
Contemporary MathematicsVolume 3 Issue 2|2022| 257

Contemporary Mathematics
http://ojs.wiserpub.com/index.php/CM/

Research Article

Structural Identifiability of Feedback Systems with Nonlinear 
Adulterating

Nikolay Karabutov  

Department of Problems Control, MIREA-Russian Technological University, Moscow, Russia
E-mail: kn22@yandex.ru

Received: 24 November 2021;  Revised: 7 June 2022;  Accepted: 14 June 2022

Abstract: We consider the structural identifiability estimation problem of Nonlinear Feedback Systems (NFS) with 
nonlinear adulterating. The problem of NFS Structural Identifiability (NFSI) has not been studied. Studying the NFSI 
problem guarantees the possibility of nonlinearity identification under uncertainty. Two cases of the adulterate influence 
are analyzed: (i) additive effect of feedback nonlinearity on the nonlinearity in the straight chain (ii) nonlinearity 
argument nonlinear adulterating in straight chain of the system. The basis for the identifiability estimation is: (a) the 
Geometric Frameworks (GF) analysis method reflecting properties of the nonlinear system; (b) structural frequency 
diagrams, and (c) the hierarchical immersion method. We obtain conditions of identifiability, unidentifiability and 
local identifiability for NFS. The influence of the nonlinear argument is analyzed on the system identifiability. We 
propose conditions for system unidentifiability verifying with a nonlinear argument of the function. The influence of 
the nonlinear argument is analyzed for estimating the system identifiability. Results are applicable in the synthesis of 
nonlinear control systems.
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1. Introduction
The identifiability problem of dynamic systems is the relevant areas of study. Foundational results are obtained 

on the Parametric Identification (PI) of systems [1-3]. The main direction PI is the analysis of a priori identifiability. 
Parametric identification methods are the basis of a priori Identifiability (AI). As a rule, the model structure sets a priori. 
Therefore, identification AI and Structural Identifiability (SI), which are often used in publications, are incorrect. AI 
methods are transferred to the estimation problem of the nonlinear systems structural identifiability. This approach 
eliminates the estimation problem of the nonlinearity structure.

Approximation methods are applied for identifiability problem solution [4-10]. In [4], the approach based on 
the analysis of the system output sensitivity is used to study identifiability. The effectiveness of this approach shows 
when studying the identifiability of the system parameter combination. In [10], local Parametric Identifiability (IPI) 
condition is obtained for various types of experimental data. A critical analysis of approaches used to estimate the 
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identifiability of biological models is given in [8]. Methods for identifiability estimating nonlinear systems are based on 
the AI approaches. The requirements on data used for the PI task solution are given in [6]. The study of various types 
of identifiability (global, local, structural, and practical) are described in many works [4, 6, etc.]. Two main approaches 
(see [11]) are applied to estimate the structural identifiability of nonlinear dynamical systems. A priori methods (the first 
approach) only use the model definition (authors understand the definition as the structure choice). Posterior procedures 
(the second approach) apply the available data to find unidentifiable parameters. The basis of many a priori algorithms is 
the Lie group theory. A posteriori method uses the available data to perform identifiability analysis. They infer structural 
identifiability based on the adequacy of the model to experimental data (this is the stage of parametric estimation).

The method proposed to analyze the identifiability of closed-loop systems with nonlinear feedback in [12]. The 
method is based on the harmonic balance and the double Fourier Series (FS). FS approximates the nonlinearity. It shows 
that a multiplicative periodic reference signal enhances the identifiability of the system. Parametric identifiability is the 
main direction in the analysis of linear closed-loop systems (see for example [13-15]). PI guarantees the identifiability of 
the system. The structural identifiability problem is not solved by parametric methods under uncertainty. The parametric 
approach can only be applied to estimating nonlinearity in a specific area. The properties changing of the input may 
give different identification results. This is the main problem of the parametric approach. Works on PI problems do not 
consider the estimation problem of the system structure. Therefore, the concept of parametric identifiability does not 
reflect the essence of the structural identifiability problem. However, this terminology is actively using in the task of 
assessing identifiability. The NFS structural identifiability analysis requires the use of new approaches.

