A Note on Differential Identities in Prime and Semiprime Rings

Mohammad Shadab Khan ${ }^{1}$, Mohd Arif Raza ${ }^{2}$, Nadeem Ur Rehman ${ }^{3 *}$
${ }^{1}$ Department of Commerce, Aligarh Muslim University, Aligarh-202002 India
${ }^{2}$ Faculty of Science and Arts-Rabigh King Abdulaziz University, Jeddah KSA
${ }^{3}$ Department of Mathematics, Aligarh Muslim University, Aligarh-202002 India
E-mail: shadabkhan33@gmail.com; arifraza03@gmail.com; rehman100@gmail.com

Abstract

Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and m, n fixed positive integers. (i) If $(d(r \circ s)(r$ $\left.\circ s)+(r \circ s) d(r \circ s)^{n}-d(r \circ s)\right)^{m}$ for all $r, s \in I$, then R is commutative. (ii) If $\left(d(r \circ s)(r \circ s)+(r \circ s) d(r \circ s)^{n}-d\right.$ $(r \circ s)^{m} \in Z(R)$ for all $r, s \in I$, then R satisfies s_{4}, the standard identity in four variables. Moreover, we also examine the case when R is a semiprime ring.

Keywords: Prime and semiprime rings, Derivations, Martindale ring of quotients

1. Introduction

Throughout this paper, R always denotes an associative ring with center $Z(R), Q$ its Martindale quotient ring, and U its Utumi quotient ring. The center of U, denoted by C, is called the extended centroid of R (we refer the reader to [1] for these objects).

For each $r, s \in R$, the Lie commutator of r, s, is denoted by $[r, s]$ and defined by $[r, s]=r s-s r$ and the anticommutator of R is defined $r \circ s=r s+s r$. By d we mean a derivation of R, that is an additive mapping $d: R \rightarrow R$ satisfying $d(r s)=d(r)$ $s+r d(s)$ for all $r, s \in R$. A derivation d is called Q-inner if it is inner induced by an element, say $\theta \in Q$ as an adjoint, that is, $d(r)=[\theta, r]$ for all $r . \in R$. A derivation which is not Q-inner is called a Q-outer derivation. The standard polynomial identity s_{4} in four variables is defined as $s_{4}\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=\sum_{\sigma \in s_{4}}(-1)^{\sigma} r_{\sigma(1)} r_{\sigma(2)} r_{\sigma(3)} r_{\sigma(4)}$ where $(-1)^{\sigma}$ is + or - according to σ being even or odd permutation in symmetric group s_{4}.

In [2], Ashraf and Rehman proved that "if R is a prime ring, I is a nonzero ideal of R and d is a nonzero derivation of R such that $d(r \circ s)=r \circ s$ for all $r, s \in I$, then R is commutative". In [3], Argaç and Inceboz generalized the above result as follows: " Let R be a prime ring, I a nonzero ideal of R and n a fixed positive integer, if R admits a nonzero derivation d with the property $(d(r \circ s))^{n}=r \circ s$ for all $r, s \in I$, then R is commutative".

In 1994 Bell and Daif, initiated the study of strong commutativity-preserving maps and proved that "a nonzero right ideal I of a semiprime ring is central if R admits a derivation which is scp on $I "$. In 2002 Ashraf and Rehman, proved that "if R is a 2-torsion free prime ring, I is a nonzero ideal of R and d is a nonzero derivation of R such that $d(r) \circ d(s)=r \circ s$ for all $r, s \in I$, then R is commutative". The present paper is motivated by the previous results and we here generalized the results obtained in [3] and [2]. Moreover, we continue this line of investigation by examining what happens to a ring R (or an algebra A) if it satisfies the identity $\left(d(r \circ s)(r \circ s)+(r \circ s) d(r \circ s)^{m}-d(r \circ s)\right)^{n} \in Z(R)$, for all $r, s \in I$. We obtain some analogous results for semiprime rings in the case $I=R$.

2. The results in Prime Rings

Theorem 2.1. Let R be a prime ring, I a nonzero ideal of R and m, n are fixed positive integers. If R admits a nonzero derivation d such that $d(r \circ s)(r \circ s)+(r \circ s) d(r \circ s)^{n}=(d(r \circ s))^{m}$ for all $r, s \in I$, then R is commutative.

