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Abstract: We study the approximation of multivariate functions from a separable Hilbert space in the randomized 
setting with the error measured in the weighted L2 norm. We consider algorithms that use standard information Λstd 
consisting of function values or general linear information Λall consisting of arbitrary linear functionals. We investigate 
the equivalences of various notions of algebraic and exponential tractability in the randomized setting for Λstd and Λall for 
the normalized or absolute error criterion. For the normalized error criterion, we show that the power of Λstd is the same 
as that of Λall for all notions of exponential tractability and some notions of algebraic tractability without any condition. 
For the absolute error criterion, we show that the power of Λstd is the same as that of Λall for all notions of algebraic and 
exponential tractability without any condition. Specifically, we solve Open Problems 98, 101, 102 and almost solve 
Open Problem 100 as posed by E.Novak and H.Woźniakowski in the book: Tractability of Multivariate Problems, 
Volume III: Standard Information for Operators, EMS Tracts in Mathematics, Zürich, 2012.
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1. Introduction
We study multivariate approximation APP = {APPd}d∈N, where

APP : with APP ( )d d d dF G f f→ =

is the compact embedding operator, Fd is a separable Hilbert function space on Dd, Gd is a weighted L2 space on Dd, Dd 
⊂ Rd, and the dimension d is large or even huge. We consider algorithms that use finitely many information evaluations. 
Here information evaluation means linear functional on Fd (general linear information) or function value at some 
point (standard information). We use Λall and Λstd to denote the extended class of all linear functionals (not necessarily 
continuous) and the extended class of all function values (defined only almost everywhere), respectively.

For a given error threshold ε ∈ (0, 1), the information complexity n(ε, d ) is defined to be the minimal number 
of information evaluations for which the approximation error of some algorithm is at most ε. Tractability is aimed 
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at studying how the information complexity n(ε, d) depends on ε and d. There are two kinds of tractability based on 
polynomial convergence and exponential convergence. The Algebraic tractability (ALG-tractability) describes how the 
information complexity n(ε, d) behaves as a function of d and ε−1, while the Exponential tractability (EXP-tractability) 
does as one of d and 1 + lnε−1. The existing notions of tractability mainly include Strong Polynomial Tractability (SPT), 
Polynomial Tractability (PT), Quasi-Polynomial Tractability (QPT), Weak Tractability (WT), (s, t)-Weak Tractability 
((s, t)-WT), and Uniform Weak Tractability (UWT). In recent years the study of algebraic and exponential tractability 
has attracted much interest, and a great number of interesting results have been obtained (see [1-11] and the references 
therein). This paper is devoted to investigating the equivalences of various notions of algebraic and exponential 
tractability for Λstd and Λall in the randomized setting, see Chapter 22 in [8]. The class Λstd is much smaller and much 
more practical and is much more difficult to analyze than the class Λall. Hence, it is very important to study the power 
of Λstd compared to Λall. There are many papers devoted to this field. For example, for the randomized setting, see [8, 
12-16]; for the average case setting, see [8, 17-19]; for the worst case setting see [8, 20-26]. The authors in [8, 16] 
obtained the equivalences of ALG-SPT, ALG-PT, ALG-QPT, ALG-WT in the randomized setting for Λstd and Λall for the 
normalized error criterion without any condition. Meanwhile, for the absolute error criterion under some conditions, the 
equivalences of ALG-SPT, ALGPT, ALG-QPT, ALG-WT were also obtained in [8].

In this paper, we obtain the remaining equivalences of all notions of algebraic and exponential tractability in the 
randomized setting for Λstd and Λall for the normalized or absolute error criterion without any condition. Our results 
particularly imply that for the absolute error criterion the imposed conditions are not necessary. This solves Open 
Problems 98, 101, 102 as posed by Novak and Woźniakowski in [8]. We also give an almost complete solution to Open 
Problem 100 in [8].

This paper is organized as follows. Section 2 contains 5 subsections. In Subsections 2.1 and 2.2 we introduce the 
approximation problem in the worst case and randomized settings. The various notions of algebraic and exponential 
tractability are given in Subsection 2.3. Subsection 2.4 is devoted to giving the equivalences of tractability for Λall for 
the absolute or normalized error criterion in the worst case and randomized settings. Our main results, Theorems 2.2, 2.3, 
2.5, and 2.6, are stated in Subsection 2.5. In Section 3, we give the proofs of Theorems 2.2 and 2.3. After that, in Section 
4, we establish the equivalence results for the notions of algebraic tractability. The equivalence results for the notions of 
exponential tractability are proved in Section 5.

2. Preliminaries and main results
2.1 Deterministic worst case setting

For d ∈ N, let Fd be a separable Hilbert space of d-variate functions defined on Dd ⊂ Rd, Gd = L2(Dd , ρd(x)dx) be 
a weighted L2 space, where Dd is a Borel measurable subset of Rd with positive Lebesgue measure, ρd is a probability 
density function on Dd. We consider the multivariate approximation problem APP = {APPd}d ∈N in the deterministic 
worst case setting which is defined via the compact embedding operator

APP : with APP ( ) .d d d dF G f f→ =

We approximate APPd( f ) by algorithms An,d( f ) of the form

, , 1 2( ) ( ( ), ( ), , ( )),n d n d nA f L f L f L fφ= …

where L1, L2, ..., Ln are general linear functionals on Fd, φ n, d : Rn → Gd is an arbitrary measurable mapping, and the 
number n may be adaptively depend on the input. The worst case approximation error for the algorithm An,d of the form (2) 
is defined as

wor
, ,

, 1
( ) sup APP ( ) ( ) .

d
d Fd

n d d n d G
f F f

e A f A f
∈ ≤

= −
‖‖

‖ ‖

(1)

(2)



Contemporary MathematicsVolume 3 Issue 1|2022| 3

The nth minimal worst case error is defined by

all
,

wor all wor
,

wi  th
( , ; ) inf ( ),

n d i
n d

A L
e n d e A

Λ∈
Λ =

where the infimum is taken over all algorithms of the form (2).
For n = 0, we use A0,d = 0. We obtain the so-called initial error ewor(0, d; Λall), defined by

wor all

, 1
(0, ; ) sup APP ( ) .

d
d Fd

d G
f F f

e d f
∈ ≤

Λ =
‖‖

‖ ‖

From [6, 27] we know that ewor(n, d; Λall) depends on the eigenpairs , , 1( , ){ }k d k d keλ ∞
=  of the operator

*APP APP : ,d d d d dW F F= →

where APPd is given by (1), APP*
d is the adjoint operator of APPd, and

1, 2, , 0.d d n dλ λ λ≥ ≥ … … ≥

That is, {e j,d}j∈N is an orthonormal basis in Fd , and

, , , .d j d j d j dW e eλ=

From [6] we get that the nth minimal worst case error is

wor all 1/2
1,( , ; ) ( ) ,n de n d λ +=Λ

and it is achieved by the optimal algorithm

*
, , ,

1
( ) , ,

d

n

n d k d F k d
k

S f f e e
=

= 〈 〉∑

that is,

wor all * 1/2
, 1,

, 1
( , ; ) sup ( ) ( ) .

d
d Fd

n d G n d
f F f

e n d f S f λ +
∈ ≤

=Λ = −
‖‖

‖ ‖

Without loss of generality, we may assume that all the eigenvalues are positive. We set

1/2
, , , , .k d k d k de kλη −= ∈

We remark that {ek,d} is an orthonormal basis in Fd, {ηk, d} is an orthonormal system in Gd, and for f ∈ Fd,

, , , , , , ,
d dk d F k d k d G k df e e f η η〈 〉 = 〈 〉

and

(3)
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*
, , , 

1
( ) , .

d

n

n d k d G k d
k

S f f η η
=

= 〈 〉∑

2.2 Randomized setting

In the randomized setting, we consider randomized algorithms Aω
n,d of the form

, , , 1, , , ( ) ( ( ), , ( )), , 1 ,n d n d n jA f L f L f L j nω ω
ω

ωωφ= ∈ Λ ≤ ≤

where Λ ∈ {Λall, Λstd}, φ n,d,ω and Lj,ω could be randomly selected according to some probability space (Ω, Σ, P), for any 
fixed ω ∈ Ω, Aω

n, d is a deterministic method with cardinality n = n( f , ω), the number n = n( f , ω) may be randomized 
and adaptively depend on the input, and the cardinality of Aω

n, d is then defined by

, 
, 1

Card( ) sup ( , ).
d Fd

n d
f F f

A n fω
ω ω

∈ ≤
=

‖‖



The randomized approximation error for the algorithm Aω
n, d of the form (5) is defined as

( )1/2
ran

, , 
, 1

2
( ) sup APP ( ) ( ) .

d
d Fd

n d d n d
f GF f

e A f A fω ω
ω

∈ ≤
= −

‖‖



The nth minimal randomized error for Λ ∈ {Λall, Λstd} is defined by

, , 

ran ran
, 

with
( , ; ) inf ( ),

n d i
n d

A L
e n d e A

ω
ω

ω

∈Λ
Λ =

where the infimum is taken over all randomized algorithms Aω
n, d of the form (5) with Card(Aω

n, d) ≤ n.
For n = 0, we use Aω

0, d = 0. We have

ran wor all 1/2
1,(0, ; ) (0, ; ) ( ) .de d e d λΛ = Λ =

There are many papers devoted to studying randomized approximation and relations of eran(n, d; Λ) and ewor(n, d; Λ) 
for Λ ∈ {Λall, Λstd} (see [6, 8, 14-16, 28-33]).

