

A Note on Differential Identities in Prime and Semiprime Rings

Mohammad Shadab Khan¹, Mohd Arif Raza², Nadeem Ur Rehman^{3*}

¹Department of Commerce, Aligarh Muslim University, Aligarh-202002 India ²Faculty of Science and Arts-Rabigh King Abdulaziz University, Jeddah KSA ³Department of Mathematics, Aligarh Muslim University, Aligarh-202002 India E-mail: shadabkhan33@gmail.com; arifraza03@gmail.com; rehman100@gmail.com

Abstract: Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and m, n fixed positive integers. (i) If $(d (r \circ s)(r \circ s))$ $\circ s$) + ($r \circ s$) d ($r \circ s$)ⁿ - d ($r \circ s$))^m for all $r, s \in I$, then R is commutative. (ii) If $(d(r \circ s)(r \circ s) + (r \circ s) d(r \circ s)^n - d(r \circ s))^n$ $(r \circ s)^m \in Z(R)$ for all r, $s \in I$, then R satisfies s_4 , the standard identity in four variables. Moreover, we also examine the case when *R* is a semiprime ring.

Keywords: Prime and semiprime rings, Derivations, Martindale ring of quotients

1. Introduction

Throughout this paper, R always denotes an associative ring with center Z(R), Q its Martindale quotient ring, and U its Utumi quotient ring. The center of U, denoted by C, is called the extended centroid of R (we refer the reader to [1] for these objects).

For each r, $s \in R$, the Lie commutator of r, s, is denoted by [r, s] and defined by [r, s] = rs - sr and the anticommutator of R is defined $r \circ s = rs + sr$. By d we mean a derivation of R, that is an additive mapping d: $R \rightarrow R$ satisfying d(rs) = d(r)s + rd(s) for all r, $s \in R$. A derivation d is called O-inner if it is inner induced by an element, say $\theta \in Q$ as an adjoint, that is, $d(r) = [\theta, r]$ for all $r \in R$. A derivation which is not Q-inner is called a Q-outer derivation. The standard polynomial identity s_4 in four variables is defined as $s_4(r_1, r_2, r_3, r_4) = \sum_{\sigma \in s_4} (-1)^{\sigma} r_{\sigma(1)} r_{\sigma(2)} r_{\sigma(3)} r_{\sigma(4)}$ where $(-1)^{\sigma}$ is + or - according to σ being even or odd permutation in symmetric group s_4 .

In [2], Ashraf and Rehman proved that "if R is a prime ring, I is a nonzero ideal of R and d is a nonzero derivation of R such that $d(r \circ s) = r \circ s$ for all r, $s \in I$, then R is commutative". In [3], Argaç and Inceboz generalized the above result as follows: "Let R be a prime ring, I a nonzero ideal of R and n a fixed positive integer, if R admits a nonzero derivation d with the property $(d (r \circ s))^n = r \circ s$ for all $r, s \in I$, then *R* is commutative".

In 1994 Bell and Daif, initiated the study of strong commutativity-preserving maps and proved that "a nonzero right ideal I of a semiprime ring is central if R admits a derivation which is scp on I". In 2002 Ashraf and Rehman, proved that "if R is a 2-torsion free prime ring, I is a nonzero ideal of R and d is a nonzero derivation of R such that $d(r) \circ d(s) = r \circ s$ for all r, $s \in I$, then R is commutative". The present paper is motivated by the previous results and we here generalized the results obtained in [3] and [2]. Moreover, we continue this line of investigation by examining what happens to a ring R (or an algebra A) if it satisfies the identity $(d(r \circ s)(r \circ s) + (r \circ s) d(r \circ s)^m - d(r \circ s))^n \in Z(R)$, for all r, $s \in I$. We obtain some analogous results for semiprime rings in the case I = R.

2. The results in Prime Rings

Theorem 2.1. Let R be a prime ring, I a nonzero ideal of R and m, n are fixed positive integers. If R admits a nonzero derivation d such that $d(r \circ s)(r \circ s) + (r \circ s) d(r \circ s)^n = (d(r \circ s))^m$ for all r, $s \in I$, then R is commutative.