So, the system identifiability understands as the possibility to estimate its parameters (parametric identification). PI 
methods based on the information matrix nondegeneracy estimation used. Similar results are obtained in the parametric 
estimation theory. They are based on checking the Constant Excitation (CE) condition for the input and output of the 
system. As a rule, the model structure sets prior, and the essence of the structural identifiability is not always clear. 
The identifiability of nonlinear system is reduced to the parametric problem. PI paradigm is not always applicable to 
a nonlinear systems class. These systems work under uncertainty. The task becomes more complicated if the system 
has several nonlinearities [16]. Therefore, the structural identification problem solving (structural identifiability) is an 
urgent task. Parametric identifiability methods do not provide a solution to the SI problem. This is fairly for evaluating 
the NFS structural identifiability. In [16, 17], the SI methodology proposes for nonlinear dynamical systems. It is based 
on the GF analysis under uncertainty. The problem relates to the structural identification task closely. The structural 
identification problem solution is the basis for the SI of nonlinear systems under uncertainty. The approach is based on 
the GF properties analysis. Using GF allows you to solve the NFS structural identifiability problem. The GF approach is 
applicable for NFS with nonlinear adulteration. Nonlinear adulterating is a NFS special case. 

Next, we give the SI problem solution for the feedback systems with nonlinear adulterating. We do not consider 
the identifiability of the system linear part. This problem has been studied well (see for example [3]). We consider two 
classes of NFS. The first class is NFS with nonlinearity in the return loop and forward contour. The second class is NFS 
with a nonlinear argument of the system main nonlinearity. We give the main results for the GF analysis. The analysis 
allows you to decide about the NFS structural identifiability.

2. Problem statement
Consider the system

( ) ,uX AX B Y B uϕ= + Φ +

,TY C X=

where u ∈ R, Y ∈ Rg are input and output, X ∈ Rq is the state vector, A ∈ Rq×q, Bu ∈ Rq, Bφ ∈ Rq×k, C ∈ Rg ×q are 
matrices of corresponding dimensions, Φ(X ) ∈ Rk is vector nonlinear function. A is Hurwitz matrix.

The nonlinear function φi(ζ ) ∈ Φ is smooth and satisfies the condition

(1)
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where ζ  ∈ R is the input of a nonlinear element. ζ  is a linear combination of state variables. Information set

[ ]{ }0( ),  ( ),  , .o kI u t Y t t J t t= ∈ =

We assume that some state variable xi may depend on the difference in the outputs of multiple nonlinearities. 
Problem: analyze the set Io and estimate the structural identifiability of the system (1).

3. Preliminary concepts
Let φ(·) = Φ(X ), φ(·) ∈ R, y = Y, y ∈ R. Apply the approach to the GF construction [3, 17] and synthesize a 

framework Sey. Sey described by the function fey : y → e, e ∈ R. e reflects nonlinear processes in the system.
Assumption B1. The input u(t) is constantly excited at the interval J . B2. The input u(t) ensures an informative  

framework Sey. B3. Let the framework Sey be closed, and the area Sey is not zero. Denote height Sey as h(Sey ), where 
height is the distance between two points opposite sides of the framework Sey. If u(t) satisfies В1 and В2 conditions, 
then the input u(t) is representative.

If the framework Sey satisfies the assumption B3, then Sey calls h-identifiable [17]. Consider the framework Sey. 
Introduce notations: Dy = dom(Sey) is definitional domain Sey, ( ) max ( ) min ( )y y y tt

D D D y t y t= = −  is diameter Dy. Let 
u(t) ∈ U, where U is the acceptable set of inputs for the system (1). The set U contains representative inputs.

Definition 1 The input u(t) ∈ Us ⊆ U is the S-synchronizing system (1) if the domain Dy has a maximum diameter 
Dy on set {y( t), t ∈ J }.