This paper is devoted to discussing the equivalence of tractability for Λall and Λstd in the randomized settings. For 
Λstd the authors in [8, 14, 16] used simplified randomized algorithms of the form

, ,
1

( ) ( ) ,
n

jn t j t
j

A f f t g
=

= ∑ 

where t


 = [t1, ..., tn] for some random points t1, ..., tn from Dd, which are independent, and each t j is distributed according 
to some probability. The functions ,j tg  ∈ Gd may depend on the selected points t j’s but are independent of f . For any f , 
we view An,·( f ) as a random process, and ,n tA ( f ) as its specific realization.

We stress that algorithms of the form (6) belong to a restricted class of all randomized algorithms, which are called 
randomized linear algorithms. Indeed, we assume that n is not randomized, and for a fixed t



 we consider only linear 
algorithms in f (t j). In this paper, we also consider algorithms of the form (6). However, in [8, 14, 16] t j’s are assumed to 
be independent, while in this paper we only assume that t



 is distributed according to some probability measure, and do 
not assume that t j’s are independent.

The information complexity can be studied using either the Absolute error criterion (ABS) or the Normalized error 
criterion (NOR). For ◊ ∈ {wor, ran},  ∈ {ABS, NOR}, and Λ ∈ {Λall, Λstd}, we define the information complexity 

(4)

(5)

(6)
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,n◊ (ε, d; Λ) as

, ( , ; ) inf{ ( , ; ) CRI },| dn d n e n dε ε◊ ◊= ≤Λ Λ

where

1/2
1,d

for = ABS,for = ABS,
CRI

, for = NOR.(0, , ), for = NOR
1,         1,               

  
( )d e d λ◊ =


=  Λ 




We remark that

wor all ran all ran std 1/2
1,(0, , ) (0, , ) (0, , ) ( ) .de d e d e d λ= =Λ Λ =Λ

Since Λstd ⊂ Λall, we get

ran all ran std( , ; ) ( , ; ).e n d e n d Λ≤Λ

It follows that for  ∈ {ABS, NOR},

ran, all ran, std( , ; ) ( , ; ).n d n dε ε Λ≤Λ 

2.3 Notions of tractability

In this subsection, we briefly recall the various tractability notions. First, we introduce all notions of algebraic 
tractability. Let APP = {APPd}d∈N, ◊ ∈ {wor, ran},  ∈ {ABS, NOR}, and Λ ∈ {Λall, Λstd}. In the ◊ setting for the class Λ, 
and for error criterion , we say that APP is

•Algebraically Strongly Polynomially Tractable (ALG-SPT) if there exist C > 0 and a non-negative number p such 
that

, ( , ; ) ,  for all (0,1).pn d Cε ε ε◊ −≤Λ ∈

The exponent ALG- ,p◊ (Λ) of ALG-SPT is defined as the infimum of p for which (9) holds;
•Algebraically Polynomially Tractable (ALG-PT) if there exist C > 0 and nonnegative numbers p, q such that

, ( , ; ) ,  for all , (0,1);q pn d Cd dε ε ε◊ −≤ ∈ ∈Λ 



•Algebraically Quasi-Polynomially Tractable (ALG-QPT) if there exist C > 0 and a non-negative number t such 
that

, 1( , ; ) exp( (1 ln )(1 ln )),  for all ,  (0,1).n d C t d dεε ε◊ −≤ + + ∈Λ ∈



The exponent ALG-t ,p◊ (Λ) of ALG-QPT is defined as the infimum of t for which (10) holds;
•Algebraically Uniformly Weakly Tractable (ALG-UWT) if

1

,ln ( , ; )lim 0,  for all 0 , ;
d

n d
dα βε

α β
ε

ε
−

◊

−+ →∞

Λ
= >

+



(7)

(8)

(9)

(10)
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•Algebraically Weakly Tractable (ALG-WT) if

1

,

1

ln ( , ; )lim 0;
d

n d
dε ε

ε
−

◊

−+ →∞

Λ
=

+



•Algebraically (s, t)-Weakly Tractable (ALG-(s, t)-WT) for fixed s, t > 0 if

1

,ln ( , ; )lim 0.s td

n d
dε ε

ε
−

◊

−+ →∞ +
Λ

=


Clearly, ALG-(1, 1)-WT is the same as ALG-WT. If APP is not ALG-WT, then APP is called intractable.
If the nth minimal error is exponentially convergent, then we should study tractability with ε−1 being replaced by 1 

+ lnε−1, which is called exponential tractability. Recently, there have been many papers studying exponential tractability 
(see [1, 3-5, 9, 34]).

In the definitions of ALG-SPT, ALG-PT, ALG-QPT, ALG-UWT, ALG-WT, and ALG-(s, t)-WT, if we replace ε−1 
by 1 + lnε−1, we get the definitions of Exponential Strong Polynomial Tractability (EXP-SPT), Exponential Polynomial 
Tractability (EXP-PT), Exponential Quasi-Polynomial Tractability (EXP-QPT), Exponential Uniform Weak Tractability 
(EXP-UWT), Exponential Weak Tractability (EXP-WT), and Exponential (s, t)-Weak Tractability (EXP-(s, t)-WT), 
respectively. We now give the above notions of exponential tractability in detail.

Let APP = {APPd}d∈N, ◊ ∈ {wor, ran},  ∈ {ABS, NOR}, and Λ ∈ {Λall, Λstd}. In the ◊ setting for the class Λ, and 
for error criterion , we say that APP is

•Exponentially Strongly Polynomially Tractable (EXP-SPT) if there exist C > 0 and a non-negative number p such 
that

, 1( , ; ) (ln 1) ,  for all (0,1).pn d C εε ε◊ − ∈Λ ≤ +

The exponent EXP- ,p◊ (Λ) of EXP-SPT is defined as the infimum of p for which (11) holds;
•Exponentially Polynomially Tractable (EXP-PT) if there exist C > 0 and nonnegative numbers p, q such that

, 1( , ; ) (ln 1) , for al l , (0,1);q pn d Cd dε ε ε◊ −Λ ≤ + ∈ ∈



•Exponentially Quasi-Polynomially Tractable (EXP-QPT) if there exist C > 0 and a non-negative number t such 
that

( )( ), 1( , ; ) exp (1 ln ) 1 ln(ln 1) , for all , (0,1).  n d C t d dε ε ε◊ −≤ + + + ∈ ∈Λ 



The exponent EXP-t ,p◊ (Λ) of EXP-QPT is defined as the infimum of t for which (12) holds;
•Exponentially Uniformly Weakly Tractable (EXP-UWT) if

1

,

1

ln ( , ; )lim 0, for all , 0;
(1 ln

  
)d

n d
dα βε

ε α β
ε−

◊

−+ →∞
= >

+
Λ

+



•Exponentially Weakly Tractable (EXP-WT) if

1

,

1

ln ( , ; )lim 0;
1 lnd

n d
dε

ε
ε−

◊

−+ →∞ +
Λ

=
+



•Exponentially (s, t)-Weakly Tractable (EXP-(s, t)-WT) for fixed s, t > 0 if

(11)

(12)
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1

,

1

ln ( , ; )lim 0.
(1 ln )s td

n d
dε ε

ε
−

◊

−+ →∞ +
Λ

=
+



2.4 Equivalences of tractability for Λall in the worst case and randomized settings

In this subsection, we introduce the equivalences of tractability for Λall in the worst case and randomized settings. It 
follows from [6] that

wor all ran all wor all1 (4 1, ; ) ( , ; ) ( , ; ),
2

e n d e n d e n dΛ Λ Λ− ≤ ≤

which means that for  ∈ {ABS, NOR}and nran,,p◊ (ε, d; Λall) ≥ 1,

( )wor, all ran, all wor, all1 (2 , ; ) 1 ( , ; ) ( , ; ).
4

n d n d n dε ε εΛ + ≤ Λ ≤ Λ  

From (13) we get the equivalences of tractability for Λall in the worst case and randomized settings. Indeed, for the 
absolute or normalized error criterion, Corollaries 22.1 and 22.2 in [8] show the equivalences of ALG-SPT, ALG-PT, 
ALG-QPT, ALG-WT for Λall in the worst case and randomized settings, and that the exponents of ALG-SPT and ALG-
QPT in the worst case and randomized settings are also the same.