Proof. Since *R* is a prime ring and if *R* admits a derivation *d*, by the given hypothesis, we have

 $(d(rs + sr)(rs + sr) + (rs + sr) d (rs + sr))^n = (d(rs + sr))^m \text{ for all } r, s \in I.$

Thus I satisfies the differential identity

Copyright ©2020 Nadeem Ur Rehman, et al. DOI: https://doi.org/10.37256/cm.000127.77-83 This is an open-access article distributed under a CC BY license (Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

$$(d(r) s + sd(r) + rd(s) + d(s) r)^{m} = (d(r) s + sd(r) + rd(s) + d(s)r)(rs + sr) + (rs + sr)(d(r)s + sd(r) + rd(s) + d(s)r)^{n}$$
for all $r, s \in I$

We divide the proof into two cases:

Case 1. If d is Q-outer derivation, then I satisfies the polynomial identity

$$(ss + ss + rt + tr)^{m} = ((ss + ss + rt + tr)(rs + sr) + (rs + sr)(ss + ss + rt + tr))^{n}, \text{ for all } r, s, s, t \in I.$$

In particular, for s = 0, *I* satisfies the blended component $(rt + tr)^m = 0$, for all $r, t \in I$. If $char(R) \neq 2$, then $(2r^2)^m = 0$ for all $r \in I$. By Xu^[7], we get a contradiction. If char(R) = 2, then $(rt+tr)^m = 0 = [r, t]^m$ for all $r, t \in I$, and hence *R* is commutative by Herstein [8, Theorem 2].

Case 2. Let now *d* be *Q*-inner derivation induced by an element $\phi \in Q$, that is, $d(r) = [\phi, r]$ for all $r \in R$. It follows that,

$$([\phi, r]s + s[\phi, r] + r[\phi, s] + [\phi, s] r)^{m} = (([\phi, r]s + s[\phi, r] + r[\phi, s] + [\phi, s] r) (rs + sr) + ((rs + sr)([\phi, r]s + s[\phi, r] + r[\phi, s] + [\phi, s] r))^{n}.$$

for any $r, s \in I$. By Chuang [11, Theorem 1], I and Q satisfy same generalized polynomial identities (GPIs), hence we have

$$([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r)^{m} = (([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r) (rs + sr) + ((rs + sr)([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r))^{n},$$

for all $r, s \in Q$

Moreover, if *C* is infinite, we have

$$([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r)^{m} = (([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r) (rs + sr) + ((rs + sr)([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r))^{n},$$

for all $r, s \in Q \otimes_C \overline{C}$, where \overline{C} is the algebraic closure of *C*. Since both *Q* and $Q \otimes_C \overline{C}$ are prime and centrally closed [12, Theorems 2.5 and 3.5], we may replace *R* by *Q* or $Q \otimes_C \overline{C}$ according as *C* is finite or infinite. Thus, we may assume that *R* is centrally closed over *C* (i.e., RC = R) which is either finite or algebraically closed

$$([\phi, r]s + s[\phi, r] + r[\phi, s] + [\phi, s] r)^{m} = (([\phi, r]s + s[\phi, r] + r[\phi, s] + [\phi, s] r) (rs + sr) + ((rs + sr)([\phi, r]s + s[\phi, r] + r[\phi, s] + [\phi, s] r))^{n},$$
for all $r, s \in R$

By Martindale [13, Theorem 3], RC (and so R) is a primitive ring having nonzero socle H with C as the associated division ring. Hence, by Jacobson's theorem [14, p.75], R is isomorphic to a dense ring of linear transformations of some vector space V over C and H consists of the finite rank linear transformations in R.

Assume first that $\dim_C V \ge 3$.

First of all we want to show that v and ϕv are linearly C-dependent for all $v \in V$. Since if $\phi v = 0$ then $\{v, \phi v\}$ is linearly C-dependent, suppose that $\phi v \neq 0$. If v and ϕv are linearly C-independent, since dim_C $V \ge 3$, there exists $w \in V$ such that $\{v, \phi v, w\}$ are also linearly C-independent. By the density of R, there exist r, $s \in R$ such that:

$$rv = 0, r \phi v = w, rw = 0$$

 $sv = 0, s \phi v = 0, sw = v.$

This implies that

$$v = (([\phi, r]s + s [\phi, r] + r [\phi, s] + [\phi, s] r)^{m}) v$$

= (([\phi, r]s + s [\phi, r] + r [\phi, s] + [\phi, s] r) (rs + sr)
+ (rs + sr)([\phi, r]s + s [\phi, r] + r [\phi, s] + [\phi, s] r))^{n}) v
= 0, a contradiction.