Proof. Since R is a prime ring and if R admits a derivation d, by the given hypothesis, we have
$(d(r s+s r)(r s+s r)+(r s+s r) d(r s+s r))^{n}=(d(r s+s r))^{m}$ for all $r, s \in I$.
Thus I satisfies the differential identity

$$
\begin{aligned}
(d(r) s+s d(r)+r d(s)+d(s) r)^{m} & =(d(r) s+s d(r)+r d(s)+d(s) r)(r s+s r) \\
& +(r s+s r)(d(r) s+s d(r)+r d(s)+d(s) r)^{n} \text { for all } r, s \in I .
\end{aligned}
$$

We divide the proof into two cases:
Case 1. If d is Q-outer derivation, then I satisfies the polynomial identity

$$
\begin{aligned}
(s s+s s+r t+t r)^{m}= & ((s s+s s+r t+t r)(r s+s r) \\
& +(r s+s r)(s s+s s+r t+t r))^{n}, \text { for all } r, s, s, t \in I .
\end{aligned}
$$

In particular, for $s=0, I$ satisfies the blended component $(r t+t r)^{m}=0$, for all $r, t \in I$. If $\operatorname{char}(R) \neq 2$, then $\left(2 r^{2}\right)^{m}=$ 0 for all $r \in I$. By Xu ${ }^{[7]}$, we get a contradiction. If $\operatorname{char}(R)=2$, then $(r t+t r)^{m}=0=[r, t]^{\mathrm{m}}$ for all $r, t \in I$, and hence R is commutative by Herstein [8, Theorem 2].

Case 2. Let now d be Q-inner derivation induced by an element $\phi \in Q$, that is, $d(r)=[\phi, r]$ for all $r \in R$. It follows that,

$$
\begin{aligned}
([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)^{m} & =(([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)(r s+s r) \\
& +((r s+s r)([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r))^{n}
\end{aligned}
$$

for any $r, s \in I$. By Chuang [11, Theorem 1], I and Q satisfy same generalized polynomial identities (GPIs), hence we have

$$
\begin{aligned}
([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)^{m}= & (([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)(r s+s r) \\
& +((r s+s r)([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r))^{n} \\
& \text { for all } r, s \in Q
\end{aligned}
$$

Moreover, if C is infinite, we have

$$
\begin{aligned}
([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)^{m}= & (([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)(r s+s r) \\
& +((r s+s r)([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r))^{n}
\end{aligned}
$$

for all $r, s \in Q \otimes{ }_{C} \bar{C}$, where \bar{C} is the algebraic closure of C. Since both Q and $Q \otimes{ }_{C} \bar{C}$ are prime and centrally closed [12, Theorems 2.5 and 3.5], we may replace R by Q or $Q \otimes{ }_{C} \bar{C}$ according as C is finite or infinite. Thus, we may assume that R is centrally closed over C (i.e., $R C=R$) which is either finite or algebraically closed

$$
\begin{aligned}
([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)^{m}= & (([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)(r s+s r) \\
& +((r s+s r)([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r))^{n}, \\
& \text { for all } r, s \in R
\end{aligned}
$$

By Martindale [13, Theorem 3], $R C$ (and so R) is a primitive ring having nonzero socle H with C as the associated division ring. Hence, by Jacobson's theorem [14, p.75], R is isomorphic to a dense ring of linear transformations of some vector space V over C and H consists of the finite rank linear transformations in R.

Assume first that $\operatorname{dim}_{C} V \geq 3$.
First of all we want to show that v and ϕv are linearly C-dependent for all $v \in V$. Since if $\phi v=0$ then $\{v, \phi v\}$ is linearly C-dependent, suppose that $\phi v \neq 0$. If v and ϕv are linearly C-independent, since $\operatorname{dim}_{C} V \geq 3$, there exists $w \in V$ such that $\{v, \phi v, w\}$ are also linearly C-independent. By the density of R, there exist $r, s \in R$ such that:

$$
\begin{aligned}
& r v=0, r \phi v=w, r w=0 \\
& s v=0, s \phi v=0, s w=v
\end{aligned}
$$

This implies that

$$
\begin{aligned}
v= & \left(([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)^{m}\right) v \\
= & (([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)(r s+s r) \\
& \left.+(r s+s r)([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r))^{n}\right) v \\
= & 0, \text { a contradiction. }
\end{aligned}
$$