Using (13) and the same method as in the proofs of Corollaries 22.1 and 22.2 in [8], for the absolute or normalized 
error criterion we obtain the equivalences of ALG-UWT, ALG-(s, t)-WT, EXP-SPT, EXP-PT, EXP-QPT, EXP-WT, 
EXP-UWT, EXP-(s, t)-WT, for Λall in the worst case and randomized settings, and that the exponents of EXP-SPT and 
EXP-QPT in the worst case and randomized settings are also the same.

We remark that in showing EXP-t ran,,p◊ (Λall) = EXP-t wor,,p◊ (Λall), we use the following inequalities (see page 43 in [8]): 
for δ ∈ (0, 1) and nran,,p◊  (ε, d; Λall) ≥ 1,

2 wor, all ran, all wor, all, ; 1 ( , ; ) ( , ; ),
1

n d n d n dδ ε
δ

ε ε  
  

  
Λ + ≤ Λ ≤ Λ

−
  

instead of (13). See the proof of Theorem 5.4.
We summarize these properties in the next corollary.
Corollary 2.1 Consider the approximation problem APP = {APPd}d∈N for the absolute or normalized error criterion 

in the randomized and worst case settings for Λall. Then
•ALG-SPT, ALG-PT, ALG-QPT, ALG-UWT, ALG-WT, ALG-(s, t)-WT in the randomized setting is equivalent to 

ALG-SPT, ALG-PT, ALG-QPT, ALG-UWT, ALG-WT, ALG-(s, t)-WT in the worst case setting;
•EXP-SPT, EXP-PT, EXP-QPT, EXP-UWT, EXP-WT, EXP-(s, t)-WT in the randomized setting is equivalent to 

EXP-SPT, EXP-PT, EXP-QPT, EXP-UWT, EXP-WT, EXP-(s, t)-WT in the worst case setting;
•the exponents of SPT and QPT are the same in the two settings, i.e., for  ∈ {ABS, NOR},

wor, all ran, allALG - ( ) ALG - ( ),p pΛ Λ= 

wor, all ran, allALG - ( ) ALG - ( ),t tΛ Λ= 

wor, all ran, allEXP- ( ) EXP- ( ),p pΛ Λ= 

wor, all ran, allEXP- ( ) EXP- ( . )t tΛ Λ= 

(13)
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2.5 Main results

We shall give the main results of this paper in this subsection. The first important progress about the relation 
between eran(n, d; Λstd) and ewor(n, d; Λall) was obtained by Wasilkowski and Woźniakowski in [16] by constructing 
iterated Monte Carlo methods. They showed that the powers of eran(n, d; Λstd) and ewor(n, d; Λall) are the same, 
and obtained the equivalences of ALG-SPT and ALG-PT for Λall and Λstd for the normalized error criterion in the 
randomized setting. Novak and Woźniakowski in [8] and Krieg in [14] refined the above randomized algorithms and 
showed that eran(n, d; Λstd) is asymptotically of the same order as ewor(n, d; Λall) given that ewor(n, d; Λall) is regularly 
decreasing. However, the obtained relations are heavily dependent of the initial error, and are not sharp if ewor(n, d; Λall) 
is exponentially convergent.

If nodes X = (x1, ..., xn) ∈ Dn
d are drawn independently and identically distributed according to a probability 

measure, then the samples on the nodes X is called the random information (see [35-37]). Using random information 
and the least squares method we can obtain the relation between eran(n, d; Λstd) and ewor(n, d; Λall) (see [12, 13]). The 
authors in [38] used random information satisfying some conditions and the least squares method to obtain an inequality 
between eran(n, d; Λstd) and ewor(n, d; Λall) (see Theorem 6.1 in [38]). They remarked in Remark 6.3 in [38] that using the 
weighed least squares method can improve the above inequality.

In this paper we use the method proposed in Remark 6.3 in [38], i.e., combining the proof of Theorem 6.1 in [38] 
with the weighted least squares method used in [13], to get an improved inequality between eran(n, d; Λstd) and ewor(n, d; 
Λall). See the following theorem. Compared with the results in [8, 14], our inequality does not depend on the initial error, 
and are almost sharp if ewor(n, d; Λall) is exponentially convergent. However, if ewor(n, d; Λall) is regularly decreasing, then 
by our inequality we can only obtain that eran(n, d; Λstd) is at most asymptotically of the order of ewor(m, d; Λall), where n 
is at least of order m ln m.

Theorem 2.2 Let δ ∈ (0, 1), m, n ∈ N be such that

.
48( 2 ln(2 ) ln )

nm
n δ

 
=  

− 

Then we have

1
2ran std wor all4 1( , ; ) 1 ( , ; ),

1
me n d e m d
n δ

 ≤ + Λ − 
Λ

where x    denotes the largest integer not exceeding x.
Based on Theorem 2.2, we obtain two relations between the information complexities nran,,p◊  (ε, d; Λstd) and 

nwor,,p◊  (ε, d; Λall) for  ∈ {ABS, NOR}.
Theorem 2.3 For  ∈ {ABS, NOR}, we have

ran, std wor, all wor, all( , ; ) 96 2 , ; 1 ln , ; 1 ln(192 2) .
4 4

 n d n d n dε εε
    

Λ ≤ Λ + Λ + +    
 

   
 

 
 

    
  

Furthermore, for 0 < δ < e−2, we have

ran, std wor, all1 1( , ; ) 48 4 ln 48 ln ln ln , ; 1 lnn d n d
Aδ

εε
δ δ

   
 Λ ≤ + + Λ + + 

 
 
 

      

 

wor, all, ; 1 ,n d
Aδ

ε 
Λ +  




  






(14)

(15)

(16)
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where

1
2

1 1: 1 .
1 112ln

Aδ δ
δ

 
 

= + 
−  

 

It is easy to see that for any ω > 0, 0 < δ < e−2,

1

96 2(ln ln(192 2))sup ,
x

x C
x ωω

≥

+
= < +∞

and

,
1

1 148 4 ln 48 ln ln ln ln
sup .

x

x
C

x ω δω

δ δ
≥

  + + +     = < +∞

According to (15)-(18), we have the following corollary which gives two useful inequalities between the 
information complexities nran,,p◊  (ε, d; Λstd) and nwor,,p◊  (ε, d; Λall) for  ∈ {ABS, NOR}.

Corollary 2.4 For  ∈ {ABS, NOR} and ω > 0, we have

1
ran, std wor, all( , ; ) , ; 1 .

4
n d C n d

ω

ω
εε

+
  
  

 
+


Λ ≤ Λ 

Similarly, for ω > 0, 0 < δ < e−2 and  ∈ {ABS, NOR}, we have

1

ran, std wor, al
,

l( , ; ) , ; 1 ,n d C n d
Aω

ω

δ
δ

εε
+

Λ ≤ Λ +
  
     

 

where

1
2

1 1: 1 .
1 112ln

Aδ δ
δ

 
 

= + 
−  

 

In the randomized setting, for the normalized error criterion, Theorems 22.19, 22.21, and 22.5 in [8] give the 
equivalences of ALG-PT (ALG-SPT), ALG-QPT, ALG-WT for Λall and Λstd, and shows that the exponents of ALG-
SPT and ALG-QPT for Λall and Λstd are the same. For the absolute error criterion, Theorems 22.20, 22.22, and 22.6 in 
[8] give the equivalences of ALG-PT (ALG-SPT), ALG-QPT, ALG-WT for Λall and Λstd under some conditions on the 

initial error 1,dλ . Novak and Woźniakowski posed Open problems 98, 101, 102 in [8] which ask whether the above 
conditions are necessary.

In this paper, we obtain the equivalences of ALG-SPT, ALG-PT, ALG-QPT, ALG-WT for Λall and Λstd for the 
absolute error criterion without any condition, which means the above conditions are unnecessary. This solves Open 
problems 98, 101, 102 in [8]. See the following theorem.

