with n vertices. Then Spec(Ġ

 
) = {0, nn−1} if and only if Ġ

 
 = (Kn, +).

Proof. If Ġ
 
 = (Kn, +) then is clear that Spec(Ġ

 
) = {0, nn−1}. If Spec(Ġ

 
) = {0, nn−1} then 1

n
i=Σ d ±

i = n(n − 1). Hence d ±
i  

= n − 1 and Ġ
 
 = (Kn, +).

Theorem 3.4 Let K̇n be a signed complete graph in which the all negative edges induce a graph Hk of order k (2 ≤ k 
≤ n). Then K̇n has two eigenvalues if and only if Hk is one of the following five cases:

(1). k = n and Hn = Kn,
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(2). k = 2
n  and H

2
n  = K

2
n ,

(3). k = n and Hn = K
2
n  ∪ K

2
n ,

(4). k = n and Hn is a strongly regular graph with parameter 2 1
4 2 4 4( ,  ,  1,  ),n h n h n hn - - -- -  where h is non-zero 

eigenvalue of K̇n.

(5). k = n and Hn is a connected graph with two distinct degrees and Hn has three eigenvalues 
2 20,   and ,n n h- where 

h is non-zero eigenvalue of K̇n.
Proof. Recall that S 

+(K̇n) is set of vertices of K̇n whose all incident edges are positive, and we divide three cases in 
term of the number |S 

+(K̇n)|.
Case 1: |S 

+(K̇n)| ≥ 2.
In this case, we have that 2 ≤ k ≤ n − 2 and m(n) ≥ |S 

+(K̇n)| ≥ 2 by Theorem 2.2. Then n is an eigenvalue of K̇n, and 
two distinct eigenvalues of K̇n are 0, n.

Let µ1 = 0, µ2, ··· , µk(k ≤ n − 2) be the eigenvalues of Hk. By Theorem 2.5 we have Spec((Kn, −Hk)) = {0, nn−k} ∪ {n 
− 2µi|i = 2, ··· , k}. We obtain that µi ∈ {0, 2

n } (i = 2, ··· , k).
Since Hk has at least an edge, the largest eigenvalue of Hk is positive. Without loss of generality, let Spec(Hk) = {0s, 

( 2
n )k−s}, then s is the number of the component of Hk.

Since k ≤ n − 2. We claim that Hk is connected. Otherwise s ≥ 2. Clearly, Hk must have a connected component, 
say G1, whose order is less than 2

n . By Lemma 3.2 v1(G1) < 2
n , which leads to a contradiction with the spectrum of Hk. It 

means that s = 1 and Spec(Hk) = {0, ( 2
n  )k−1}, then k = 2

n  and H
2
n  = K

2
n .

Case 2: |S 
+(K̇n)| = 1.

In this case, the signed graph K̇n has exactly one vertex v1 whose all incident edges are positive and k = n − 1. Then 
(Kn, −Hk) = v1∇

+(K̇n\v1). By Lemma 2.1, n is an eigenvalue of graph (Kn, −Hk). Hence, the two distinct eigenvalues of 
K̇n are 0 and n .

Let µ1 = 0, µ2, ··· , µn−1 be the eigenvalues of Hn−1. By Theorem 2.5, we have Spec(Kn, −Hn-1) = {0, n, n − 2µ2, ··· ,
n − 2µn−1} and Spec(K̇n\v1) = {0, n − 1 − 2µ2, ··· , n − 1 − 2µn−1} for the negative edges of K̇n\v1 induce the graph Hn−1. 
Thus n − 2µi = 0 or n (i = 2, ··· , n − 1). So the eigenvalues of K̇n\v1 are 0 (which is simple), possible −1 and n − 1. 

If K̇n\v1 has two eigenvalues 0 and n − 1, then Spec(K̇n\v1) = {0, (n − 1)n−2}, and K̇n\v1 = (Kn−1, +) by Lemma 3.3. 
Then |S 

+(K̇n)| = n. Which is a contradiction with |S 
+(K̇n)| = 1.

