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Abstract: Let R be a prime ring, / a nonzero ideal of R, d a derivation of R and m, n fixed positive integers. (i) If (d (r o s)(r
os)+(ros)d(ros)-d(ros))” forall r,s el then R is commutative. (ii) If (d (r o s)(ros)+(ros)d(ros)-d
(r 0 5)" € Z(R) for all r, s € 1, then R satisfies s,, the standard identity in four variables. Moreover, we also examine the case
when R is a semiprime ring.
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1. Introduction

Throughout this paper, R always denotes an associative ring with center Z(R), Q its Martindale quotient ring, and U
its Utumi quotient ring. The center of U, denoted by C, is called the extended centroid of R (we refer the reader to [1] for
these objects).

For each 7, s € R, the Lie commutator of 7, s, is denoted by [, s] and defined by [7, s] = rs - s7 and the anticommutator
of R is defined 0 s = rs + sr. By d we mean a derivation of R, that is an additive mapping d: R—R satisfying d (rs) =d ()
s + rd(s) for all r, s € R. A derivation d is called Q-inner if it is inner induced by an element, say 8 € Q as an adjoint, that is,
d(r) = [0, r] for all r.€ R. A derivation which is not Q-inner is called a Q-outer derivation. The standard polynomial identity
s in four variables is defined as s, (71, 75, 73, 74) = Yoy, (-1)° 7o (1) 7o ) To 3y 'o @y Where (-1)° is + or - according to ¢ being
even or odd permutation in symmetric group s,.

In [2], Ashraf and Rehman proved that “if R is a prime ring, / is a nonzero ideal of R and d is a nonzero derivation of
R such that d (r o s) =r o s for all », s € I, then R is commutative”. In [3], Arga¢ and Inceboz generalized the above result
as follows: “ Let R be a prime ring, / a nonzero ideal of R and » a fixed positive integer, if R admits a nonzero derivation d
with the property (d (r © 5))"=r o s for all r, s € 1, then R is commutative”.

In 1994 Bell and Daif, initiated the study of strong commutativity-preserving maps and proved that “a nonzero right
ideal / of a semiprime ring is central if R admits a derivation which is scp on / ”. In 2002 Ashraf and Rehman, proved that
“if R is a 2-torsion free prime ring, / is a nonzero ideal of R and d is a nonzero derivation of R such thatd (r) o d (s)=ro s
for all r, s € I, then R is commutative”. The present paper is motivated by the previous results and we here generalized the
results obtained in [3] and [2]. Moreover, we continue this line of investigation by examining what happens to a ring R (or
an algebra A ) if it satisfies the identity (d (» © s)(r 0 s) + (r 0 s) d (r © 5)"-d (r 0 5))" € Z(R), for all r, s € I. We obtain some
analogous results for semiprime rings in the case / = R.

2. The results in Prime Rings

Theorem 2.1. Let R be a prime ring, / a nonzero ideal of R and m, n are fixed positive integers. If R admits a nonzero
derivation d such that d(r o s)(r © s) + (r 0 s) d(r 0 5)" = (d(r 0 5))" for all , s € I, then R is commutative.

Proof. Since R is a prime ring and if R admits a derivation d, by the given hypothesis, we have

(d(rs + sr)(rs + sr)+ (rs +sr)d (rs + sr))' = (d(rs + sr))" forall r, s € L.

Thus 7 satisfies the differential identity
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(d() s + sd(r) + rd(s) + d(s) r)" = (d(r) s + sd(r) + rd(s) + d(s)r)(rs + sr)
+ (rs + sr)(d(r)s + sd(r) + rd(s) + d(s)r) for all r, s € L.

We divide the proof into two cases:
Case 1. If d is Q-outer derivation, then / satisfies the polynomial identity

(ss +ss+rt+tr)" = ((ss + 55+ rt+ tr)(rs + s7)

+(rs +sr)(ss +ss+rt+ ), forall r, s, s, t €l

In particular, for s = 0, 7 satisfies the blended component (rz + )" = 0, for all 7, ¢ € . If char(R) # 2, then (2/°)" =
0 for all » € I. By Xu ", we get a contradiction. If char(R) = 2, then (rt+tr)" = 0 = [r, £]" for all 7, ¢ € I, and hence R is
commutative by Herstein [8, Theorem 2].