Consider a reference framework Sey
ref . Sey

ref is the framework Sey reflecting all properties of the function φ( y ). 
Designate by the diameter Dy(Sey

ref ) as Dy
ref . Dy

ref  exists if the input the system (1) is S-synchronizing.
Definitions 1 show if Sey ≅  Sey

ref, then |Dy − Dy
ref | ≤ εy, where εy ≥ 0, ≅  is the proximity sign. Properties US

( )( )( ) .
S

ref
y ey u U y yD S u t D ε∈ − ≤

The fulfillment of condition , max
h

h y yu
d D=  guarantees h-identifiability of the system. The conditions for h-identifiability 

have the form

( )( ) ,( ) .
Sy ey u U h y yD S u t d ε∈ − ≤

If uh(t) ∉ U , then the condition of the unidentifiable or insignificant framework NSey ≠ Sey is

( )( )\ ,( ) .
Sy ey u U U h y yD S u t d ε∈ − >

Let the input uh(t) synchronize the set Dy. If u(t) is S-synchronizing, then we write uh(t) ∈ S. Note that the finite set 
{uh(t)} ∈ S exists for system (1). The choice of optimal uh(t) depends on dh, y and (5). Provision of condition (5) is one 
of the SI conditions for the system (1).

Let 
ey ey

l r
ey S SS F F= ∪ , where ,  

ey ey

l r
S SF F  are the left and right fragments Sey. Secants for ,  

ey ey

l r
S SF F

(2)

(3)

(4)

(5)

(6)
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,  .r r r l l l
S Sa y b a y bγ γ= + = +

Definition 2 If Sey is h-identified and conditions     r r
ha a δ− ≤ , (4) satisfies, then the Sey or the system (1) is 

structurally identified or hδh-identifiable.
Let сS is the centre of the framework Sey on the set Jy = {y(t)}, сDy is the centre of the area Dy.
Theorem 1 [3, 17]. Let the set US of synchronizing inputs u(t) consider for the system (1) and (i) ε ≥ 0 exists such 

that |сS − сDy| ≤ ε; (ii)     l r
ha a δ− ≤ , where al, ar are coefficients of secants (7) for ( ,  

ey ey

l r
S SF F ) ⊂  Sey. Then the system (1) 

is hδh-identifiable, and the input uh(t) ∈ S.
We do not consider the method of constructing Sey. It is described in [3, 17]. Examples of the framework Sey obtain 

is given in section 4. Let the hypothetical framework Sey (the framework Sey
ref ) have the diameter dh, Σ.

Definition 3 The framework Sey,i has dh, Σ-optimality property on the set Uh if εΣ > 0 exists such that |dh, Σ − Dy, i | 
≤ εΣ 1, # hi U∀ = . The Sey,i(uh, i)-framework is locally structurally identifiable on the set Uh if it has the dh, Σ-optimality 
property.

There may be some subset {uh, i(t)} ⊂ US ⊆ U (i ≥ 1) whose elements have the S-synchronizability property. Each 
uh, i(t) corresponds to the framework Sey,i(uh, i) with the diameter Dy, i of the definition area Dy, i.

4. Additive adulterate
Consider the system (1) with feedback (self-oscillation system)

( ) ( )( )
( ) ( )

1 2

2 3

3 1 1 2 4 2 4

4 1 2 4

4

,
,

: ,

,
,

x x
x x

S x c u x c x

x u x
y x

ϕ ϕ ϕ

ϕ ϕ

 =


=
 = − +


= −
 =









where u = −k1x2 − k2x1 is input, y ∈ R is the output, c1, c2, k1, k2 are system parameters, φ1(x) = c sign(x) is sign function, 
c > 0,

( )
4

2 4 4

4

, if ,
0, if [ , ],   0.
, if ,

c x b
x x b b b

c x b
ϕ

>
= ∈ − >
− < −

We see the output of function φ1(u) adulterates by function φ2(x4). (8) is the nonlinear system of the second class 
[18]. Harmonic linearization [18] does not apply to φ1(u), φ2(x4). Find structural identifiability conditions for (8) using 
the results of section 3.

Determine the system Sφ solution under the following initial conditions and parameters: x1(0) = 2, x2(0) = 1, x3(0) = 0, 
x4(0) = 1, c = 2, b = 1.5, c1 = 2 , c2 = 2, k1 = 1, k2 = 1.5. Form the set (3). The system (8) phase portrait shows in Figure 1.

We see (Figure 1) that oscillations (variable x2) emerge at the system input, and limited oscillations (variable x4) 
occur at the output. They are the result of the action of nonlinearity.