Theorem 2.5 Consider the problem APP = {APPd}d∈N in the randomized setting for the absolute error criterion. Then

(17)

(18)

(19)

(20)
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•ALG-SPT, ALG-PT, ALG-QPT, ALG-WT for Λall is equivalent to ALG-SPT, ALG-PT, ALG-QPT, ALG-WT for 
Λstd;

•The exponents ALG-pran,ABS(Λ) of ALG-SPT for Λall and Λstd are the same, and the exponents ALG-t ran,ABS(Λ) of 
ALG-QPT for Λall and Λstd are also the same.

For exponential convergence in the randomized and worst case settings, we first give an almost complete solution 
to Open Problem 100 in [8].

In the randomized setting for the normalized or absolute error criterion, the equivalences of ALG-UWT and ALG-
(s, t)-WT, and the various notions of EXP-tractability for Λall and Λstd, as far as we know, have not been studied. In this 
paper, we investigate these problems and obtain the following theorem which gives the above equivalences without any 
condition.

Theorem 2.6 Consider the problem APP = {APPd}d∈N in the randomized setting for the absolute or normalized 
error criterion. Then for  ∈ {ABS, NOR},

•EXP-SPT, EXP-PT, EXP-QPT, EXP-UWT, EXP-WT, EXP-(s, t)-WT, ALG-UWT, ALG-(s, t)-WT for Λall is 
equivalent to EXP-SPT, EXP-PT, EXP-QPT, EXP-UWT, EXP-WT, EXP-(s, t)-WT, ALG-UWT, ALG-(s, t)-WT for Λstd;

•The exponents EXP-pran,,p◊  (Λ) of EXP-SPT for Λall and Λstd are the same, and the exponents EXP-t ran,,p◊  (Λ) of EXP-
QPT for Λall and Λstd are also the same.

Combining Corollary 2.1 with Theorems 22.19, 22.21, and 22.5 in [8] and Theorems 2.5 and 2.6, we obtain the 
following corollary.

Corollary 2.7 Consider the approximation problem APP = {APPd}d∈N for the absolute or normalized error criterion 
in the randomized and worst case settings. Then

•ALG-SPT, ALG-PT, ALG-QPT, ALG-UWT, ALG-WT, ALG-(s, t)-WT in the worst case setting for Λall is 
equivalent to ALG-SPT, ALG-PT, ALG-QPT, ALG-UWT, ALG-WT, ALG-(s, t)-WT in the randomized setting for Λall 
or for Λstd;

•EXP-SPT, EXP-PT, EXP-QPT, EXP-UWT, EXP-WT, EXP-(s, t)-WT in the worst case setting for Λall is equivalent 
to EXP-SPT, EXP-PT, EXP-QPT, EXP-UWT, EXP-WT, EXP-(s, t)-WT in the randomized setting for Λall or for Λstd;

• the exponents of SPT and QPT are the same in the worst case setting for Λall and in the randomized setting for Λall 
and Λstd, i.e., for  ∈ {ABS, NOR},

wor, all ran, all ran, stdALG - ( ) ALG - ( ) ALG - ( ),p p pΛ = Λ=Λ  

wor, all ran, all ran, stdALG - ( ) ALG - ( ) ALG - ( ),t t tΛ = Λ=Λ  

wor, all ran, all ran, stdEXP- ( ) EXP- ( ) EXP- ( ),p p pΛ Λ Λ= =  

wor, all ran, all ran, stdEXP- ( ) EXP- ( ) EXP- ( ).t t tΛ = Λ=Λ  

3. Proofs of Theorems 2.2 and 2.3
Let us keep the notations of Subsection 2.1. For any m ∈ N, we define the functions hm,d and ωm,d on Dd by

2
, , , ,

1

1( ) : | ( ) | , ( ) : ( ) ( ),
m

m d j d m d m d d
j

h x x x h x x
m

η ρω
=

= =∑

where , 1{ }j d jη ∞
=  is an orthonormal system in Gd = L2(Dd, ρd(x)dx). Then ωm,d is a probability density function on Dd, i.e., 

∫ Ddωm,d(x)dx = 1. We define the corresponding probability measure µm,d by

, ,( ) ( ) ,m d m dA
A x dxωµ = ∫
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where A is a Borel subset of Dd. We use the convention that 0 : 0
0

= 0. Then , 1{ }m
j d jη =  is an orthonormal system in L2(Dd, 

µm,d), where

,
,

,

: , 1 .j d
j d

m d

j m
h

η
η = ≤ ≤

For X = (x1, ..., xn) ∈ Dn
d , we use the following matrices

 

  

  

  

  

1 1 1
1, 2, ,

2 2 2
*1, 2, ,

1, 2, ,

( ) ( ) ( )

( ) ( ) ( ) 1(X) and ,

( ) ( ) ( )

d d m d

d d m d
m m m m m

n n n
d d m d

x x x

x x x
L L H L L

n

x x x

η η η

η η η

η η η

 
 
 

= = = 
 
 
 





  



where A∗ is the conjugate transpose of a matrix A. Note that

 

2
,

1
( ) : sup | ( ) | .

d

m

k d
x D k

N m x mη
∈ =

= =∑

It follows from the proof of Proposition 5.1 in [38] that whether Proposition 5.1 in [38] holds or not depends only 
on the orthonormal property of η j, j = 1, ..., m in L2(D, ρd). Since , 1{ }m

j d jη =  is an orthonormal system in L2(Dd, µm,d), 
 , 1{ }m

j d jη = ,  j = 1, ..., m. According to Propositions 5.1 and 3.1 in [38] we have the Propositions 5.1 and 3.1 in [38] hold for 
following results.

Lemma 3.1 Let n, m ∈ N. Let x1, ..., xn ∈ Dd be drawn independently and identically distributed at random with 
respect to the probability measure µm,d. Then it holds for 0 < t < 1 that

( )
2

2(2 ) exp ,
12

m m
ntH I t n

m
 

− > ≤ − 
 

‖ ‖

where Lm, H m are given by (21), Im is the identity matrix of order m, and ||L || denotes the spectral norm (i.e. the largest
singular value) of a matrix L.

Lemma 3.2 Let n, m ∈ N, and let Lm, H m be given by (21). If

 1/ 2,m mH I− ≤‖ ‖

then 

 

* 1 2( ) .m mL L
n

− ≤‖ ‖

Remark 3.3 From Lemma 3.1 we immediately obtain that the matrix H m ∈ Cm×m has only eigenvalues larger than
t := 1/2 and satisfies

 1/ 2,m mH I− ≤‖ ‖

with probability at least 1 − δ if

(21)

(22)
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( ) .
48( 2 ln(2 ) ln )

nN m m
n δ

= ≤
−

Specifically, if

1,
48( 2 ln(2 ) ln )

nm
n δ

 
= ≥ 

− 

then the matrix H m has only eigenvalues larger than 1/2 and satisfies

 1/ 2,m mH I− ≤‖ ‖

with probability at least 1 − δ, where x    denotes the largest integer not exceeding x. It follows that

( )1/ 2 1 ,m mH I δ− ≤ ≥ −‖ ‖

holds given the condition (23).
Now let n, m ∈ N satisfying (23), x1, ..., xn be independent and identically distributed sample points from Dd that 

are distributed according to the probability measure µm, d, and Lm, H m be given by (21). If the sample points X = (x1, ..., 
xn) satisfy ||H m − Im|| > 1/2, then we discard these points and re-sample until the re-sample points satisfy ||H m − Im|| ≤ 
1/2. That is, we consider the conditional distribution given the event ||H m − Im|| ≤ 1/2, and the conditional expectation

( ) 

( )

1 1
, ,1/2

( , , ) ( ) ( )
1/ 2

1/ 2
| m m

n n
m d m dH I

m m
m m

X x x d x d x
X H I

H I

µ µ
− ≤

… …
− ≤ =

− ≤

∫‖ ‖
‖ ‖

‖ ‖




of a random variable X.
If ||H m − Im|| ≤ 1/2 for some X = (x1, ..., xn) ∈ Dn

d  then Lm = Lm(X) has the full rank. The algorithm is a weighted 
least squares estimator

2

X
1 ,

| ( ) ( ) |( ) arg min ,
( )m

i in
m

i
g V i m d

f x g xS f
h x∈ =

−
= ∑

which has a unique solution, where Vm := span{η1, d , ..., ηm, d}. Note that

( ), ,{ | ( ) 0} 0.m d d m dx D h xµ ∈ = =

This means the above algorithm is meaningful. It follows that S m
X ( f ) = f  whenever f  ∈ Vm. From [13, 38], we can 

give the following algorithm.
Algorithm Weighted least squares regression.
Input: X = (x1, ..., xn) ∈ Dn

d                   set of distinct sampling nodes,

1

1
, ,

( ) ( )f , ,
( ) ( )

T
n

n
m d m d

f x f x
h x h x

 
 = …
 
 

                                                            weighted samples of f evaluted at the nodes from X,

m ∈ N                                                 m < n such that the matrix Lm = Lm(X) from (21) has full (column) rank.
Solve the over-determined linear system

(23)

(24)

(25)
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

1( , , ) fT
m mL c c =  



via least squares, i.e., compute

  

* *1
1( , , ) ( ) f .T

m m mmc c L L L−= 

 


Output: 1( , , )T m
mc c c= ∈  

   coefficients of the approximant X ,
1

( ) :
m

m
k k d

k
S f c η

=

= ∑   which is the unique solution of (25).