Case 2. Let now d be Q-inner derivation induced by an element ¢ € Q, that is, d(r) = [, 7] for all » € R. It follows
that,

(Lg.rls+slg. AT rig. sl HB 1 =((g.rls +5[g.r1+rLg.s]+ (#5170 (s +s7)
(s (g rls s (gl +rigos]+ P51 )

for any 7, s € /. By Chuang [11, Theorem 1], / and Q satisfy same generalized polynomial identities (GPIs), hence we have

([p.r]s+s[g.r1+rlg,s1+[.s1N"=(([g.r]s +s[g,r1+r[g.s1+[P,s]r)(rs+sr)

+((rs+sr)([(g,rls+s[g,r1+r(p,s1+[d,s]1r),
forallr,se QO

Moreover, if C is infinite, we have

([p.r]s+s[g.r1+rig,s1+[¢.s1N" = ([, r]s+s[p,r1+r[¢,sIH[P,s]r) (rs+sr)
Hrs+sr)( g, rls +s[g.ri+rig,s1+[¢,s]1n),

forallr,se QO ® «C ,where C is the algebraic closure of C. Since both Q and 0 ® -C are prime and centrally closed [12,

Theorems 2.5 and 3.5], we may replace R by Q or Q ® CE according as C is finite or infinite. Thus, we may assume that R
is centrally closed over C (i.e., RC = R) which is either finite or algebraically closed

(g s +5[p.A+r g5+ 18,517 = (. r]s +51g.r1+r[p.s]+[4.5]7) (s +57)
Hos+sn(( g5 +s[p. A +r[gs1+18,510),

forall»,s € R

By Martindale [13, Theorem 3], RC (and so R) is a primitive ring having nonzero socle H with C as the associated
division ring. Hence, by Jacobson's theorem [14, p.75], R is isomorphic to a dense ring of linear transformations of some
vector space V over C and H consists of the finite rank linear transformations in R.

Assume first that dim V"> 3.

First of all we want to show that v and @ v are linearly C-dependent for all v € V. Since if ¢v = 0 then {v, #v} is
linearly C-dependent, suppose that ¢v # 0. If v and @ v are linearly C-independent, since dim.V > 3, there exists w € V/
such that {v, ¢ v, w} are also linearly C-independent. By the density of R, there exist r, s € R such that:

w=0,r¢v=w,rw=0

sv=0,s¢v=0,sw=v.
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This implies that

v=([P.rls+s[g.rl+rig,s1+[h.sIN")v
=(([g.r1s+slg,r1+r(p,s]+[P.s]7)(rs+sr)
+ s +tsr)g,rls+slg.rl+rig,s1+1d,s1n))v

=0, a contradiction.

So we conclude that {v, ¢ v} are linearly C-dependent, forall ve V.
Our next goal is to show that there exists a € C such that ¢v = va, for any v € V. In fact, choose v, w € V linearly
independent. Since dim}V > 3, there exists « € V such that v, w, u are linearly independent, and so there exist a., a.,, a, € C

such that
dv=va, dw=wa,, du=ua,thatis ¢ (v+w+u)=va, +wa,+ ua,

Moreover ¢ (v+w +u) = (v+w+ u)a,.,.,, for a suitable a,..,., € C . Then
0= v(av+w+u - av) + W(av+w+u - aw) + u(av+w'+ll - au)7

and because v, w, u are linearly independent, o, = a,, = a, = a.,.,,.,, that is, a does not depend on the choice of v. Hence we
have ¢v=av forallve V.

Now for any € R, v € V. By Step 2, ¢v =va, (¢ v) = r(va), and also ¢ (rv) = (rv)a. Thus, 0 = [ @, r]v, for any v € V,
thatis [ @, R]V = 0. Since V is a left faithful irreducible R-module, hence [¢, R] =0, i.e., ¢ € Z(R) and so a contradiction.

Suppose now that dim./ must be < 2. In this case, R is a simple GPI-ring with 1, so it is a central simple algebra of
finite dimensional over its center. By Lanski [16, Lemma 2], it follows that there exists a suitable filed F such that R <
M,(F), the ring of all k£ x k matrices over F, and moreover M,(F) satisfies the same GPI as R.