So we conclude that $\{v, \phi v\}$ are linearly C-dependent, for all $v \in V$.
Our next goal is to show that there exists $\alpha \in C$ such that $\phi v=v \alpha$, for any $v \in V$. In fact, choose $v, w \in V$ linearly independent. Since $\operatorname{dim}_{C} V \geq 3$, there exists $u \in \mathrm{~V}$ such that v, w, u are linearly independent, and so there exist $\alpha_{v}, \alpha_{w}, \alpha_{u} \in C$ such that

$$
\phi v=v \alpha_{v}, \phi w=w \alpha_{w}, \phi u=u \alpha_{u} \text { that is } \phi(v+w+u)=v \alpha_{v}+w \alpha_{w}+u \alpha_{u} .
$$

Moreover $\phi(v+w+u)=(v+w+u) \alpha_{v+w+u}$, for a suitable $\alpha_{v+w+u} \in C$. Then

$$
0=v\left(\alpha_{v+w+u}-\alpha_{v}\right)+w\left(\alpha_{v+w+u}-\alpha_{w}\right)+u\left(\alpha_{v+w+u}-\alpha_{u}\right),
$$

and because v, w, u are linearly independent, $\alpha_{u}=\alpha_{w}=\alpha_{v}=\alpha_{v+w+u}$, that is, α does not depend on the choice of v. Hence we have $\phi v=\alpha v$ for all $v \in V$.

Now for any $r \in R, v \in V$. By Step 2, $\phi v=v \alpha, r(\phi v)=r(v \alpha)$, and also $\phi(r v)=(r v) \alpha$. Thus, $0=[\phi, r] v$, for any $v \in V$, that is $[\phi, R] V=0$. Since V is a left faithful irreducible R-module, hence $[\phi, R]=0$, i.e., $\phi \in Z(R)$ and so a contradiction.

Suppose now that $\operatorname{dim}_{C} V$ must be ≤ 2. In this case, R is a simple GPI-ring with 1 , so it is a central simple algebra of finite dimensional over its center. By Lanski [16, Lemma 2], it follows that there exists a suitable filed F such that $R \subseteq$ $M_{k}(\mathrm{~F})$, the ring of all $k \times k$ matrices over F , and moreover $M_{k}(\mathrm{~F})$ satisfies the same GPI as R.

Assume $k \geq 3$, then by the same argument as above, we get a contradiction.
Obviously, if $k=1$, then R is commutative. Thus we may assume that $k=2$, i.e., $R \subseteq M_{2}(\mathrm{~F})$, where $M_{2}(\mathrm{~F})$ satisfies

$$
\begin{aligned}
([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)^{m}= & (([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)(r s+s r) \\
& +((r s+s r)([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r))^{n}, \\
& \text { for all } r, s \in M_{2}(\mathrm{~F}) .
\end{aligned}
$$

Denote $e_{i j}$ the usual unit matrix with 1 in (i, j)-entry and zero elsewhere. Let $r=e_{11}, s=e_{12}$, then we get,

$$
\begin{aligned}
0= & ([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)^{m} \\
= & (([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)(r s+s r) \\
& +((r s+s r)([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r))^{n} \\
= & \left(\phi e_{12}-e_{12} \phi\right)^{m} .
\end{aligned}
$$

In any case, we have at $0=e_{12}\left(\begin{array}{ll}\phi & e_{12}\end{array}\right)^{m}$. Set $\phi=\left(\begin{array}{l}\phi_{11} \phi_{12} \\ \phi_{21}\end{array} \phi_{22}\right.$. . By calculation, we can have $\binom{0 \phi_{21}^{m}}{00}=0$ which implies that $\phi_{21}=0$. In the same manner, we can see that $\phi_{12}=0$. Therefore, ϕ is a diagonal in $M_{2}(\mathrm{~F})$. Let $\theta \in A u t\left(M_{2}(\mathrm{~F})\right)$. Since

$$
\begin{aligned}
([\theta(\phi), \theta(r)] \theta(s)+ & \theta(s)[\theta(\phi), \theta(r)]+\theta(r)[\theta(\phi), \theta(s)]+[\theta(\phi), \theta(s)] \theta(r))^{m} \\
= & ([\theta(\phi), \theta(r)] \theta(s)+\theta(s)[\theta(\phi), \theta(r)] \\
& +\theta(r)[\theta(\phi), \theta(s)]+[\theta(\phi), \theta(s)] \theta(r))(\theta(r) \theta(s)+\theta(s) \theta(r)) \\
& +(\theta(r) \theta(s)+\theta(s) \theta(r))([\theta(\phi), \theta(r)] \theta(s)+\theta(s)[\theta(\phi), \theta(r)] \\
& +\theta(r)[\theta(\phi), \theta(s)]+[\theta(\phi), \theta(s)] \theta(r)))^{n}
\end{aligned}
$$