If K̇n\v1 has two eigenvalues 0 and −1, then Spec(K̇n\v1) = {0, (−1)n−2} and µ2 = ··· = µn−1 = 2
n . So n − 2 + 1 = 2

n . 
Hence n = 2 and H2 = K2, which contradicts to |S 

+(K̇n)| = 1.
If K̇n\v1 has three eigenvalues 0, n − 1 and −1, then µi ∈ {0, 2

n } (i = 2, ··· , n − 1). Let the number of connected 
component of Hn−1 be s then 1 ≤ s ≤ 2

n  for Hn−1 has no isolated vertex. If s = 1, then Spec(Hn−1) = {0, ( 2
n )n−2}. Hence n − 

1 = 2
n  and n = 2, a contradiction. If s ≥ 2 then Spec(Hn−1) = {0s, ( 2

n )n−s−1}. Then we can find a connected component (say 
F) of Hn−1 such that the order of F is less than 2

n . By Lemma 3.2, v1(F) < 2
n , which leads to a contradiction.

Case 3: |S 
+(K̇n)| = 0.

In this case, there is no vertex with all incident edges are positive, and k = n. Let µ1 = 0, µ2, ··· , µn be the 
eigenvalues of Hn. By Theorem 2.5, Spec(Kn, −Hn) = {0, n − 2µ2, ··· , n − 2µn}. Since (Kn, −Hn) has two eigenvalues, 
then we have µi ∈ { 2

n  , b} (i = 2, · · · , n), thus b /= 2
n  and Hn has at most three distinct eigenvalues 0, 2

n , b, hence 2
n , b, 

are integers as they are rational eigenvalues of Hn. In order to make sure that (Kn, −Hn) has two eigenvalues, we discuss 
the conditions with two parts as follows: 

If µi = b for all i ∈ {2, ··· , n}, that is Spec(Hn) = {0, bn−1}. Then it is easy to know that b = n and Hn = Kn, by 
Lemma 3.3. 

If µi1 = µi2 = ··· = µi( j−1) = 2
n  and µij = µi( j+1) = ··· = µi(n−1) = b, then Spec(Hn) = {0, ( 2

n ) j−1, (b)n−j}. 
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If b = 0, then Spec(Hn) = {0n−j+1, ( 2
n ) j−1}. Let Hn have s connected components (1 ≤ s ≤ 2

n ). If s = 1, then Spec(Hn) 
= {0, ( 2

n )n−1} and hence 2
n  = n. Thus n = 0, which leads to a contradiction. If s = 2, then Spec(Hn) = {02, ( 2

n )n−2}. We can 
find that Hn = K

2
n  ∪ K

2
n . If s ≥ 3, then Spec(Hn) = {0s, ( 2

n )n−s}. Thus Hn has a connected component G1 with the order 
less than 2

n . By lemma 3.2, v1(G1) < 2
n , which leads to a contradiction with the spectrum of Hn. 

If b /= 0, then Spec(Hn) = {0, ( 2
n ) j−1, (b)n−j} (b /= 2

n ). In other words, Hn is a connected graph with exactly three 

distinct eigenvalues. By Theorem 2.5, then Spec(Kn, −Hn) = {0 j, (n − 2b)n−j}. Let h = n − 2b, then b = 2
n h-  and Spec(Hn) 

= {0, ( 2
n ) j−1, ( 2

n h- )n−j}. Hence, Hn has three eigenvalues 0, 2
n , 2

n h- . By Lemma 3.1, we have 2
n  + 2

n h-  = k1 + k2 + 1 = µ + 

n −  µ̄, and 2
n  · 2

n h-  = k1k2 + µ = µn.

If Hn is a d-regular, then k1 = k2 = d. By some simple computations we obtain that µ = 2 1
4 4 2,  n h n hd- -= -  and  µ̄ = 

4
n h+ .

Let Nv and  N̄v denote the neighbors of vertex v in graph Hn and Hn
c, respectively. Hence, we have that | N̄vi

 ∩  N̄vj
| 

=   µ̄, for vivj ∈ E(Hn). Then |Nvi
 ∪ Nvj

| = n −  µ̄, for vivj ∈ E(Hn). Since |Nvi
 ∪ Nvj

| = di + dj − |Nvi
 ∩ Nvj

|, then we get that 

|Nvi
 ∩ Nvj

| = 2d − (n − µ̄) = 4
n h-  − 1, for vivj ∈ E(Hn). It follows that Hn is a strongly regular graph with parameter (n, 

2 1
4 2 4 4,  1,  )n h n h n h- - -- - . 