So we conclude that $\{v, \phi v\}$ are linearly *C*-dependent, for all $v \in V$.

Our next goal is to show that there exists $\alpha \in C$ such that $\phi v = v\alpha$, for any $v \in V$. In fact, choose $v, w \in V$ linearly independent. Since dim_{*C*} $V \ge 3$, there exists $u \in V$ such that v, w, u are linearly independent, and so there exist $\alpha_v, \alpha_w, \alpha_u \in C$ such that

$$\phi v = v \alpha_v, \ \phi w = w \alpha_w, \ \phi u = u \alpha_u$$
 that is $\phi (v + w + u) = v \alpha_v + w \alpha_w + u \alpha_u$.

Moreover $\phi(v + w + u) = (v + w + u)\alpha_{v+w+u}$, for a suitable $\alpha_{v+w+u} \in C$. Then

$$0 = v(\alpha_{v+w+u} - \alpha_v) + w(\alpha_{v+w+u} - \alpha_w) + u(\alpha_{v+w+u} - \alpha_u),$$

and because *v*, *w*, *u* are linearly independent, $\alpha_u = \alpha_v = \alpha_v = \alpha_{v+w+u}$, that is, α does not depend on the choice of *v*. Hence we have $\phi v = \alpha v$ for all $v \in V$.

Now for any $r \in R$, $v \in V$. By Step 2, $\phi v = v\alpha$, $r(\phi v) = r(v\alpha)$, and also $\phi(rv) = (rv)\alpha$. Thus, $0 = [\phi, r]v$, for any $v \in V$, that is $[\phi, R]V = 0$. Since V is a left faithful irreducible R-module, hence $[\phi, R] = 0$, i.e., $\phi \in Z(R)$ and so a contradiction.

Suppose now that $\dim_C V$ must be ≤ 2 . In this case, *R* is a simple GPI-ring with 1, so it is a central simple algebra of finite dimensional over its center. By Lanski [16, Lemma 2], it follows that there exists a suitable filed F such that $R \subseteq M_k(F)$, the ring of all $k \times k$ matrices over F, and moreover $M_k(F)$ satisfies the same GPI as *R*.

Assume $k \ge 3$, then by the same argument as above, we get a contradiction.

Obviously, if k = 1, then R is commutative. Thus we may assume that k = 2, i.e., $R \subseteq M_2(F)$, where $M_2(F)$ satisfies

$$([\phi, r] s+s [\phi, r]+r [\phi, s] + [\phi, s] r)^{m} = (([\phi, r] s+s [\phi, r] + r [\phi, s] + [\phi, s] r) (rs + sr) + ((rs + sr)([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r))^{n},$$

for all $r, s \in M_{2}(F)$.

Denote e_{ij} the usual unit matrix with 1 in (i, j)-entry and zero elsewhere. Let $r = e_{11}$, $s = e_{12}$, then we get,

 $0 = ([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r)^{m}$ = (([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r) (rs + sr) +((rs + sr)([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r))^{n} = (\phi e_{12} - e_{12} \phi)^{m}.

In any case, we have at $0 = e_{12}(\phi e_{12})^m$. Set $\phi = \begin{pmatrix} \phi_{11} \phi_{12} \\ \phi_{21} \phi_{22} \end{pmatrix}$. By calculation, we can have $\begin{pmatrix} 0 \phi_{21}^m \\ 0 0 \end{pmatrix} = 0$ which implies that $\phi_{21} = 0$. In the same manner, we can see that $\phi_{12} = 0$. Therefore, ϕ is a diagonal in $M_2(F)$. Let $\theta \in Aut(M_2(F))$. Since

$$([\theta(\phi), \theta(r)] \theta(s) + \theta(s)[\theta(\phi), \theta(r)] + \theta(r) [\theta(\phi), \theta(s)] + [\theta(\phi), \theta(s)] \theta(r))^{m}$$