So, $\theta(\phi)$ must be a diagonal matrix in $M_{2}(\mathrm{~F})$. In particular, let $\theta(r)=\left(1-e_{i j}\right) r\left(1+e_{i j}\right)$ for $i \neq j$. Then $\theta(\phi)=\phi+$ $\left(\phi_{i i}-\phi_{i j}\right) e_{i j}$, that is $\phi_{i i}=\phi_{i j}$ for $i \neq j$. This implies that ϕ is central in $M_{2}(\mathrm{~F})$, which leads to $d=0$ a contradiction. This completes the proof.

Now, we prove our next theorem for the central case:
Theorem 2.2. Let R be a prime ring with characteristics different from 2, center $Z(R), I$ a nonzero ideal of R, and m, n are fixed positive integers. If R admits a nonzero derivation d such that $\left(d(r \circ s)(r \circ s)+(r \circ s) d(r \circ s)^{n}-d(r \circ s)\right)^{m} \in$ $Z(R)$, for all $r, s \in I$. Then R satisfies s_{4}, the standard identity in four variables.

Proof. On the contrary, suppose that R does not satisfy s_{4}. Since R is prime ring and d is a nonzero derivation of R. If $d(r s+s r)(r s+s r)+(r s+s r) d(r s+s r))^{n}=(d(r s+s r))^{m}$ for all $r, s \in I$, then R is commutative by Theorem 2.1. Otherwise, we have $I \cap Z(R) \neq 0$ by our assumptions. Let now J be a nonzero two-sided ideal of R_{Z}, the ring of the central quotients of R. Since $J \cap R$ is an ideal of R, then $J \cap R \cap Z(R) \neq 0$. Hence, that is, J contains an invertible element in R_{Z}, and so R_{Z} is simple with 1 . By the hypothesis for any $r, s \in I$ and $z \in R$, thus I satisfies the differential identity

$$
\begin{align*}
{[(d(r) s} & +s d(r)+r d(s)+d(s) r)(r s+s r) \\
& +(r s+s r)(d(r) s+s d(r)+r d(s)+d(s) r))^{n} \tag{1}\\
& \left.-(d(r) s+s d(r)+r d(s)+d(s) r)^{m}, z\right]=0 .
\end{align*}
$$

Since I and Q satisfy the same differential identities [11, Theorem 1], we may assume that Q satisfies (1). Now consider two cases:

Case 1. If d is not Q-inner. By Kharchenko's theorem [5], Q satisfies the same polynomial identity,

$$
\begin{aligned}
{[((s s+s s+r t+t r)(r s+s r)} & +(r s+s r)(s s+s s+r t+t r))^{n} \\
& \left.-(s s+s s+r t+t r)^{m}, z\right]=0 .
\end{aligned}
$$

This is a polynomial identity and hence there exists a field F such that $Q \subseteq \mathrm{M}_{k}(\mathrm{~F})$ with $k>1$ and $Q, \mathrm{M}_{k}(\mathrm{~F})$ satisfy the same polynomial identity [16]. Now choose $r=e_{12}, t=0, s=e_{21}, w=e_{13}, s=e_{12}$ one can get,

$$
\begin{aligned}
0= & ((s s+s s+r t+t r)(r s+s r)+(r s+s r)(s s+s s+r t+t r))^{n} \\
& \left.-(s s+s s+r t+t r)^{m}, z\right] \\
= & 2^{n} e_{13}-e_{13}, \text { a contradition. }
\end{aligned}
$$