If Hn is non-regular, then Hn has exactly two distinct vertex degrees and three distinct eigenvalues. Obviously, Hn 

has constant µ = 4
n h-  and  µ̄ = 4

n h+ . The result follows.
Remark 3.5 We can find some examples of Theorem 3.3 (4) and (5) in Table 1 of [9]. Furthermore, the Peterson 

graph (srg(10, 3, 0, 1)) and its complement (srg(10, 6, 3, 4)), the line graph of K4, 4 (srg(16, 6, 3, 2)) and its complement 
(srg(16, 9, 4, 6)) are the graph of Theorem 3.3 (4).

Table 1. The spectra of completed signed graph in Theorem 3.4

Hk Spectra of Hk Spectra of K̇n = (Kn, −Hk)

Kn {0, nn−1} {0, (−n)n−1}

K
2
n {0, 2

n 2
n −1} {0 2

n
, n 2

n
}

K
2
n  ∪ K

2
n {02, 2

n n−2} {0n−1, n}

K
2
n , 2

n {0, n, ( 2
n )n−2} {0n−1, − n}

K
2
n∇+(K

2
n )c {0, n 2

n
, 2

n 2
n −1} {0 2

n
, (−n) 2

n
}

We give an example of Theorem 3.4 (4) as shown in Figure 1 and an example of Theorem 3.3 (5) as shown in 
Figure 2, respectively. In the following figures, the solid line represents the positive edge and the dotted line represents 
the negative edge.

By the proofs of Theorem 3.4 (4) and (5), it is easy to know that n is not an eigenvalues of K̇n = (Kn, −Hn). 
Furthermore, we would like to characterize the graph Hk such that n or −n is an eigenvalues of (Kn, −Hk).

Corollary 3.6 The signed graph K̇n = (Kn, −Hk) has two eigenvalues 0 and n if and only if Hk = K
2
n  or (K

2
n  ∪ K

2
n ). 

The signed graph Σ = (Kn, −Hk) has two eigenvalues 0 and −n if and only if Hk = Kn or K
2
n∇+ 

2
n K1 or K

2
n , 2

n .
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1 1 4

6 6 5

2 2 3

5

3

4

Figure 1. The signed graph K̇6 (the left ) and the graph H6 ( the right) induced by its negative edges, H6 = K3,3

1 1

6 6

5 5

4 4

2 2

3 3

Figure 2. The signed graph K̇6 (the left) and the graph H6 (the right) induced by its negative edges, H6 is a non-regular graph with two distinct vertex 
degrees 5 and 3

Proof. If the signed graph K̇n = (Kn, −Hk) has two eigenvalues 0 and n. By Theorem 3.4, then Hk must be one of K
2
n

or K
2
n  ∪ K

2
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n , By Table 1, the signed graph K̇n = (Kn, −Hk) has two eigenvalues 0 and n.

If the signed graph K̇n = (Kn, −Hk) has two eigenvalues 0 and −n. By Spec(N(−K̇n)) = −Spec(NK̇n)). Note that if K̇n 
= (Kn, −Hk) then −K̇n = (Kn, −Hk

c), where Hk
c is the complement of Hk in Kn. Thus result follows from (K
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If the signed graph K̇n = (Kn, −Hk) has two eigenvalues in which n and −n are not the eigenvalues of K̇n, by 
Corollary 3.6, then Hk must be a graph in the case of Theorem 3.4 (4) and (5).

By the proof of Theorem 3.4 (3), if K̇n has two distinct eigenvalues 0 and h then h is an integer and h = n − 2b 
for some integer b. Moreover, 2

n  is also a integer. Then n and n − 2b are even. We have characterized signed complete 
graphs with two distinct eigenvalues 0, n (or 0, −n). Next we would like to investigative signed complete graph with two 
distinct eigenvalues 0, n − 2i for i  /= 0, n.