Proof of Theorem 2.2
We use the above notations. We remark that X = (x1, ..., xn) obeys the conditional distribution given the event ||H m 

− Im|| ≤ 1/2, and S m
X is a randomized linear algorithm with fixed cardinality n. It follows that

( ) ( )2ran std 2
X

, 1
( , ; ) sup ( ) 1/ 2 ,|

d
d Fd

m
mG m

f F f
e n d f S f H I

∈ ≤
Λ ≤ − − ≤

‖‖

‖ ‖ ‖ ‖

where n, m ∈ N satisfy (23). We estimate 2
X ( )

d

m
Gf S f−‖ ‖  for f ∈ Fd with || f || Fd ≤ 1. We set

2 ,( , ).d d m dH L D µ=

We recall that , 1{ }j d je ∞
=  is an orthonormal basis in Fd, , 1{ }j d jη ∞

=  is an orthonormal system in Gd = L2(Dd, ρd(x)dx), 
and , 1{ }m

j d jη =  is an orthonormal system in Hd = L2(Dd, µm,d), where

,1/2
, , , ,

,

, 1 and : . , 1j d
j d j d j d j d

m d

e j j m
h

λ
η

η η−= ≥ = ≤ ≤

For f ∈ Fd ⊂ Gd with || f ||Fd ≤ 1, we have

, , , ,
1 1

, , ,
d dk d F k d k d G k d

k k
f f e e f η η

∞ ∞

= =

= 〈 〉 = 〈 〉∑ ∑

and

2 2 1 2
, , ,

1 1
| , | | , | .

d d dF k d F k d k d G
k k

f f e fλ η
∞ ∞

−

= =

= 〈 〉 = 〈 〉∑ ∑‖‖

We note that f  − S *
m,d( f ) is orthogonal to the space Vm with respect to the inner product ., . Gd, and

* *
X , X , 1, ,( ) ( ) ( ( )) : span{ , , },m m

m d m d m d m dS f S f S f S f V η η− = − ∈ = …

where

*
, , ,

1
( ) , .

d

m

m d k d G k d
k

S f f η η
=

= 〈 〉∑

It follows that
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2 * 2 * 2
X , X ,( )   ( )   ( ( ))

d d d

m m
G m d G m d Gf S f f S f S f S f− = − + −‖ ‖ ‖ ‖ ‖ ‖

2 2
X    ( ) ,

d d

m
G Gg S g= +‖‖ ‖ ‖

where *
, ( )m dg f S f= − .

We recall that

   

* *1
X , 1

1
( ) , ( , , ) ( ) g, 

m
m T

m m mk k d m
k

S g c c c c L L Lη −

=

= = … =∑    

where

1

,

g ( ( ), , ( )) , .n T

m d

gg x g x g
h

= =   


Since , 1{ }k d kη ∞
=  is an orthonormal system in Gd , we get

  

* *2 2 1 2
X 2 2( )       ( ) g 

d

m
m m mGS g c L L L−= = ‖ ‖ ‖ ‖ ‖ ‖

  

* *1 2 2
2   ( )   g m m mL L L−≤ ⋅ ‖ ‖ ‖ ‖



* 2
22

4  g ,mL
n

≤ ‖ ‖

where || · ||2 is the Euclidean norm of a vector. We have



* 2 2
2 ,

1 1
g ( ) ( )| |

m n
j j

m k d
k j

L x g xη
= =

= ⋅∑ ∑  ‖ ‖

, ,
1 1 1

( ) ( ) ( ) ( ).
m n n

j j i i
k d k d

k j i
x g x x g xη η

= = =

= ∑∑∑   

It follows that





* 2 1
1 2 , ,
2

g ( ) ( )
m m

n
m m d m dH I

J L d x d xµ µ
− ≤

= …∫ 

‖ ‖
‖ ‖



* 2 1
2 , ,g ( ) ( )

n
d

n
m m d m dD

L d x d xµ µ≤ …∫ ‖ ‖

1
, , , ,

1 , 1
( ) ( ) ( ) ( ) ( ) ( )

n
d

m n
j j i i n

k d k d m d m dD
k i j

x g x x g x d x d xη η µ µ
= =

= …∑ ∑ ∫   

, ,
1 , 1

,
m n

k i j
k i j

J
= =

= ∑ ∑
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where 

1
, , , , , ,( ) ( ) ( ) ( ) ( ) ( ).

n
d

j j i i n
k i j k d k d m d m dD

J x g x x g x d x d xη η µ µ= …∫   

If i ≠ j and 1 ≤ k ≤ m, then

2 2
, , , ,  | , |    | , |    0;

d dk i j k d H k d GJ g gη η= 〈 〉 = 〈 〉 =

If i = j, then

2
, , ,   .

dk i j k d HJ gη= ⋅ ‖ ‖

Since hm,d(x) 2
, ,

1

1( ) | ( ) | ,
m

m d k d
k

h x x
m

η
=

= ∑  we get 

2
, , ,

1 1 1
 

d

m n m

k i j k d H
k i j k

J J n gη
= = = =

≤ = ⋅∑ ∑ ∑  ‖ ‖

2
, ,

1
 | ( ) ( ) | ( ) ( )

n
d

m

k d d m dD
k

n g x x x h x dxη ρ
=

= ∑∫ 

2
,

1 ,

| ( ) ( ) |
( )

( )n
d

m
k d

dD
k m d

g x x
n x dx

h x
η

ρ
=

= ∑∫

2| ( ) | ( )
n
d

dD
n m g x x dxρ≤ ∫

2   .
dGnm g= ⋅‖ ‖

Hence, by (3) we have



2 1
1 , ,

, 1 2

sup ( ) ( ) ( )
dm md Fd

m n
X G m d m dH If F f

f S f d x d xµ µ
− ≤∈ ≤

− …∫‖ ‖‖‖

‖ ‖

( )22 2 wor all
2

4 4 4 1  1 ( , ; ) .
d dG G

m mg J g e m d
n nn

   ≤ + ≤ + ≤ +   
   

Λ‖ ‖ ‖ ‖

We conclude that

( )2
X

, 1
sup ( ) 1/ 2|

d
d Fd

m
mG m

f F f
f S f H I

∈ ≤
− − ≤

‖‖

‖ ‖ ‖ ‖





2 1
1 , ,
2

, 1

( ) ( ) ( )
sup

1
2

dm m

d Fd

m n
X G m d m dH I

f F f
m m

f S f d x d x

H I

µ µ
− ≤

∈ ≤

− …
=

 − ≤ 
 

∫‖ ‖

‖‖

‖ ‖

‖ ‖
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( )wor all 24 11 ( , ; ) ,
1

m e m d
n δ

Λ ≤ +  − 

where in the last inequality we used (24). This completes the proof of Theorem 2.2.
Proof of Theorem 2.3
Applying Theorem 2.2 with δ = 2

1
2

, we obtain

11
2 22ran std wor all

2

4 2( , ; ) 1 ( , ; ),
2 1

me n d e m d
n

  ≤ + 
  −

Λ Λ  
 

where m, n ∈ N, and

.
48 2 ln(4 )

nm
n

 
=  

 

Since 1 + 
4m
n

 ≤ 1 + 
1

12 2 ln(4 )n
 ≤ 2, by (26) we get

ran std wor all( , ; ) 4 ( , ; ).e n d e m dΛ Λ≤

It follows that

{ }ran, std ran std( , ; ) min ( , ; ) CRI| dn d n e n dε εΛ = ≤Λ

{ }wor allmin 4 ( , ; ) CRI| dn e m d ε≤Λ≤

wor allmin ( , ; ) CRI .
4 dn e m d ε = ≤


Λ 


∣

We note that

1.
48 2 ln(4 ) 48 2 ln(4 )

n nm
n n

 
= ≥ − 

 

This inequality is equivalent to

4 192 2( 1) ln(4 ).n m n≤ +

Taking logarithm on both sides of (29), and using the inequality ln x ≤ 
1
2

x for x ≥ 1, we get

ln(4 ) ln( 1) ln(192 2) ln ln(4 ),n m n≤ + + +

and

(26)