Presented frameworks show processes do not have distortions (the left part of the portrait corresponds to the right). 
Therefore, the system input is S-synchronizing (see section 3). The S-synchronizability condition is a prerequisite 
for the analysis of the system structural identifiability. We see (Figure 1) that the conclusion cannot make about the 
structural identifiability of the system based on the mapping 

1 2, 1 2:x x x xγ → .
Apply the hierarchical immersion method [17] for further analysis. It gives mappings that reflect the nonlinear 

system (8) state.

(7)

(8)
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Figure 1. Phase portrait of system

Definition 4 System (8) is locally identifiable (LI) on the set {x1, x2} if the framework Sx2x1
 described by the 

mapping 
1 2, 1 2:x x x xγ →  has the maximum diameter of the definition domain.

Figure 1 shows that the framework Sx2x1
 is LI. The analysis 

1 1x xS


 does not give the nonlinearity Structural Parameters 
(SP) estimate from adulteration. Go to a specific structural space. The mathematical model design is based on the 
relationship between variables.

Synthesize models on sets {u, 4x } and {x1, 4x }

14, 4, 1
ˆ 2.234 0.004, 0.0712   0.003. u xx u xx −= += − 

Determine residuals 
1 14, 4 4,

ˆ
x xx xε = −  , 4, 4 4,

ˆ
u ux xε = −   and introduce frameworks 

4 4, 1, xxS ε

, 
4 4,, uxS ε

 which are described 
by functions 

4, 4 11 , 4, 4:
x x x xεγ ε →


  and 
4, 1 , 4, 4:

x u u xεγ ε →   (Figure 2).

Figure 2. System frameworks for estimating identifiability based on analysis u, x1
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Frameworks 
4 4, 1, xxS ε

, 
4 4,, uxS ε

 reflect the influence of nonlinearities φ1 and φ2. We see (Figure 2) that frameworks 
have saturation equalling to 2 and -2, which coincides with the initial data of the system (8). Switching points of 
nonlinear functions shifted because the adulterating effect.

Construct secants for 
4 4, 1, xxS ε

, 
4 4,, uxS ε

4 4, 1 1 4 4,1, 4, 4, , 4, 4, 4,,  ,
x ux x x x u u ua a bε εγ ε γ ε= = +

 

where a4, x1
 = 1, a4,u = 1.027, b4,u = 0.22.

Definition 5 The system (8) is structurally unidentifiable on the set {u(t), x1(t)} if the input is S-synchronizing, and 
secant (10) coefficients satisfy the condition |a4, x1

 − a4,u | ≤ δ, where δ ≥ 0 .
Definition 5 is applied to nonlinearities φ1, φ2 with δ = 0.005. This conclusion is confirmed by Figure 3 (centered 

diagram), which shows the variables ε4, x1
 (grey) and ε4,u (white).

Figure 3. Comparison of variables ε4,x1, ε4,u

The nonlinearity φ1 dominates over φ2, but its switching occurs at x1 ≈ ±1.5, which corresponds to parameters φ2. SI 
is the confirmation of structural identification. Therefore, we conclude that adulteration complicates the identifiability of 
the system (8) structure.

Consider the space {ε4, x1
, ε4, x4

}, where ε4, x4
 forms similarly to ε4, x1

, and decides on φ1. Obtained results show that the 
system (8) structural identification possible on the nonlinearity χ(φ1, φ2) depended on φ1, φ2.

Statement 1 The system (8) nonlinear part χ(φ1, φ2) is locally structurally identified on the set {u(t), x2(t), x4(t)} if 
the input u(t) ∈ S.

Proof statement 1 It follows from (8) and Figure 1 as the input is S-synchronizing. S-synchronizability guarantees 
the maximum definitional domain diameter of frameworks 

4 4, 4 4,1, ,,  
x ux xS Sε ε 

, 
4 4, 4 4,1, ,,  

x ux xS Sε ε 

. Therefore, χ(φ1, φ2) is h-identifiable. The 
system output depends on the difference φ1(u), φ2(x4). The system (8) structure depends on structural parameters of the 
final function χ(φ1, φ2).  ■

Corollary of statement 1 Functions φ1(·), φ2(·) are structurally unidentifiable on the set Io.
Figure 4 gives indirect confirmation of statement 1, where the framework presents reflecting the function χ(φ1, φ2) 

influence, 1 2ˆ ( , )χ ϕ ϕ  is function χ(φ1, φ2) estimation based on the analysis the set Io.