Case 2. If d is a Q-inner derivation induced by an element $\phi \in Q$, such that $d(r)=[\phi, r]$ for all $r \in R$. Then by (1) we have

$$
\begin{align*}
(([\phi, r] s & +s[\phi, r]+r[\phi, s]+[\phi, s] r)(r s+s r) \\
& +(r s+s r)([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r))^{n} \tag{2}\\
& \left.-([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)^{m}, z\right]=0,
\end{align*}
$$

for all $r, s \in I$ and $z \in R$. By Chuang [11], Q satisfy (2). By localizing R at $Z(R)$ it follows that

$$
\begin{aligned}
(([\phi, r] s & +s[\phi, r]+r[\phi, s]+[\phi, s] r)(r s+s r) \\
& +(r s+s r)([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r))^{n} \\
& -([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)^{m} \in Z\left(R_{Z}\right),
\end{aligned}
$$

for all $r, s \in R_{Z}$. Since R and R_{Z} satisfy the same polynomial identities, by our assumption, we have that R_{Z} does not satisfy s_{4}. Thus, replacing R with R_{Z}, we may assume that R is a simple ring with 1 . By Martindale theorem [13], R is a primitive ring with the minimal right ideal, whose commuting ring C is a division ring that is finite dimensional over $Z(R)$. However,
since R is simple with $1, R$ must be Artinian. Hence $R=D_{S}$, the $s \times s$ matrices over C, for some $s \geq 1$. By [16, Lemma 2], there exists a field F such that $R \subseteq M_{k}(\mathrm{~F})$, the ring of $k \times k$ matrices over field F , with $\mathrm{k}>1$, and $M_{k}(\mathrm{~F})$ satisfies (2.2) that is,

$$
\begin{aligned}
(([\phi, r] s & +s[\phi, r]+r[\phi, s]+[\phi, s] r)(r s+s r) \\
& +(r s+s r)([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r))^{n} \\
& -([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)^{m} \in Z\left(M_{k}(\mathrm{~F})\right)=\mathrm{F} . I_{k} .
\end{aligned}
$$

If $\mathrm{k} \geq 2$, now let $\phi=\left(\phi_{i j}\right)_{k \times k}$. By assumption, for all $r, s \in R$,

$$
\begin{aligned}
(([\phi, r] s & +s[\phi, r]+r[\phi, s]+[\phi, s] r)(r s+s r) \\
& +(r s+s r)([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r))^{n} \\
& -([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)^{m}
\end{aligned}
$$

is zero or invertible. We choose $r=e_{i i}, s=e_{i j}$ for any $i \neq j$. Then we have

$$
\begin{aligned}
(([\phi, r] s & +s[\phi, r]+r[\phi, s]+[\phi, s] r)(r s+s r) \\
& +(r s+s r)([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r))^{n} \\
& -([\phi, r] s+s[\phi, r]+r[\phi, s]+[\phi, s] r)^{m} \\
& =-\left[\phi, e_{i j}\right]^{m}
\end{aligned}
$$

Since rank of $\left[\phi, e_{i j}\right]^{m}$ is ≤ 2, it cannot be invertible in R and so $\left[\phi, e_{i j}\right]^{m}=0$. By solving above and left multiplying by $e_{i j}$, one can get

$$
0=e_{i j}\left(\phi e_{i j}\right)^{m}=e_{i j} \phi_{j i}^{m}
$$

implying $\phi_{j i}=0$. Thus, for any $i \neq j, \phi_{j i}=0, \phi$ is diagonal. Now set $\phi=\sum_{t} \phi_{t t} e_{t t}$ with $\phi_{t t} \in F$. For any F-automorphism θ of R, we have

$$
\begin{aligned}
([\theta(\phi), \theta(r)] \theta(s)+ & \theta(s)[\theta(\phi), \theta(r)]+\theta(r)[\theta(\phi), \theta(s)]+[\theta(\phi), \theta(s)] \theta(r))^{m} \\
= & ([\theta(\phi), \theta(r)] \theta(s)+\theta(s)[\theta(\phi), \theta(r)] \\
& +\theta(r)[\theta(\phi), \theta(s)]+[\theta(\phi), \theta(s)] \theta(r))(\theta(r) \theta(s)+\theta(s) \theta(r)) \\
& +(\theta(r) \theta(s)+\theta(s) \theta(r))([\theta(\phi), \theta(r)] \theta(s)+\theta(s)[\theta(\phi), \theta(r)] \\
& +\theta(r)[\theta(\phi), \theta(s)]+[\theta(\phi), \theta(s)] \theta(r)))^{n}
\end{aligned}
$$

is zero or invertible for every $r, s \in R$. By the above argument $\theta(\phi)$ must be diagonal. Therefore, for each $j \neq i$, we have θ (ϕ $)=\left(1+e_{i j}\right) \phi\left(1-e_{i j}\right)=\sum_{i=1}^{k} \phi_{i i} e_{i i}+\left(\phi_{i j}-\phi_{i i}\right) e_{i j}$ is diagonal. Therefore, $\phi_{j j}=\phi_{i i}$ and so $\phi \in$ F. I_{k}, and hence $d=0$, which is a contradiction and completes the proof.