Assume k > 3, then by the same argument as above, we get a contradiction.

Obviously, if k=1, then R is commutative. Thus we may assume that k=2, i.e., R & M,(F), where M,(F) satisfies

([p.rlsts [, i@, s1 410" = (L. r]s +s[p,r]+r [, sIH[P.s]r) (rs +s7)

H(rs +sr) ([, r]s +s (g, rlHr [, sTH .51,
for all r, s € M,(F).

Denote ¢; the usual unit matrix with 1 in (i, j)-entry and zero elsewhere. Let » = e,,, s = e,,, then we get,

0=1([g,r]sts[g,r]+r[¢,s] +[ P, s]r)"
=(([g.r1s+s[@,r1+r[g,sIHP.s]r) (rs +sr)
H(rs+sr)[@,rls+s[g,rlHr (g, SH[ @ 51 7))
=(¢ep, 'e12¢)m-
¢11¢12 O¢2";

In any case, we have at 0 = e;,( @ e,,)". Set ¢ = {¢ 4 j . By calculation, we can have (00 J = 0 which implies
21 722
that ¢,, = 0. In the same manner, we can see that @ ,, = 0. Therefore, ¢ is a diagonal in M,(F). Let 0 € Aut (M,(F)). Since

([0(#), 010 (s) + 0 ()O($), 0]+ 0 () [0(9),0()]+[0(),0()]0 ()"
=([0(9), 010 (s)+ 0O (), 0(r)]
O [0(9), 0] +[0(4),0(5)]0(1) (010 (s)+6 ()0 (r)
(O (10 () + 0 ()0 (1) ([0 ($), 0 (1] 0 (5) + 0 ()[0 (#), 0 (1]
O [0(9), 0] +[0(9),0(5)]0 (1))
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So,  (#) must be a diagonal matrix in M,(F). In particular, let 8 () = (1 - e;) r (1 +e;) fori#j. Then @ (9)=¢ +
(% - %) e; , that is #, = #; for i #j. This implies that @ is central in M,(F), which leads to d = 0 a contradiction. This
completes the proof.

Now, we prove our next theorem for the central case:

Theorem 2.2. Let R be a prime ring with characteristics different from 2, center Z(R), / a nonzero ideal of R, and m,
n are fixed positive integers. If R admits a nonzero derivation d such that (d (r o s)(ro s) + (ros)d (ros)'-d(ros))" €
Z(R), for all r, s € I. Then R satisfies s,, the standard identity in four variables.

Proof. On the contrary, suppose that R does not satisfy s,. Since R is prime ring and d is a nonzero derivation of R. If
d (rs + sr)(rs + sr) + (rs + sr) d (rs + sr))" = (d(rs + sr))" for all r, s € I, then R is commutative by Theorem 2.1. Otherwise,
we have I N Z(R) # 0 by our assumptions. Let now J be a nonzero two-sided ideal of R, the ring of the central quotients of
R. Since J N R is an ideal of R, then J N R N Z(R) # 0. Hence, that is, J contains an invertible element in R,, and so R, is
simple with 1. By the hypothesis for any 7, s € / and z € R, thus / satisfies the differential identity

[(d(r)s + sd(r) + rd(s) + d(s)r)(rs + sr)
+ (rs + sr)(d(r)s + sd(r) + rd(s) + d(s)r))" (1)
- (d(r)s + sd(r) + rd(s) + d(s)r)", z] = 0.

Since [ and Q satisfy the same differential identities [11, Theorem 1], we may assume that Q satisfies (1). Now
consider two cases:
Case 1. If d is not O-inner. By Kharchenko’s theorem [5], O satisfies the same polynomial identity,

[((ss + ss + vt + tr)(rs + sr) + (rs + sr)(ss + ss + rt + tr))"

-(ss +ss+rt+ )", z] = 0.

This is a polynomial identity and hence there exists a field F such that O & M,(F) with k> 1 and O, M(F) satisfy the
same polynomial identity [16]. Now choose r=¢,, 1 =0, s = e,,, w = €5, § = e;, One can get,

0=((ss +ss+rt+r)rs+sr)+ (rs+sr)(ss+ss+rt+ir)
-(ss +ss +rt+ )", z]

=2"¢,;- e,3, a contradition.