(27)

(28)

(29)
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1 ln(4 ) ln(4 ) ln ln(4 ) ln( 1) ln(192 2).
2

n n n m≤ − ≤ + +

It follows from (29) that

( )96 2( 1) ln( 1) ln(192 2) .n m m≤ + + +

By (28) and (30) we obtain

ran, std wor, all wor, all( , ; ) 96 2 , ; 1 ln , ; 1 ln(192 2) ,
4 4

n d n d n dε εε
    

Λ ≤ Λ + Λ + +    
 

   
 

 
 

   
  

proving (15).
For 0 < δ < e−2 and m, n ∈ N satisfying

,
48( 2 ln(2 ) ln )

nm
n δ

 
=  

− 

by Theorem 2.2 we have

1
2ran std wor all4 1( , ; ) 1 ( , ; )

1
me n d e m d
n δ

 Λ Λ≤ +  − 

1
2

wor all1 11 ( , ; )
1 112 2 ln(2 ) ln

e m d
n δ

δ

 
 
 ≤ +
   −+   

Λ

 

1
2

wor all1 11 ( , ; )
1 112ln

e m d
δ

δ

 
 

≤ + 
−  

Λ

 

wor all( , ; ),A e m dδ Λ=

where

1
2

1 11 .
1 112ln

Aδ δ
δ

 
 

= + 
−  

 

Using the same method used in the proof of (28), we have

(30)
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ran, std wor all( , ; ) min  ( , ; ) CRI .dn d n e m d
A
εε

Λ

 
Λ ≤ ≤

 
Λ ∣

We note that

148 2 ln(2 ) ln ( 1).n n m
δ

 ≤ + + 
 

Taking logarithm on both sides, and using the inequalities ln  x ≤ 
4
x

 for x ≥ 9 and a + b ≤ ab for a, b ≥ 2, we get

1ln ln 48 ln 2 ln(2 ) ln ln( 1)n n m
δ

 ≤ + + + + 
 

( ) 1ln 48 ln 2 ln(2 ) ln ln ln( 1)n m
δ

≤ + + + +

2 1ln 48 ln(2 ) ln ln ln( 1).
4

n m
δ

≤ + + + +

Since

2 2ln(2 ) ln ln(2 ) for 9,
4 4

n n n n≤ − ≥

we get

12 ln(2 ) 4 ln 48 ln ln ln( 1) .n m
δ

 ≤ + + + 
 

It follows that

1 148 4 ln 48 ln ln ln( 1) ln ( 1).n m m
δ δ

  ≤ + + + + +  
  

We conclude that for 0 < δ < e−2,

ran, std wor, all1 1( , ; ) 48 4 ln 48 ln ln ln , ; 1 lnn d n d
Aδ

εε
δ δ

   
 Λ ≤ + + Λ + + 

 
 
 

      

 

wor, all, ; 1 ,n d
Aδ

ε 
Λ +  




  






proving (16). Theorem 2.3 is proved.

(31)
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4. Equivalence results of algebraic tractability
First, we consider the equivalences of ALG-PT and ALG-SPT for Λstd and Λall in the randomized setting. The 

equivalence results for the normalized error criterion can be found in Theorem 22.19 in [8]. For the absolute error 
criterion, Theorem 22.20 in [8] shows the equivalence of ALG-PT under the condition

1, for all , some 0, and some 0,s
d C d d C sλ

λ λ λλ ≤ ∈ > ≥

and the equivalence of ALG-SPT under the condition (32) with sλ = 0.
We obtain the following equivalence results of ALG-PT and ALG-SPT without any condition. Hence, the condition 

(32) is unnecessary. This solves Open Problem 101 as posed by Novak and Woźniakowski in [8].
Theorem 4.1 We consider the problem APP = {APPd}d∈N in the randomized setting for the absolute error criterion. 

Then,
• ALG-PT for Λall is equivalent to ALG-PT for Λstd.
•ALG-SPT for Λall is equivalent to ALG-SPT for Λstd. In this case, the exponents of ALG-SPT for Λall and Λstd are 

the same.
Proof. It follows from (8) that ALG-PT (ALG-SPT) for Λstd means ALG-PT (ALG-SPT) for Λall in the randomized 

setting. Since ALG-PT (ALG-SPT) for Λall in the worst case setting is equivalent to ALG-PT (ALG-SPT) for Λall in the 
randomized setting, it suffices to show that ALG-PT (ALG-SPT) for Λall in the worst case setting means that ALG-PT 
(ALG-SPT) for Λstd in the randomized setting.

Suppose that ALG-PT holds for Λall in the worst case setting. Then there exist C ≥ 1 and non-negative p, q such that

wor,ABS all( , ; ) , for all , (0,1).q pn d Cd dε ε ε−Λ ≤ ∈ ∈

It follows from (19) and (33) that

1

ran,ABS std( , ; ) 1
4

p
qn d C Cdω

ω
εε

+−

Λ
  
  
 

+  
≤

1 (1 ) (1 )(2 4 ) ,p q pC C dω
ω ω ωε+ + − +≤

which means that ALG-PT holds for Λstd in the randomized setting.
If ALG-SPT holds for Λall in the worst case setting, then (33) holds with q = 0. We obtain

ran,ABS std 1 (1 )( , ; ) (2 4 ) ,p pn d C Cω
ω ωε ε+ − +Λ ≤

which means that ALG-SPT holds for Λstd in the randomized setting. Furthermore, since ω can be arbitrary small, by 
Corollary 2.1 we have

ran,ABS std wor,ABS allALG - ( ) ALG - ( )p p≤Λ Λ

ran,ABS all ran,ABS stdALG - ( ) ALG - ( ),p p= ≤Λ Λ

which means that the exponents of ALG-SPT for Λall and Λstd are the same. This completes the proof of Theorem 4.1.
Next we consider the equivalence of ALG-QPT for Λstd and Λall in the randomized setting. The result for the 

normalized error criterion can be found in Theorem 22.21 in [8]. For the absolute error criterion, Theorem 22.22 in [8] 

(32)

(33)
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shows the equivalence of ALG-QPT under the condition

1,limsup .d
d

λ
→∞

< ∞

We obtain the following equivalence result of ALG-QPT without any condition. Hence, the condition (34) is 
unnecessary. This solves Open Problem 102 as posed by Novak and Woźniakowski in [8].

Theorem 4.2 We consider the problem APP = {APPd}d∈N in the randomized setting for the absolute error criterion. 
Then, ALG-QPT for Λall is equivalent to ALG-QPT for Λstd. In this case, the exponents of ALG-QPT for Λall and Λstd are 
the same.

Proof. Similar to the proof of Theorem 4.1, it is enough to prove that ALG-QPT for Λall in the worst case setting 
implies ALG-QPT for Λstd in the randomized setting.

Suppose that ALG-QPT holds for Λall in the worst case setting. Then there exist C ≥ 1 and a non-negative t such 
that

( )wor,ABS all 1( , ; ) exp (1 ln )(1 ln ) , for al  l , (0,1).n d C t d dε ε ε−Λ ≤ + + ∈ ∈

It follows from (19) and (35) that for ω > 0,

( )1ran,ABS std wor,ABS all( , ; ) ( / 4, ; ) 1n d C n dω

ω
ε ε

+
Λ ≤ Λ +

1
1

exp (1 ln ) 1 ln 1
4

C C t dω

ω

ε
+

−    ≤ + + +       

 
 
 
 

( )1 1(2 ) exp (1 ) (1 ln )(1 ln 4 ln )C C t dω
ω ω ε+ −≤ + + + +

( )1 * 1(2 ) exp (1 ln )(1 ln ) ,C C t dω
ω ε+ −≤ + +

where t∗ = (1 + ω)(1 + ln4)t . This implies that ALG-QPT holds for Λstd in the randomized setting.
Next we show that the exponents ALG-t ran,ABS(Λall) and ALG-t ran, ABS(Λstd) are equal if ALG-QPT holds for Λall in 

the worst case setting. We have

wor,ABS all ran,ABS all ran,ABS stdALG - ( ) ALG - ( ) ALG - ( ).t t t= ≤Λ Λ Λ

It suffices to show that

ran,ABS std wor,ABS allALG - ( ) ALG - ( ).t t Λ≤Λ

Note that using (19) we can only obtain that

ran,ABS std wor,ABS allALG - ( ) (1 ln 4) ALG - ( ).t tΛ Λ≤ + ⋅

Instead we use (20). For sufficiently small δ > 0 and ω > 0, it follows from (20) and (35) that

(34)