The following example demonstrates that R to be prime is essential in the hypothesis.
Example 2.1. Let S be any ring, $R=\left\{\binom{a b}{0}: a, b \in S\right\}$ and $I=\left\{\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right): a \in S\right\}$ be a nonzero ideal of R. We define a map $d: R \rightarrow R$ by $d(a)=e_{11} a-a e_{11}$. Then it is easy to see that d is a nonzero derivation. It is straightforward to check that d satisfies the property $d(r \circ s)(r \circ s)+(r \circ s) d(r \circ s)^{n}=(d(r \circ s))^{m}$. However, R is not commutative.

Example 2.2. Let S be any ring, $R=\left\{\binom{a b}{0 c}: a, b, c \in S\right\}$ and $I=\left\{\binom{0 a}{0}: a \in S\right\}$ be a nonzero ideal of R. Define a
a map $d: R \rightarrow R$ by $d(a)=\left[a, e_{11}+e_{12}\right]$. It is easy to see that d is a nonzero derivation and satisfies the property, $d(r \circ s)(r \circ s)$ $d(r \circ s)(r \circ s)+(r \circ s) d(r \circ s)^{n}=(d(r \circ s))^{m}$, but R is not commutative.

3.The case: \boldsymbol{R} a semiprime ring

In this section, we extended Theorem 2.1 and Theorem 2.2 to the semiprime ring. Let R be a semiprime ring and U be its left Utumi quotient ring. Then $C=Z(U)$ is extended centroid of R (see [17, p-38]). It is well known that "any derivation of semiprime ring R can be extended to a derivation of its left Utumi quotient ring U and so any derivation of R can be defined on the whole of $U "$ [6, Lemma 2].

Theorem 3.1. Let R be a semiprime ring, U the left Utumi quotient ring of R, and m, n are fixed positive integers. If R admits a nonzero derivation d such that $d(x \circ y)(x \circ y)+(x \circ y) d(x \circ y)^{n}=(d(x \circ y))^{m}$ for all $x, y \in R$, then there exists a central idempotent element e in U such that on the direct sum decomposition $R=e U \oplus(1-e) U, d$ vanishes identically on $e U$ and the ring $(1-e) U$ is commutative.

Proof. by Beidar [1] "any derivation of a semiprime ring R can be defined on the whole U ", the Utmi quotient ring R. In view of Lee [6], R and U satisfy the same differential identities, hence $d(x \circ y)(x \circ y)+(x \circ y) d(x \circ y)^{n}=(d(x \circ y))^{m}$ for all $x, y \in U$.

Let B be the complete boolean algebra of idempotents in C and let M be any maximal ideal of B. Due to Chuang [17, p. 42], U is an orthogonal complete B-algebra and $M \underline{U}$ is a prime ideal of U, which is \underline{d}-invariant. Denote $\bar{U}=U / M U$ and \bar{d} the derivation induced by d on \bar{U}, i.e., $\bar{d}(\bar{u})=\overline{d(u)}$ for all $u \in U$. Therefore, \bar{d} has $\underline{\underline{U}} \bar{U}$ the same property as d in U. In particular, \bar{U} is prime and so, by Theorem 2.1, we have either \bar{U} is commutative or $\bar{d}=0$ in \bar{U}. This implies that, for any maximal ideal M of B, either $d(U) \subseteq M U$ or $[U, U] \subseteq M U$. In any case, $d(U)[U, U] \subseteq M U$, for all M, where $M U$ runs over all prime ideals of U. Therefore, $d(U)[U, U] \subseteq \bigcap_{M} M U=0$, we obtain $d(U)[U, U]=0$. By using the theory of orthogonal completion for semiprime rings [1, Chapter 3], it is clear that there exists a central idempotent element e in U such that on the direct sum decomposition $R=e U \oplus(1-e) U, d$ vanishes identically on $e U$ and the ring $(1-e) U$ is commutative. This completes the proof of the theorem.