(10)
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Figure 4. Evaluation of effect χ(φ1, φ2) on the system (8) structure

Figure 4 shows that the system has the saturation region, which corresponds to parameters of initial nonlinearities. 
The further analysis clarifies some parameters of initial nonlinearities.

Introduce the variable v = u − x2 and synthesis the model for 4x

4 4,0 4,1
ˆ ,x a a v= +

where a4,0 = 0.125, a4,1 = 1.45. Find the residual 4 4 4
ˆx xϑ = −   and construct the framework 

4 4,xS ϑ

 described by function 
41 4, 41 4:x xϑγ ϑ →


 . Determine for 
4 4,xS ϑ

, 
4 4, 1, xxS ε

 secants

4 4 4, 4 11, 4,0 4 4,1 , 4,0 4, 4,1,  ,
xx x xϑ εγ α ϑ α γ µ ε µ= + = +

 

where α4,0 = 0.996, α4,1 = −0.06, μ4,0 = 1.028, μ4,1 = −0.219.
Theorem 2 If the input u ∈ S, and coefficients α4,0, μ4,0 of secants (12) for frameworks 

4 4,xS ϑ

, 
4 4, 1, xxS ε

 satisfy the 
condition

4,0 4,0 , ,α µα µ δ− ≤

where δα,μ ≥ 0 is specified value, then the function χ(φ1, φ2) is structurally identifiable on the set { 4 4( ),  ( )t x tϑ  }.    
Proof theorem 2 The input of the system (8) is S-synchronizing. According to statement 1, the framework 

4 4, 1, xxS ε

 
has the maximum diameter of the definition domain. Therefore, the function χ(φ1, φ2) is locally structurally identifiable. 
The framework 

4 4,xS ϑ

 has the maximum diameter of the definition domain also. We construct for 
4 4,xS ϑ

, 
4 4, 1, xxS ε

 secants 
(12). The condition (13) satisfied with δα,μ = 0.04. Hence, the function χ(φ1, φ2) is locally structurally identifiable on the 
set { 4 4( ),  ( )t x tϑ  }.  ■

The theorem 2 application simplifies the identifiability estimation of the system (8).
Figure 5 confirms the validity of theorem 2, where we present frameworks 

4 4,xS ϑ

, 
4 4, 1, xxS ε

 and the adequacy of 
considered frameworks in space 

141 4,( ,  )xϑ ε . The coefficient of determination is 99% between 41ϑ  and 
14,xε .

So, we show that system (8) is structurally unidentifiable on set Io. Go into space ( 4 4( ),  ( )t x tϑ  ) and obtain estimates 
for functions φ1, φ2.

(11)

(12)

(13)

-0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8

-4

-2

0

2

4

4x

( )1 2ˆ ,χ ϕ ϕ
1 2ˆ ( , )χ ϕ ϕ

4

2

0

-2

-4

-0,8 -0,6 -0,4 -0,2 0,0 0,2 0,4 0,6 0,8

4x



Contemporary Mathematics 264 | Nikolay Karabutov

Figure 5. Theorem 2 verification

Apply the variable permutation procedure. Let 4x  be the input, and x1, x2 outputs. This approach almost eliminates 
the adulteration influence. Construct frameworks 

1 4,x xS


, 
2 4,x xS


. Since, u(t) ∈ S, frameworks 
1 4,x xS


, 
2 4,x xS


 are significant [3, 
17] and have the maximum diameter of the definitional domain. Apply theorem 2 and confirm by SI (hδh-identifiability) 
of the system (8). Corresponded frameworks show in Figure 6. They give to evaluate properties for nonlinearities on the 
set of function switching intervals. Figure 6 shows that two nonlinearities are in the system. One nonlinearity (framework 

2 4,x xS


) is saturation, and the framework 
1 4,x xS


 is the saturation function with Dead Space (DS). DS does not coincide with 
the original area from the specific of the system. The saturation level is 2. 

The relationship between u and x2 (the determination coefficient is 0.98) effects the nonlinear properties of the 
system (8). Consequently, the system (8) and the nonlinearity χ(φ1, φ2) are structurally identifiable. Parameters χ(φ1, φ2) 
depend on the connection φ1, φ2 into the system.