(35)
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1

ran,ABS std wor,ABS all
,( , ; ) , ; 1n d C n d

Aω

ω

δ
δ

εε
+

Λ
  
     

≤ Λ +

( ),
1 1(2 ) exp (1 ) (1 ln )(1 ln ln )C C t d Aδ

ω
ω δ ω ε+ −≤ + + + +

( ),
1 1(2 ) exp (1 ) (1 ln )(1 ln )(1 ln ) , C C t A dω

ω δ δω ε+ −≤ + + + +

where

1
2

1 11 .
1 112ln

Aδ δ
δ

 
 

= + 
−  

 

Taking the infimum over t for which (35) holds, and noting that 
( , ) (0,0)

lim (1 )(1 ln ) 1Aδω δ
ω

→
+ + = , we get that

ran,ABS std wor,ABS allALG - ( ) ALG - ( ).t t Λ≤Λ

This completes the proof of Theorem 4.2.
Now we consider the equivalence of ALG-WT for Λstd and Λall in the randomized setting. The result for the 

normalized error criterion can be found in Theorem 22.5 in [8]. For the absolute error criterion, Theorem 22.6 in [8] 
shows the equivalence of ALG-WT under the condition

1,ln max( ,1)
lim 0.d

d d
λ

→∞
=

We obtain the following equivalence result of ALG-WT without any condition. Hence, the condition (36) is 
unnecessary. This solves Open Problem 98 as posed by Novak and Wo´zniakowski in [8].

Theorem 4.3 We consider the problem APP = {APPd}d∈N in the randomized setting for the absolute error criterion. 
Then, ALG-WT for Λall is equivalent to ALG-WT for Λstd.

Proof. The proof is identical to the proof of Theorem 4.4 with s = t = 1 for the absolute error criterion. We omit the 
details.

Finally, we consider the equivalences of ALG-(s, t)-WT and ALG-UWT for Λstd and Λall in the randomized setting. 
As far as we know, these equivalences have not been studied yet. We obtain the following equivalence results of ALG-
(s, t)-WT and ALG-UWT for the absolute or normalized error criterion without any condition.

Theorem 4.4 We consider the problem APP = {APPd}d∈N in the randomized setting for the absolute or normalized 
error criterion. Then for fixed s, t > 0, ALG-(s, t)-WT for Λall is equivalent to ALG-(s, t)-WT for Λstd.

Proof. Again it is enough to prove that ALG-(s, t)-WT for Λall in the worst case setting implies ALG-(s, t)-WT for 
Λstd in the randomized setting.

Suppose that ALG-(s, t )-WT holds for Λall in the worst case setting. Then we have for  ∈ {ABS, NOR},

1

wor, allln ( , ; )lim 0.s td

n d
dε

ε
ε− −+ →∞

Λ
=

+



It follows from (19) that for ω > 0,

(36)

(37)
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( )( )1ran, all
ran, std ln ( / 4, ; ) 1ln ( ;  , )

s t s t

C n dn d
d d

ω

ω εε
ε ε

+

− −

Λ +Λ
≤

+ +




1 wor, allln( 2 ) 4 (1 )ln ( / 4, ; ) .
( / 4)

s

s t s t

C n d
d d

ω
ω ε

ε ε
ω+

− −

+ Λ
≤ +

+ +



Since ε−1 + d → ∞ is equivalent to ε−s + d t → ∞, by (37) we get that

1 1

1 wor, allln( 2 ) ln ( / 4, ; )lim 0 and lim 0.
/ 4)

 
(s t s td d

C n d
d d

ω

ε ε

ω ε
ε ε− −

+

− −+ →∞ + →∞

Λ
= =

+ +



We obtain

1

ran, stdln ( , ; )lim 0,s td

n d
dε

ε
ε− −+ →∞

Λ
=

+



which implies that ALG-(s, t)-WT holds for Λstd in the randomized setting. This completes the proof of Theorem 4.4.
Theorem 4.5 We consider the problem APP = {APPd}d∈N in the randomized setting for the absolute or normalized 

error criterion. Then, ALG-UWT for Λall is equivalent to ALG-UWT for Λstd.
Proof. By definition we know that APP is ALG-UWT if and only if APP is ALG-(s, t)-WT for all s, t > 0. Then 

Theorem 4.5 follows from Theorem 4.4 immediately.
Proof of Theorem 2.5
Theorem 2.5 follows from Theorems 4.1-4.3 immediately.

5. Equivalence results of exponential tractability
First we consider exponential convergence. Assume that there exist two constants A ≥ 1 and q ∈ (0, 1) such that

wor all 1
1,( , ; ) .n

de n d Aq λ+Λ ≤

Novak and Woźniakowski proved in [8] that there exist two constants C1 ≥ 1 and q1 ∈ (q, 1) independent of d and n 
such that

ran std
1 1 1,( , ; ) .n

de n d C Aq λΛ ≤

If A, q in (38) are independent of d, then

wor,NOR all 1
2( , ; ) (ln 1),n d Cε ε −Λ ≤ +

and

ran,NOR std 1 2
3( , ; ) (ln 1) .n d Cε ε −Λ ≤ +

Novak and Woźniakowski posed the following Open Problem 100:
(1) Verify if the upper bound in (39) can be improved.

(38)

(39)
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(2) Find the smallest p for which there holds

ran,NOR std 1
4( , ; ) (ln 1) .pn d Cε ε −Λ ≤ +

We know that p ≤ 2, and if (38) is sharp then p ≥ 1.
The following theorem gives a confirmative solution to Open Problem 100 (1). We improve enormously the upper 

bound 1
nq  in (39) to q2

ln( 4 )
2

n
nq  in (42), where q1, q2 ∈ (q, 1).

Theorem 5.1 Let m, n ∈ N and 

.
48 2 ln(4 )

nm
n

 
=  

 

Then we have

ran std wor all( , ; ) 4 ( , ; ).e n d e m dΛ Λ≤

Specifically, if (38) holds, then we have

ran std ln(4 )
2 1,( , ; ) 4 ,

n
n

de n d AqΛ Λ≤

where q2 = q 1
48 2q  ∈ (q, 1).

Proof. Inequality (41) is just (27), which has been proved. If (38) holds, then by (40) and (41) we get

1
48 2 ln(4 )ran std

1,( , ; ) 4  
n

n
de n d Aq λ

 
+ 

  ≤Λ

48 2 ln(4 )
1,4

n
n

dAq λ≤

ln(4 )
2 1,4 .

n
n

dAq λ=

This completes the proof of Theorem 5.1.
Now we consider the equivalences of various notions of exponential tractability for Λstd and Λall in the randomized 

setting. As far as we know, there is hardly any result for these equivalences.
First, we consider the equivalences of EXP-PT and EXP-SPT for Λstd and Λall in the randomized setting. We obtain 

the following equivalence results of ALG-PT and ALG-SPT without any condition.
Theorem 5.2 We consider the problem APP = {APPd}d∈N in the randomized setting for the absolute or normalized 

error criterion. Then,
•EXP-PT for Λall is equivalent to EXP-PT for Λstd.
•EXP-SPT for Λall is equivalent to EXP-SPT for Λstd. In this case, the exponents of EXP-SPT for Λall and Λstd are the 

same.
Proof. Again, it is enough to prove that EXP-PT for Λall in the worst case setting implies EXP-PT for Λstd in the 

randomized setting.
Suppose that EXP-PT holds for Λall in the worst case setting. Then there exist C ≥ 1 and non-negative p, q, for  ∈ 

{ABS, NOR} such that

(40)

(41)

(42)
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wor, all 1( , ; ) (ln 1) , for all , (0,1). q pn d Cd dε ε ε−Λ ≤ + ∈ ∈



It follows from (19) and (43) that

1
1

ran, std( , ; ) ln 1 1
4

p

qn d C Cdω

ω

εε

+
−

 Λ ≤ + +
  
      

 
 



1 (1 ) (1 ) 1 (1 )(2 ) (1 ln 4) (ln 1) ,p q pC C dω ω
ω

ω ωε+ + + − +≤ + +

which means that EXP-PT holds for Λstd in the randomized setting.
If EXP-SPT holds for Λall in the worst case setting, then (43) holds with q = 0. We obtain

ran, std 1 (1 ) 1 (1 )( , ; ) (2 ) (1 ln 4) (ln 1) ,p pn d C C ω ω
ω

ωε ε+ + − +Λ ≤ + +

which means that EXP-SPT holds for Λstd in the randomized setting. Furthermore, in this case we have

ran, std wor, allEXP- ( ) EXP- ( )p p≤Λ Λ 

ran, all ran, stdEXP- ( ) EXP- ( ),p p= ≤Λ Λ 

which means that the exponents of EXP-SPT for Λall and Λstd are the same. This completes the proof of Theorem 5.2.
Remark 5.3 We remark that if (38) holds with A, q independent of d, then the problem APP is EXP-SPT for Λall in 

the randomized setting for the normalized error criterion, and the exponent EXP-pwor,NOR(Λall) ≤ 1. If (38) is sharp, then 
EXP-pwor,NOR(Λall) = 1.