$$= ([\theta(\phi), \theta(r)] \theta(s) + \theta(s)[\theta(\phi), \theta(r)]$$

$$+ \theta(r) [\theta(\phi), \theta(s)] + [\theta(\phi), \theta(s)] \theta(r)) (\theta(r)\theta(s) + \theta(s)\theta(r))$$

$$+ (\theta(r)\theta(s) + \theta(s)\theta(r)) ([\theta(\phi), \theta(r)] \theta(s) + \theta(s)[\theta(\phi), \theta(r)]$$

$$+ \theta(r) [\theta(\phi), \theta(s)] + [\theta(\phi), \theta(s)] \theta(r))^{n}$$

So, $\theta(\phi)$ must be a diagonal matrix in $M_2(F)$. In particular, let $\theta(r) = (1 - e_{ij}) r (1 + e_{ij})$ for $i \neq j$. Then $\theta(\phi) = \phi + (\phi_{ii} - \phi_{ij}) e_{ij}$, that is $\phi_{ii} = \phi_{ij}$ for $i \neq j$. This implies that ϕ is central in $M_2(F)$, which leads to d = 0 a contradiction. This completes the proof.

Now, we prove our next theorem for the central case:

Theorem 2.2. Let *R* be a prime ring with characteristics different from 2, center *Z*(*R*), *I* a nonzero ideal of *R*, and *m*, *n* are fixed positive integers. If *R* admits a nonzero derivation *d* such that $(d (r \circ s)(r \circ s) + (r \circ s) d (r \circ s)^n - d (r \circ s))^m \in Z(R)$, for all *r*, $s \in I$. Then *R* satisfies s_4 , the standard identity in four variables.

Proof. On the contrary, suppose that *R* does not satisfy s_4 . Since *R* is prime ring and *d* is a nonzero derivation of *R*. If $d(rs + sr)(rs + sr) + (rs + sr) d(rs + sr))^n = (d(rs + sr))^m$ for all $r, s \in I$, then *R* is commutative by Theorem 2.1. Otherwise, we have $I \cap Z(R) \neq 0$ by our assumptions. Let now *J* be a nonzero two-sided ideal of R_z , the ring of the central quotients of *R*. Since $J \cap R$ is an ideal of *R*, then $J \cap R \cap Z(R) \neq 0$. Hence, that is, *J* contains an invertible element in R_z , and so R_z is simple with 1. By the hypothesis for any $r, s \in I$ and $z \in R$, thus *I* satisfies the differential identity

$$[(d(r)s + sd(r) + rd(s) + d(s)r)(rs + sr) + (rs + sr)(d(r)s + sd(r) + rd(s) + d(s)r))^{n}$$
(1)
- (d(r)s + sd(r) + rd(s) + d(s)r)^{m}, z] = 0.

Since I and Q satisfy the same differential identities [11, Theorem 1], we may assume that Q satisfies (1). Now consider two cases:

Case 1. If d is not Q-inner. By Kharchenko's theorem [5], Q satisfies the same polynomial identity,

$$[((ss + ss + rt + tr)(rs + sr) + (rs + sr)(ss + ss + rt + tr))^{n} - (ss + ss + rt + tr)^{m}, z] = 0.$$

This is a polynomial identity and hence there exists a field F such that $Q \subseteq M_k(F)$ with k > 1 and Q, $M_k(F)$ satisfy the same polynomial identity [16]. Now choose $r = e_{12}$, t = 0, $s = e_{21}$, $w = e_{13}$, $s = e_{12}$ one can get,

 $0 = ((ss + ss + rt + tr)(rs + sr) + (rs + sr)(ss + ss + rt + tr))^{n}$ - (ss + ss + rt + tr)^m, z] = 2ⁿe₁₃ - e₁₃, a contradition.