Case 2. If d is a O-inner derivation induced by an element @ € O, such that d(r) = [@, 7] for all » € R. Then by (1) we
have

([p,rls+s[@,r1+r(g,s1+[@,s] (s +sr)
+(rs+sr)([¢,r]s+s[¢,r]+r[¢,s]+[¢,s]r})" 2)
-([p,rls+s[p,r1+r(g,sHP.s19" 2] =0,

for all , s € [ and z € R. By Chuang [11], O satisfy (2). By localizing R at Z(R) it follows that

([g.r]sts g, rl+rig,sI+[P.s1r)(rs +sr)
(s tsr) ([, rls +s[g,rl+rg.sIHP.s1n)
-([p.r]s +s g, rl+r [, sTH P, s11)" € ZRy),

for all », s € R,. Since R and R, satisfy the same polynomial identities, by our assumption, we have that R, does not satisfy
s,. Thus, replacing R with R,, we may assume that R is a simple ring with 1. By Martindale theorem [13], R is a primitive
ring with the minimal right ideal, whose commuting ring C is a division ring that is finite dimensional over Z(R). However,
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since R is simple with 1, R must be Artinian. Hence R = Dy, the s x s matrices over C, for some s > 1. By [16, Lemma 2],
there exists a field F such that R © M (F), the ring of k x k matrices over field F, with k > 1, and M,(F) satisfies (2.2) that
is,

([g.r]s+slg,r1+r(g,sI+ [P, s]r)(rs +sr)
s tsr) (g, rls+slg,rl+rig,sIHP,sIn)
-([p.rls +s[g,r1+rg,s1+ [P, s]11)" € ZAM(F)) =FL.

Ifk >2, now let ¢ = (#;),.,. By assumption, for all 7, s € R,

([g.r1s+slg,r1+r(p,s]+ [P, s]r)(rs+sr)
+stsr) ([, rls +s[p,rl+rg.sIHP.sIn)
-[g.rlstslg.r1+rig,s1+[4,s]r)"

is zero or invertible. We choose » = ¢;,

s = e, for any i # j. Then we have

(([¢,r]s+s[¢,r]+r[¢,s]+[¢,s] r)(rs + sr)
+(rstsr)([(@.rls+s[g.rl+r(d,s]1+[@,s]r)
-([¢,r]s+s[¢,r]+r[¢,s]+[¢,s]r)m
=-[d.¢;]"

Since rank of [@, e, ]" is < 2, it cannot be invertible in R and so [, e; 1" = 0. By solving above and left multiplying

by e;, one can get

0=e¢;( ¢ ety)m:ef/(é;?

implying ¢j,- = 0. Thus, for any i # j, ¢j,~ =0, ¢ is diagonal. Now set ¢ = 2, $.e, with @, €F. For any F-automorphism
6 of R, we have

([0($), 010 () +0 (O (), 0 (M +0 () [0($), 0 ()] +[0(9), 0 ()]0 ()"
=([0($). 0] 0(s)+ 0 (O ($),0 ()]
O [0(9), 0] +[0(),0()]01) (010 (s)+6(s)0 ()
+(O (10 () + 0 ()0 (1) ([0 ($), 0 (1] 0 () + 0 ()[0 (#), 0 (1]
O [0(9), 0] +[0(),0(5)]0 ()

is zero or invertible for every 7, s € R. By the above argument 6 (¢) must be diagonal. Therefore, for each j # i, we have 0 (@

)=(1+e;)p(l-¢;)=2" de, + (#; — @:)e, 1s diagonal. Therefore, ¢, = @, andso ¢ € F.I,, and hence d = 0, which is a
contradiction and completes the proof.

The following example demonstrates that R to be prime is essential in the hypothesis.

b 0
Example 2.1. Let S be any ring, R = {(ZOJ ta,be S } and /= {(Ogj aeS } be a nonzero ideal of R. We define

amap d: R — R by d(a) = e, a - ae,,. Then it is easy to see that d is a nonzero derivation. It is straightforward to check that

d satisfies the property d(r o s)(r o s) + (r 0 5) d(r o s)" = (d(r o 5))". However, R is not commutative.

ab Oa
Example 2.2. Let S be any ring, R = {(OCJ ‘a,b,ceS } and /= {[00] taes } be a nonzero ideal of R. Define a
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amap d: R — R by d(a) =[a, e, T e,]. It is easy to see that d is a nonzero derivation and satisfies the property, d(r o s)(r o s)
d(r o s)(r o s)*+ (ros)d(ros) =(dos))™, but R is not commutative.