By Theorem 5.2 we obtain that if (38) holds, then EXP-pran,NOR(Λstd) ≤ 1, and if (38) is sharp, then EXP-pran,NOR(Λstd) 
= 1. It follows that for any p > 1, we have

ran,NOR std 1( , ; ) (ln 1) .p
pn d Cε ε −Λ ≤ +

However, we do not know whether or not the above inequality holds for p = 1.
This almost solves Open Problem 100 (2) as posed by Novak and Woźniakowski in [8].
Next, we consider the equivalence of EXP-QPT for Λstd and Λall in the randomized setting. We obtain the following 

equivalence result of EXP-QPT without any condition.
Theorem 5.4 We consider the problem APP = {APPd}d∈N in the randomized setting for the absolute or normalized 

error criterion. Then, EXP-QPT for Λall is equivalent to EXP-QPT for Λstd. In this case, the exponents of EXP-QPT for 
Λall and Λstd are the same.

Proof. Again, it is enough to prove that EXP-QPT for Λall in the worst case setting implies EXP-QPT for Λstd in the 
randomized setting. 

Suppose that EXP-QPT holds for Λall in the worst case setting. Then there exist C ≥ 1 and a non-negative t such 
that

( )( )wor, 1( , ; ) exp (1 ln ) 1 ln(ln 1) , for al l , (0,1 ).n d C t d dε ε ε−Λ ≤ + + + ∈ ∈



It follows from (19) and (44) that for ω > 0,

(43)

(44)
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ran, std( , ; )n dε Λ

( )1wor, all( / 4, ; ) 1C n dω

ω
ε

+
≤ Λ +

( )( )( )1
1exp (1 ln ) 1 ln(ln ln 4 1) 1C C t d

ω

ω ε
+

−≤ + + + + +

( )( )1 1(2 ) exp (1 ) (1 ln ) 1 ln(ln 4 1) ln(ln 1)C C t dω
ω εω+ −≤ + + + + + +

( )( )1 * 1(2 ) exp (1 ln ) 1 ln(ln 1) ,C C t dω
ω ε+ −≤ + + +

where t ∗ = (1 + ω)(1 + ln(ln4 + 1))t, in the third inequality we used the fact

ln(1 ) ln(1 ) ln(1 ), , 0.a b a b a b+ + ≤ + + + ≥

This implies that EXP-QPT holds for Λstd in the randomized setting.
Next we show that the exponents EXP-t ran,,p◊ (Λall) and EXP-t ran,,p◊ (Λstd) are equal if EXP-QPT holds for Λall in the 

worst case setting. We have

wor, all ran, all ran, stdEXP- ( ) EXP- ( ) EXP- ( ).tt tΛ = Λ≤Λ  

It suffices to show that

ran, std wor, allEXP- ( ) EXP- ( ).t tΛ Λ≤ 

Note that using (19) we can only obtain that

( )ran, std wor, allEXP- ( ) 1 ln(1 ln 4) EXP- ( ).t t≤ + +Λ Λ⋅ 

Instead we use (20). For sufficiently small δ > 0 and ω > 0, it follows from (20) and (44) that

ran, std( , ; )n dε Λ

1

wor, all
, , ; 1C n d

Aω δ

ω

δ

ε
+

  
     

≤ Λ +

( )( ),
1 1(2 ) exp (1 ) (1 ln ) 1 ln(ln 1) ln(ln 1)C C t d Aω δ δ

ω ω ε+ −≤ + + + + + +

( )( )1 * 1
, (2 ) exp (1 ln ) 1 ln(ln 1) ,C C t dω

ω δ ε+ −≤ + + +

where
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( )

1
2

* 1 1(1 ) 1 ln(ln 1) ,  1 .
1 112ln

t t A Aδδ δ
δ

ω

 
 

= + + + = + 
−  

 

Taking the infimum over t for which (44) holds, and noting that ( )
( , ) (0,0)

lim (1 ) 1 ln(ln 1) 1A
δ δω

ω
→

+ + + = , we get that

ran, std wor, allEXP - ( ) EXP - ( ).t tΛ Λ≤ 

This completes the proof of Theorem 5.4.
Finally, we consider the equivalences of EXP-(s, t)-WT (including EXP-WT) and EXP-UWT for Λstd and Λall in the 

randomized setting. We obtain the following equivalence results of EXP-(s, t)-WT (including EXP-WT) and EXP-UWT 
for the absolute or normalized error criterion without any condition.

Theorem 5.5 We consider the problem APP = {APPd}d∈N in the randomized setting for the absolute or normalized 
error criterion. Then for fixed s, t > 0, EXP-(s, t)-WT for Λall is equivalent to EXP-(s, t)-WT for Λstd. Specifically, EXP-
WT for Λall is equivalent to EXP-WT for Λstd.

Proof. Again, it is enough to prove that EXP-(s, t)-WT for Λall in the worst case setting implies EXP-(s, t)-WT for 
Λstd in the randomized setting.

Suppose that EXP-(s, t)-WT holds for Λall in the worst case setting. Then we have for  ∈ {ABS, NOR},

1

wor, all

1

ln ( , ; )lim 0.
(1 ln )s td

n d
dε

ε
ε− −+ →∞

Λ
=

+ +



It follows from (19) that for ω > 0,

( )( )1ran, all
ran, std

1 1

ln ( / 4, ; ) 1ln ( , ; )
(1 ln ) (1 ln )s t s t

C n dn d
d d

ω

ω
εε

ε ε

+

− −

Λ +Λ
≤

+ + + +




( )
1 wor, all

1 1

ln( 2 ) (1 ln 4) (1 )ln ( / 4, ; ) .
(1 ln ) 1 ln( / 4)

s

s t s t

C n d
d d

ω
ω ε

ε ε

ω+

− −

+ + Λ
≤ +

+ + + +



Since ε−1 + d → ∞ is equivalent to (1 + ln ε−1)s + d t → ∞, by (45) we get that

( )1 1

1 wor, all

1 1

ln( 2 ) ln ( / 4, ; )lim 0 and lim 0.
(1 ln ) 1 ln( /

 
4)

s t s td d

C n d
d d

ω
ω

ε ε

ε
ε ε

− −

+

− −+ →∞ + →∞

Λ
= =

+ + + +



We obtain

1

ran, std

1

ln ( , ; )lim 0,
(ln )s td

n d
dε

ε
ε− −+ →∞

Λ
=

+



which implies that EXP-(s, t)-WT holds for Λstd in the randomized setting.
Specifically, EXP-WT is just EXP-(s, t)-WT with s = t = 1.
This completes the proof of Theorem 5.5.

(45)
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Theorem 5.6 We consider the problem APP = {APPd}d∈N in the randomized setting for the absolute or normalized 
error criterion. Then, EXP-UWT for Λall is equivalent to EXP-UWT for Λstd.

Proof. By definition, we know that APP is EXP-UWT if and only if APP is EXP-(s, t)-WT for all s, t > 0. Then 
Theorem 5.6 follows from Theorem 5.5 immediately.

Proof of Theorem 2.6
Theorem 2.6 follows from Theorems 4.4, 4.5, 5.2, and 5.4-5.6 immediately.
Remark 5.7 While this manuscript was submitted for possible publication, Dolbeault and Cohen in [39] used a 

weighted least squares method and the weaver subsampling technique (see [23]) to show that

ran std wor all
1 2( , ; ) ( , ; ),e n d C e C n d Λ≤Λ

where C1, C2 are two absolute positive constants. It follows from (46) immediately that

ran, std wor, all
2 1( , ; ) ( / , ; ).n d C n C dε ε Λ≤Λ 

By (47) we easily obtain Theorems 2.5 and 2.6 except that the exponents of ALG-QPT and EXP-QPT are equal, 
and solve Open Problem 100 as posed by E.Novak and H.Woźniakowski [8]. However, we cannot obtain by (47) that 
the exponents of ALG-QPT and EXP-QPT are equal.
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[25]	Novak E, Woźniakowski H. Tractablity of Multivariate Problems for standard and linear information in the worst 
case setting: Part II. Contemporary computational mathematics-a celebration of the 80th birthday of Ian Sloan. 
2018; 1(2): 963-977. 
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