Case 2. If *d* is a *Q*-inner derivation induced by an element $\phi \in Q$, such that $d(r) = [\phi, r]$ for all $r \in R$. Then by (1) we have

$$(([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r)(rs + sr) + (rs + sr) ([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r))^{n} - ([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r)^{m}, z] = 0,$$
(2)

for all r, $s \in I$ and $z \in R$. By Chuang [11], Q satisfy (2). By localizing R at Z(R) it follows that

$$(([\phi, r] s+s [\phi, r]+r [\phi, s] + [\phi, s] r)(rs + sr) + (rs + sr) ([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r))^{n} - ([\phi, r] s + s [\phi, r]+r [\phi, s] + [\phi, s] r)^{m} \in Z(R_{Z}),$$

for all $r, s \in R_Z$. Since R and R_Z satisfy the same polynomial identities, by our assumption, we have that R_Z does not satisfy s_4 . Thus, replacing R with R_Z , we may assume that R is a simple ring with 1. By Martindale theorem [13], R is a primitive ring with the minimal right ideal, whose commuting ring C is a division ring that is finite dimensional over Z(R). However,

since *R* is simple with 1, *R* must be Artinian. Hence $R = D_s$, the $s \times s$ matrices over *C*, for some $s \ge 1$. By [16, Lemma 2], there exists a field F such that $R \subseteq M_k(F)$, the ring of $k \times k$ matrices over field F, with k > 1, and $M_k(F)$ satisfies (2.2) that is,

$$(([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r)(rs + sr) + (rs + sr) ([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r))^{n} - ([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r)^{m} \epsilon Z(M_{k}(F)) = F.I_{k}.$$

If k \geq 2, now let $\phi = (\phi_{ij})_{k \times k}$. By assumption, for all $r, s \in R$,

$$(([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r)(rs + sr) + (rs + sr) ([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r))^{n} - ([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r)^{m}$$

is zero or invertible. We choose $r = e_{ii}$, $s = e_{ij}$ for any $i \neq j$. Then we have

$$(([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r)(rs + sr) + (rs + sr) ([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r))^{n} - ([\phi, r] s + s [\phi, r] + r [\phi, s] + [\phi, s] r)^{m} = -[\phi, e_{ij}]^{m}$$

Since rank of $[\phi, e_{ij}]^m$ is ≤ 2 , it cannot be invertible in *R* and so $[\phi, e_{ij}]^m = 0$. By solving above and left multiplying by e_{ij} , one can get

$$0 = e_{ij} (\phi e_{ij})^m = e_{ij} \phi_{ii}^m$$

implying $\phi_{ji} = 0$. Thus, for any $i \neq j$, $\phi_{ji} = 0$, ϕ is diagonal. Now set $\phi = \sum_{t} \phi_{tt} e_{tt}$ with $\phi_{tt} \in F$. For any F-automorphism θ of R, we have

$$([\theta (\phi), \theta (r)] \theta (s) + \theta (s)[\theta (\phi), \theta (r)] + \theta (r) [\theta (\phi), \theta (s)] + [\theta (\phi), \theta (s)] \theta (r))^{m}$$

$$= ([\theta (\phi), \theta (r)] \theta (s) + \theta (s)[\theta (\phi), \theta (r)]$$

$$+ \theta (r) [\theta (\phi), \theta (s)] + [\theta (\phi), \theta (s)] \theta (r)) (\theta (r)\theta (s) + \theta (s) \theta (r))$$

$$+ (\theta (r)\theta (s) + \theta (s)\theta (r)) ([\theta (\phi), \theta (r)] \theta (s) + \theta (s)[\theta (\phi), \theta (r)]$$

$$+ \theta (r) [\theta (\phi), \theta (s)] + [\theta (\phi), \theta (s)] \theta (r))^{n}$$

is zero or invertible for every $r, s \in R$. By the above argument $\theta(\phi)$ must be diagonal. Therefore, for each $j \neq i$, we have $\theta(\phi) = (1 + e_{ij})\phi(1 - e_{ij}) = \sum_{i=1}^{k} \phi_{ii}e_{ii} + (\phi_{jj} - \phi_{ii})e_{ij}$ is diagonal. Therefore, $\phi_{jj} = \phi_{ii}$ and so $\phi \in F.I_k$, and hence d = 0, which is a contradiction and completes the proof.

The following example demonstrates that R to be prime is essential in the hypothesis.