Corollary 3.7 If the signed graph K̇n = (Kn, −Hk) has two eigenvalues are 0 and n − 2i (i  /= 0, n). Then k = n and Hn 
is one of the following connected graph:

(1) 2 1
2

n ni ± -=  and Hn is a strongly regular with parameter 1 1 2 1 2 1 1 1 2 1 2 1
2 4 4 2 4 4( ,  ,  1,  ) or ( ,  ,  1,  );n n n n n n n n n n n nn n+ - - + - + - - - - - - - -- -

1 1 2 1 2 1 1 1 2 1 2 1
2 4 4 2 4 4( ,  ,  1,  ) or ( ,  ,  1,  );n n n n n n n n n n n nn n+ - - + - + - - - - - - - -- -  
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(2) Hn has two distinct vertex degrees 
2 22 2 2 ( ) 1 2 2 2 ( ) 1

2 2
1 24 4 2,   and with constant 

n ni n i n i n i n
ik k µ

+ - + - + - + - - - + -
= = =

2and .n iµ -=  

Proof. Since n − 2i  /= ±n, by Theorem 2.5, we can obtain that k = n and the multiplicities of eigenvalues 0 of Hn is 
simple and Hn is a connected graph with distinct eigenvalues 0, i and 2

n . Hence Hn is a connected graph. By Theorem 

3.4, Hn is either a strongly regular with parameter 2 2
4 2 2( ,  ,  1,  )n i i in + - -  or Hn has three eigenvalues and two distinct 

degrees. Let k1 and k2 be the only two distinct degrees of Hn. By Lemma 3.1, we have 2 2 2,  ,  i n i nµ µ -= =  + i = k1 + k2 + 1, 

2
n ·i = k1k2 + µ = µn. By a simple computation we obtain that 

2 22 2 2 ( ) 1 2 2 2 ( ) 1
2 2

1 24 4,  .
n ni n i n i n i n

k k
+ - + - + - + - - - + -

= =

If Hn is a strongly regular graph, then ( 2
n  − i)2 + 1− n = 0, hence 2 1

2 .n ni ± -=  Thus, Hn is a strongly regular with 

parameter 1 1 2 1 2 1 1 1 2 1 2 1
2 4 4 2 4 4( ,  ,  1,  ) or ( ,  ,  1,  ).n n n n n n n n n n n nn n+ - - + - + - - - - - - - -- -

If Hn is a non-regular graph with two distinct vertex degrees, then the two distinct vertex degrees k1 and k2 are as 

shown in the previous proof and Hn has constant µ = 2
i  and  µ̄ = 2

n i- . The result follows.

Remark 3.8 We make a simple discussion on Hn in Corollary 3.7 where Hn is a strongly regular with parameter (n,
1 1 2 1 2 1 1 1 2 1 2 1

2 4 4 2 4 4( ,  ,  1,  ) or ( ,  ,  1,  ).n n n n n n n n n n n nn n+ - - + - + - - - - - - - -- -  Since these parameters should be integer, we 

would like find some examples to find its existence. When n = 10, we find that Hn is a strongly regular with parameter (10, 
6, 3, 4) or (10, 3, 0, 1) (Peterson graph). Moreover, when n = 26, we find that Hn is a strongly regular with parameter (26, 
10, 3, 4) or (26, 15, 8, 9).

Conflict of interest statement
The authors declared that they have no conflicts of interest to this work.

Acknowledgements
This project is supported by the National Natural Science Foundation of China (No.11971164) and the Natural 

Science Foundation of Hunan Province, China (Grant 2019JJ40184).

References
[1]	 Harary F. On the notion of balance in a signed graph. Michigan Mathematical Journal. 1953; 2: 143-146.
[2]	 Zaslavsky T. Graphs, Gain Graphs, and Geometry a.k.a. Signed Graphs and their Friends. Binghamton University; 

2014. Available from: http://people.math.binghamton.edu/zaslav/Oldcourses/581.F14/course-notes-chapter2.pdf. 
2010 [Accessed 29th May 2021]. 
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[10]	Cvetković D, Rowlinson P, Simić S. An introduction to the theory of graph spetra. Cambridge: Cambridge 

University Press; 2010.