Figure 6. Frameworks 
1 4 2 4, ,,  x x x xS S
 

So, we have
Statement 2 If: (i) u ∈ S and 4x  ∈ S; (ii) frameworks 

1 4,x xS , 
2 4,x xS  described by functions 

4 1, 4 1:x x x xγ →


  and 
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4 2, 4 2:x x x xγ →


  have dh,Σ-optimal properties, then system (8) and function χ(φ1, φ2) are structurally identifiable.  

5. Nonlinear adulterate of nonlinearity argument
Consider the self-oscillation generation system with the Nonlinear Feedback (NF). NF adulterates the nonlinear 

function argument in a straight chain. The system contains the actuator with parameters k4, T2 and output y; gain element 
with parameters k3, T1; nonlinear feedback on x2 with the function  f 2(x2); linear feedback on x2 with parameters k1, k5:

( )

1 2

2 3

3 41 2
3 2 3 1

1 2 1 2 1 2

4 1 5 2

1

,
,
1: , , ,

,
,

f

x x
x x

k kT TS x x x f u b c
T T T T T T

x k k x
y x

 =
 =
 + = − − +

 = −


=









where y is the rotation angle of the actuator shaft, u = x4 − kos f2(x2) is function f1 argument, f2(x2) = (x2)
2sign(x2), 

1 4

,  if
( ) 0,  if [ , ],   0.

,  if

c x b
f x x b b b

c x b

>
 ∈ − >
− < −

We have the adulterated argument of the function  f 1. Hence, itself argument u(x2, x4) is the nonlinear function. It 
complicates the SI assessment of the system (14).

Consider the system Sf  with two sets of parameters

{ }1( ) 3( ) 4( ) 5( ) ( ) 1( ) 2( ) ( ) ( ), , , , , , , , ,  1, 2,i i i i i os i i i i iP k k k k k T T b c i= =

where

{ } { }1 20.35, 10, 1, 1.25, 0.005, 2.5, 0.4, 0.45, 0.75 ,  0.35, 10, 1, 0.55, 0.005, 2.5, 0.4, 0.25, 2 .P P= =

These sets guarantee self-oscillation in the system. Therefore, the input is constantly excited for Pi, and frameworks 
Sey(i) must be h-identifiable. However, the adulterating effect can give false h-identifiable frameworks Sey(i) (denote these 
frameworks and the system as LSey(i ) and LSf (i )). Extend the frameworks Sey(i ) set and their derivatives (frameworks 
KSey(i)) to select the reference information set I0

r for analysis SI.
Consider the variable u(t) and construct the structurally frequency diagram Hu for it. Hu reflects the distribution u 

according to the change in the system output. 
Definition 6 If Hu contains areas conforming to system (14) features, then the variable u(t ) is structurally 

significant or u ∈ H(Hu).
Definition 7 Sey(i)-framework based on u ∈ H(Hu) is structurally significant or Sey(i) ∈ SSey(i). The system Sf(i) with u 

∈ H(Hu) is called structurally significant or Sf(i) ∈ SSf(i)(H(Hu)). If u ∉ (H(Hu)), then Sf(i) ∈ SISf(i)(H(Hu)).
Consider frameworks 

3( ), 1( )i ix xS , 
( ), 4( )i iu xS  is described by functions

3,1( ) 1( ) 3( ) 4, ( ) ( ) 4( ): ,  : .i i i u i i ix x u xη µ→ →

(14)

(15)

(16)

(17)

(18)
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Present frameworks and their structural-frequency analysis [19] on sets (17) in Figures 7 and 8.
Theorem 3 Consider the system Sf with sets P1, P2 and (i) input u(i) is constantly excited; (ii) the system state 

reflects by the frameworks 
3( ), 1( )i ix xS , 

( ), 4( )i iu xS  and the structural-frequency diagrams H(i)(i = 1, 2).Then frameworks 
defined on the set P1 are structurally significant, i.e. they are applied for system identifiability analysis.