Theorem 3.2. Let R be a semiprime ring with characteristics different from $2, U$ the left Utumi quotient ring of R and m, n are fixed positive intemgers. If R admits a nonzero derivation d such that $d(x \circ y)(x \circ y)+(x \circ y) d(x \circ y)^{n}-(d(x \circ$ $y))^{m} \in Z(R)$ for all $x, y \in R$, then there exists a central idempotent element e in U such that on the direct sum decomposition $R=e U \oplus(1-e) U, d$ vanishes identically on $e U$ and the ring $(1-e) U$ satisfies s_{4}, the standard identity in four variables.

Proof. Since "any derivation d can be uniquely extended to a derivation in U, and U and R satisfy the same differential identities" (see [6]), then $d(x \circ y)(x \circ y)+(x \circ y) d(x \circ y)^{n}-(d(x \circ y))^{m} \in Z(R)$ for all $x, y \in U$.

Let B be the complete boolean algebra of idempotents in C and let M be nay maximal ideal of B. Due to Chuang [17, p. 42] U is an orthogonal complete B-algebra and $M U$ is a prime ideal of U, which is d-invariant. Denote $\bar{U}=U / M U$ and \bar{d} the derivation induced by d on \bar{U}, i.e., $\bar{d}(\bar{u})=\overline{d(u)}$ for all $u \in U$. Therefore \bar{d} has in \bar{U} the same property as d in U. In particular, \bar{U} is prime and so, by Theorem 2.2, either \bar{U} satisfies s_{4} or $\bar{d}=0$ in \bar{U}. This implies that, for any maximal ideal M of B, either $d(U) \subseteq M U$ or $s_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \subseteq M U$, for all $x_{1}, x_{2}, x_{3}, x_{4} \in U$. In any case $d(U) \mathrm{s}_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \subseteq \bigcap_{M}$ $M U=0$. From [1, Chapter 3], there exists a central idempotent element e of U, the left Utumi quotient ring of R, such that on the direct sum decomposition $R=e U \oplus(1-e) U, d(e U)=0$ and the ring $(1-e) U$ is satisfies s_{4}.

References

[1] Beidar, K.I. Martindale III, W.S. Mikhalev, A.V. Rings with Generalized Identities. Pure and AppliedMathematics Marcel Dekker 196, New York, 1996.
[2] Ashraf, M. Rehman, N. On commutativity of rings with derivations. Results Math. 2002; (42): No1-2, 3-8.
[3] Arga,c, N. Inceboz, H.G. Derivation of prime and semiprime rings. J. Korean Math. Soc 2009(46): No.5, 997-1005.
[4] Bell, H. E., Daif, M. N. On commutativity and strong commutativity-preserving maps. Cand. Math. Bull.1994; (37): 443-447
[5] Kharchenko, V. K. Differential identities of prime rings. Algebra Logic. 1979; (17): 155-168.
[6] Lee, T. K. Semiprime rings with differential identities. Bull. Inst. Math., Acad. Sin. 1992; (20): 27-38.
[7] Xu, X. W. The power values properties of generalized derivations. Doctor Thesis of Jilin University. Changchun, 2006.
[8] Herstein, I. N. Center-like elements in prime rings. J. Algebra. 1979; (60): 567-574.
[9] Mayne, J. H. Centralizing mappings of prime rings. Canad. Math. Bull. 1984; 27(1): 122-126.
[10] Chuang, Ch.-L. Hypercentral derivations. J. Algbera. 1994; 166(1): 34-71
[11] Chuang, Ch.-L. GPIs having coeffcients in Utumi quotient rings. Proc. Am. Math. Soc.1988; (103): 723-728.
[12] Erickson, T. S. Martindale III, W. Osborn J. M. Prime nonassociative algebras. Pac.J. Math. 1975; (60): 49-63.
[13] Martindale III, W.S. Prime rings satisfying a generalized polynomial identity. J. Algebra. 1969; (12): 576-584.
[14] Jacobson, N. Structure of Rings. Colloquium Publications 37. Am. Math. Soc. VII,Provindence, RI, 1956.
[15] Carini, L. Filippis, V. D. Commuatators with power central values on a Lie ideal. Pacific J. Math. 2000; 193(2): 269278.
[16] Lanski, C. An Engel condition with derivation. Proc. Am. Math. Soc. 1993; (118): 731-734.
[17] Chuang, Ch.-L. Hypercentral derivations. J.Algebra. 1994; (166), 34-71.