3.The case: R a semiprime ring

In this section, we extended Theorem 2.1 and Theorem 2.2 to the semiprime ring. Let R be a semiprime ring and U be
its left Utumi quotient ring. Then C = Z(U) is extended centroid of R (see [17, p-38]). It is well known that “any derivation
of semiprime ring R can be extended to a derivation of its left Utumi quotient ring U and so any derivation of R can be
defined on the whole of U [6, Lemma 2].

Theorem 3.1. Let R be a semiprime ring, U the left Utumi quotient ring of R, and m, n are fixed positive integers. If
R admits a nonzero derivation d such that d(x o y)(x o y) + (x © y) d(x 0 y)" = (d(x o y))" for all x, y € R, then there exists a
central idempotent element e in U such that on the direct sum decomposition R = eU @ (1 - e)U, d vanishes identically on
eU and the ring (1 - e)U is commutative.

Proof. by Beidar [1] “any derivation of a semiprime ring R can be defined on the whole U”, the Utmi quotient ring
R. In view of Lee [6], R and U satisfy the same differential identities, hence d(x o y)(x o y) + (x 0 y) d(x © )" = (d(x © y))"
forallx, ye U.

Let B be the complete boolean algebra of idempotents in C and let M be any maximal ideal of B. Due to Chuang [17,
p. 42], U is an orthogonal complete B-algebra and MU is a prime ideal of U, which is d-invariant. Denote U = U/MU and
d the derivation induced by d on U, i.e., d(u) = d(u) for all u € U. Therefore, 4 has in U the same property as d in
U. In particular, U is prime and so, by Theorem 2.1, we have either U is commutative or d = 0 in U . This implies that,
for any maximal ideal M of B, either d(U) & MU or [U, U] € MU. In any case, d(U)[U, U] < MU, for all M, where MU
runs over all prime ideals of U. Therefore, d(U)[U, U] < (), MU = 0, we obtain d(U)[U, U] = 0. By using the theory
of orthogonal completion for semiprime rings [1, Chapter 3], it is clear that there exists a central idempotent element e
in U such that on the direct sum decomposition R = eU @ (1 - e)U, d vanishes identically on eU and the ring (1 - e)U is
commutative. This completes the proof of the theorem.

Theorem 3.2. Let R be a semiprime ring with characteristics different from 2, U the left Utumi quotient ring of R and
m, n are fixed positive intemgers. If R admits a nonzero derivation d such that d(x o y)(x o y) + (x 0 y) d(x o y)" - (d(x ©
)" € Z(R) for all x, y € R, then there exists a central idempotent element e in U such that on the direct sum decomposition
R=eU ® (1 -e)U, dvanishes identically on eU and the ring (1 - e)U satisfies s,, the standard identity in four variables.

Proof. Since “any derivation d can be uniquely extended to a derivation in U, and U and R satisfy the same differential
identities” (see [6]), then d(x o y)(x 0 y) + (x 0 y) d(x 0 )" - (d(x © y))" € Z(R) for all x, y € U.

Let B be the complete boolean algebra of idempotents in C and let M be nay maximal ideal of B. Due to Chuang [17,
p- 42] U is an orthogonal complete B-algebra and MU is a prime ideal of U, which is d-invariant. Denote U = UMU and

d the derivation induced bydonU,ie., d(u) =d (u) forall u € U. Therefore d hasin U the same property as d in U.
In particular, U is prime and so, by Theorem 2.2, either U satisfies s, or d =0 in U . This implies that, for any maximal
ideal M of B, either d(U) < MU or s,(x,, X, X3, x,) < MU, for all x,, x,, x5, x, € U. In any case d(U)s,(x,, X5, X3, X3) < [,
MU = 0. From [1, Chapter 3], there exists a central idempotent element e of U, the left Utumi quotient ring of R, such that

on the direct sum decomposition R =eU @ (1 - e)U, d(eU) = 0 and the ring (1 - e)U is satisfies s,.
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