Example 2.1. Let *S* be any ring, $R = \left\{ \begin{pmatrix} ab \\ 00 \end{pmatrix} : a, b \in S \right\}$ and $I = \left\{ \begin{pmatrix} 0a \\ 00 \end{pmatrix} : a \in S \right\}$ be a nonzero ideal of *R*. We define a map *d*: $R \to R$ by $d(a) = e_{11}a - ae_{11}$. Then it is easy to see that *d* is a nonzero derivation. It is straightforward to check that *d* satisfies the property $d(r \circ s)(r \circ s) + (r \circ s) d(r \circ s)^n = (d(r \circ s))^m$. However, *R* is not commutative.

Example 2.2. Let *S* be any ring,
$$R = \left\{ \begin{pmatrix} ab \\ 0c \end{pmatrix} : a, b, c \in S \right\}$$
 and $I = \left\{ \begin{pmatrix} 0a \\ 00 \end{pmatrix} : a \in S \right\}$ be a nonzero ideal of *R*. Define a

a map $d: R \to R$ by $d(a) = [a, e_{11} + e_{12}]$. It is easy to see that d is a nonzero derivation and satisfies the property, $d(r \circ s)(r \circ s) = d(r \circ s)(r \circ s) + (r \circ s) = (d(r \circ s))^m$, but R is not commutative.

3. The case: *R* a semiprime ring

In this section, we extended Theorem 2.1 and Theorem 2.2 to the semiprime ring. Let *R* be a semiprime ring and *U* be its left Utumi quotient ring. Then C = Z(U) is extended centroid of *R* (see [17, p-38]). It is well known that "any derivation of semiprime ring *R* can be extended to a derivation of its left Utumi quotient ring *U* and so any derivation of *R* can be defined on the whole of U" [6, Lemma 2].

Theorem 3.1. Let *R* be a semiprime ring, *U* the left Utumi quotient ring of *R*, and *m*, *n* are fixed positive integers. If *R* admits a nonzero derivation *d* such that $d(x \circ y)(x \circ y) + (x \circ y) d(x \circ y)^n = (d(x \circ y))^m$ for all $x, y \in R$, then there exists a central idempotent element *e* in *U* such that on the direct sum decomposition $R = eU \oplus (1 - e)U$, *d* vanishes identically on *eU* and the ring (1 - e)U is commutative.

Proof. by Beidar [1] "any derivation of a semiprime ring *R* can be defined on the whole *U*", the Utmi quotient ring *R*. In view of Lee [6], *R* and *U* satisfy the same differential identities, hence $d(x \circ y)(x \circ y) + (x \circ y) d(x \circ y)^n = (d(x \circ y))^m$ for all $x, y \in U$.

Let *B* be the complete boolean algebra of idempotents in *C* and let *M* be any maximal ideal of *B*. Due to Chuang [17, p. 42], *U* is an orthogonal complete *B*-algebra and *MU* is a prime ideal of *U*, which is *d*-invariant. Denote $\overline{U} = U/MU$ and \overline{d} the derivation induced by d on \overline{U} , i.e., $\overline{d(u)} = \overline{d(u)}$ for all $u \in U$. Therefore, \overline{d} has in \overline{U} the same property as *d* in *U*. In particular, \overline{U} is prime and so, by Theorem 2.1, we have either \overline{U} is commutative or $\overline{d} = 0$ in \overline{U} . This implies that, for any maximal ideal *M* of *B*, either $d(U) \subseteq MU$ or $[U, U] \subseteq MU$. In any case, $d(U)[U, U] \subseteq MU$, for all *M*, where *MU* runs over all prime ideals of *U*. Therefore, $d(U)[U, U] \subseteq \bigcap_{M} MU = 0$, we obtain d(U)[U, U] = 0. By using the theory of orthogonal completion for semiprime rings [1, Chapter 3], it is clear that there exists a central idempotent element *e* in *U* such that on the direct sum decomposition $R = eU \oplus (1 - e)U$, *d* vanishes identically on *eU* and the ring (1 - e)U is commutative. This completes the proof of the theorem.

Theorem 3.2. Let *R* be a semiprime ring with characteristics different from 2, *U* the left Utumi quotient ring of *R* and *m*, *n* are fixed positive intemgers. If *R* admits a nonzero derivation *d* such that $d(x \circ y)(x \circ y) + (x \circ y) d(x \circ y)^n - (d(x \circ y))^m \in Z(R)$ for all *x*, *y* \in *R*, then there exists a central idempotent element *e* in *U* such that on the direct sum decomposition $R = eU \oplus (1 - e)U$, *d* vanishes identically on *eU* and the ring (1 - e)U satisfies *s*₄, the standard identity in four variables.