Figure 7. System (14) phase portraits with parameters P1

Proof theorem 3 The system (14) is designed to generate self-oscillations. Therefore, the input u(i) satisfies the 
condition of constant excitation for the given Pi. Apply results of section 3 and obtain SI of the frameworks under 
consideration. Consider the Structural-frequency Diagrams (SDS) presented in Figures 7 and 8. The system Sf contains 
two nonlinearities. Therefore, SDS reflects their features. Consider frameworks 

( ), 4( )i iu xS . We see that the framework 

(1), 4(1)u xS  contains fragments (see the distribution nu1(i)
 in Figure 7), which not represented in 

(2), 4(2)u xS . Compare 
distributions nu1(i)

. We see the input u(1) is more structurally significant than u(2). Consequently, u(1) ∈ H(Hu(1)
), and 
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u(2) ∉ H(Hu(2)
). Thus, the system (14) with the set P1 is the candidate for the analysis of the system Sf  identifiability. 

Confirm these conclusions through the analysis frameworks Sx3(i), x1(i)
 (Figure 8). Consequently, further SI analysis is 

based on the use of the information set for the system Sf (P1). Then Sf (P1) ∈ SSf(1)(H(Hu)), and Sf (P2) ∈ SISf (2)(H(Hu)).  ■ 

Figure 8. System (14) phase portraits with parameters P2

The framework Sx3(2),x1(2)
 does not reflect the system (14) specifics. Explain it by the nonlinear feedback action. 

Consider the system (14) defined on the set of parameters

{ }{ }3 ,0.35, 12, 1, 0.55, , 3, 0.4, 0.5, 1.5os iP k=

with different values kos.
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Statement 3 If the system (14) is defined on the set (19), then increasing the parameter kos changes the domains of 
the function f1 in the coordinate origin.

Proof of statement 3 Consider a neighborhood Of1
 of the function f1 in coordinate origin. Let k*

os = 0.0025 be the 
reference value for kos. Increasing kos, j ∈ {kos, i} gives a value increase in the function f 2. Growing f 2 gives change to 
the argument u(kos, j) and the function  f1 compares to values of  f1(u(k*

os)) at the same t. Therefore, the domain of values 

1 ,( ) ({ })|
os if u u u kO =  will not coincide with the domain *1( ) ( )

|
os

f u u u k
O

=
 of the same function  f 1.  ■

Denote the values domain and the diameter of neighborhood 
1 ,( ) ({ })|

os if u u u kO =  as Im(Of1
(u ≠ u)(k*

os))) and DOf1(u).
Definition 8 Call the input u(t) of the system (14) Uh-identifying if it minimizes Im(Of1

(u ≠ u)(k*
os))) 

( )1

* min .
f uOu

u D=

Denote the set of Uh-identifying inputs as UUh.
Theorem 4 If the input u(t) is constantly exciting and Uh-identifying, then the system (14) and the function  f 1 are 

hδh-identifiable.
The proof of theorem 4 is based on the construction of the framework Sx3,x1

 and the section 3 results application.
The domain Of1(u) at u ∉ UUh can determine by the histogram or the framework Sx3,x1

. The region Of1(u) changes the 
interval [−b, b] of the function  f1. It leads to the change in the definition area and the domain of values f1. According to 
theorem 4, this violates the hδh-identifiability property of the system (14). 

Consider input satisfying conditions of theorem 4.
Theorem 5 If the input u ∈ UUh is constantly exciting, then the function f 2(x2) of the system Sf  is hδh-identifiable.
The proof of theorem 5 follows from theorem 3 conditions fulfilment. Show the function  f 2(·) estimation in Figure 9.

Figure 9. Change estimation of function f 2

6. Conclusion
The structural identifiability problem of nonlinear feedback systems considers with adulterating nonlinearity. We 

apply the analysis of geometric frameworks and hierarchical immersion method for identifiability estimation study 
under uncertainty. The nonlinear adulterating of the nonlinear function argument considered. Structural identifiability 
conditions are obtained for this case. We study the input influence on the nonlinearity structural identifiability in the 
system straight chain. We define a class of inputs that gives the solution to the SI problem. The adulteration influence of 
nonlinear argument shows on the nonlinearity parameters estimation. Structurally-frequency diagrams are the basis for 
the analysis of these systems. Conditions for unidentifiability verification are proposed at the nonlinear mixing of the 
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argument. We consider the additive effect of feedback nonlinearity on the nonlinearity in the straight chain. It shows that 
the synchronizing input provides the solution to the structural identifiability problem. We have shown that this system is 
structurally unidentifiable according to obtained experimental data. A subset of the system states on which the system is 
locally structurally identifiable obtained.
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