Proof. Since "any derivation *d* can be uniquely extended to a derivation in *U*, and *U* and *R* satisfy the same differential identities" (see [6]), then $d(x \circ y)(x \circ y) + (x \circ y) d(x \circ y)^n - (d(x \circ y))^m \in Z(R)$ for all $x, y \in U$.

Let *B* be the complete boolean algebra of idempotents in *C* and let *M* be nay maximal ideal of *B*. Due to Chuang [17, p. 42] *U* is an orthogonal complete *B*-algebra and *MU* is a prime ideal of *U*, which is *d*-invariant. Denote $\overline{U} = U/MU$ and \overline{d} the derivation induced by *d* on \overline{U} , i.e., $\overline{d(u)} = \overline{d(u)}$ for all $u \in U$. Therefore \overline{d} has in \overline{U} the same property as *d* in *U*. In particular, \overline{U} is prime and so, by Theorem 2.2, either \overline{U} satisfies s_4 or $\overline{d} = 0$ in \overline{U} . This implies that, for any maximal ideal *M* of *B*, either $d(U) \subseteq MU$ or $s_4(x_1, x_2, x_3, x_4) \subseteq MU$, for all $x_1, x_2, x_3, x_4 \in U$. In any case $d(U)s_4(x_1, x_2, x_3, x_4) \subseteq \bigcap_M MU = 0$. From [1, Chapter 3], there exists a central idempotent element *e* of *U*, the left Utumi quotient ring of *R*, such that on the direct sum decomposition $R = eU \oplus (1 - e)U$, d(eU) = 0 and the ring (1 - e)U is satisfies s_4 .

References

- Beidar, K.I. Martindale III, W.S. Mikhalev, A.V. Rings with Generalized Identities. *Pure and AppliedMathematics* Marcel Dekker 196, New York, 1996.
- [2] Ashraf, M. Rehman, N. On commutativity of rings with derivations. Results Math. 2002; (42): No1-2, 3-8.
- [3] Arga, c, N. Inceboz, H.G. Derivation of prime and semiprime rings. J. Korean Math. Soc 2009(46): No.5, 997-1005.
- [4] Bell, H. E., Daif, M. N. On commutativity and strong commutativity-preserving maps. *Cand. Math. Bull*.1994; (37): 443-447
- [5] Kharchenko, V. K. Differential identities of prime rings. Algebra Logic. 1979; (17): 155-168.
- [6] Lee, T. K. Semiprime rings with differential identities. Bull. Inst. Math., Acad. Sin. 1992; (20): 27-38.
- [7] Xu, X. W. The power values properties of generalized derivations. *Doctor Thesis of Jilin University*. Changchun, 2006.
- [8] Herstein, I. N. Center-like elements in prime rings. J. Algebra. 1979; (60): 567-574.

- [9] Mayne, J. H. Centralizing mappings of prime rings. Canad. Math. Bull. 1984; 27(1): 122-126.
- [10] Chuang, Ch.-L. Hypercentral derivations. J. Algbera. 1994; 166(1): 34-71
- [11] Chuang, Ch.-L. GPIs having coeffcients in Utumi quotient rings. Proc. Am. Math. Soc. 1988; (103): 723-728.
- [12] Erickson, T. S. Martindale III, W. Osborn J. M. Prime nonassociative algebras. Pac.J. Math. 1975; (60): 49-63.
- [13] Martindale III, W.S. Prime rings satisfying a generalized polynomial identity. J. Algebra. 1969; (12): 576-584.
- [14] Jacobson, N. Structure of Rings. Colloquium Publications 37. Am. Math. Soc. VII, Provindence, RI, 1956.
- [15] Carini, L. Filippis, V. D. Commutators with power central values on a Lie ideal. Pacific J. Math. 2000; 193(2): 269-278.
- [16] Lanski, C. An Engel condition with derivation. Proc. Am. Math. Soc. 1993; (118): 731-734.
- [17] Chuang, Ch.-L. Hypercentral derivations. J.Algebra. 1994; (166), 34-71.