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Abstract: Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and m, n fixed positive integers. (i) If (d (r ○ s)(r 
○ s) + (r ○ s) d (r ○ s)n - d (r ○ s))m for all r, s ϵ I, then R is commutative. (ii) If (d (r ○ s)(r ○ s) + (r ○ s) d (r ○ s)n - d 
(r ○ s)m ϵ Z(R) for all r, s ϵ I, then R satisfies s4, the standard identity in four variables. Moreover, we also examine the case 
when R is a semiprime ring.
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1. Introduction
Throughout this paper, R always denotes an associative ring with center Z(R), Q its Martindale quotient ring, and U 

its Utumi quotient ring. The center of U, denoted by C, is called the extended centroid of R (we refer the reader to [1] for 
these objects).

For each r, s ϵ R , the Lie commutator of r, s, is denoted by [r, s] and defined by [r, s] = rs - sr and the anticommutator 
of R is defined r ○ s = rs + sr. By d we mean a derivation of R, that is an additive mapping d: R→R satisfying d (rs) = d (r)
s + rd(s) for all r, s ϵ R. A derivation d is called Q-inner if it is inner induced by an element, say θ ϵ Q as an adjoint, that is, 
d(r) = [θ, r] for all r.ϵ R. A derivation which is not Q-inner is called a Q-outer derivation. The standard polynomial identity  
s4 in four variables is defined as s4 (r1, r2, r3, r4 ) = ∑σ ϵ s4

 (-1)σ rσ (1) rσ (2) rσ (3) rσ (4) where (-1)σ is + or - according to σ being 
even or odd permutation in symmetric group s4.

In [2], Ashraf and Rehman proved that “if R is a prime ring, I is a nonzero ideal of R and d is a nonzero derivation of  
R such that d (r ○ s) = r ○ s for all r, s ϵ I, then R is commutative”. In [3], Argaç and Inceboz generalized the above result 
as follows: “ Let R be a prime ring, I a nonzero ideal of R and n a fixed positive integer, if R admits a nonzero derivation  d 
with the property (d (r ○ s))n = r ○ s for all r, s ϵ I, then R is commutative”.

In 1994 Bell and Daif, initiated the study of strong commutativity-preserving maps and proved that “a nonzero right 
ideal I of a semiprime ring is central if R admits a derivation which is scp on I ”. In 2002 Ashraf and Rehman, proved that 
“if R is a 2-torsion free prime ring, I is a nonzero ideal of R and d is a nonzero derivation of R such that d (r) ○ d (s) = r ○ s 
for all r, s ϵ I, then R is commutative”. The present paper is motivated by the previous results and we here generalized the 
results obtained in [3] and [2]. Moreover, we continue this line of investigation by examining what happens to a ring R (or 
an algebra A ) if it satisfies the identity (d (r ○ s)(r ○ s) + (r ○ s) d (r ○ s)m-d (r ○ s))n ϵ Z(R), for all r, s ϵ I. We obtain some 
analogous results for semiprime rings in the case I = R.

2. The results in Prime Rings
Theorem 2.1. Let R be a prime ring, I a nonzero ideal of R and m, n are fixed positive integers. If R admits a nonzero 

derivation d such that d(r ○ s)(r ○ s) + (r ○ s) d(r ○ s)n = (d(r ○ s))m for all r, s ϵ I, then R is commutative.
Proof. Since R is a prime ring and if R admits a derivation d, by the given hypothesis, we have
(d(rs + sr)(rs + sr) + (rs + sr) d (rs + sr))n = (d(rs + sr))m for all r, s ϵ I.
Thus I satisfies the differential identity
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(d(r) s + sd(r) + rd(s) + d(s) r)m = (d(r) s + sd(r) + rd(s) + d(s)r)(rs + sr)
                                                   + (rs + sr)(d(r)s + sd(r) + rd(s) + d(s)r)n for all r, s ϵ I.

We divide the proof into two cases:
Case 1. If d is Q-outer derivation, then I satisfies the polynomial identity

(ss + ss + rt + tr)m = ((ss + ss + rt + tr)(rs + sr)
                                 + (rs + sr)(ss + ss + rt + tr))n, for all r, s, s, t ϵ I.

In particular, for s = 0, I satisfies the blended component (rt + tr)m = 0, for all r, t ϵ I. If char(R) ≠ 2, then (2r2)m = 
0 for all r ϵ I. By Xu [7], we get a contradiction. If char(R) = 2, then (rt+tr)m = 0 = [r, t]m for all r, t ϵ I, and hence R is 
commutative by Herstein [8, Theorem 2].

Case 2. Let now d be Q-inner derivation induced by an element φ  ϵ Q, that is, d(r) = [φ , r] for all r ϵ R. It follows 
that,

( [φ , r] s + s [φ , r] + r [φ , s] +[φ ,s] r)m = (([φ , r] s + s [φ , r] + r [φ , s] + [φ , s] r) (rs + sr)
                                                                   + ((rs + sr)([φ , r] s + s [φ , r] + r [φ , s] + [φ , s] r))n.

for any r, s ϵ I. By Chuang [11, Theorem 1], I and Q satisfy same generalized polynomial identities (GPIs), hence we have

( [φ , r] s + s [φ , r] + r [φ , s] + [φ , s] r)m = (([φ , r] s + s [φ , r] + r [φ , s] + [φ , s] r) (rs + sr)
                                                                        + ((rs + sr)([φ , r] s + s [φ , r] + r [φ , s] + [φ , s] r))n,
                                                                            for all r, s ϵ Q

Moreover, if C is infinite, we have

( [φ , r] s + s [φ , r] + r [φ , s] + [φ , s] r)m = (([φ , r] s + s [φ , r] + r [φ , s]+[φ , s] r) (rs + sr)
                                                                         +((rs + sr)([φ , r] s + s [φ , r] + r [φ , s] + [φ , s] r))n,

for all r, s ϵ Q ⊗ C C  , where C  is the algebraic closure of C. Since both Q and Q ⊗ C C  are prime and centrally closed [12, 
Theorems 2.5 and 3.5], we may replace R by Q or Q ⊗ C C  according as C is finite or infinite. Thus, we may assume that R 
is centrally closed over C (i.e., RC = R) which is either finite or algebraically closed

( [φ , r] s + s [φ , r] + r [φ , s] + [φ , s] r)m = (([φ , r] s + s [φ , r] + r [φ , s] + [φ , s] r) (rs + sr)
                                                                        +((rs + sr)([φ , r] s + s [φ , r] + r [φ , s] + [φ , s] r))n,
                                                                           for all r, s ϵ R

By Martindale [13, Theorem 3], RC (and so R) is a primitive ring having nonzero socle H with C as the associated 
division ring. Hence, by Jacobson's theorem [14, p.75], R is isomorphic to a dense ring of linear transformations of some 
vector space V over C and H consists of the finite rank linear transformations in R.

Assume first that dimCV ≥ 3.
First of all we want to show that v and φ v are linearly C-dependent for all v ϵ V. Since if φ v = 0 then {v, φ v} is 

linearly C-dependent, suppose that φ v ≠ 0. If v and φ v are linearly C-independent, since dimCV ≥ 3, there exists w ϵ V 
such that {v, φ v, w} are also linearly C-independent. By the density of R, there exist r, s ϵ R such that:

rv = 0, rφ v = w, rw = 0
sv = 0, sφ v = 0, sw = v.
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This implies that

v = (([φ , r]s + s [φ , r] + r [φ , s] + [φ , s] r)m ) v
  = (([φ , r] s + s [φ , r] + r [φ , s] + [φ ,s] r) (rs + sr)
       + (rs + sr)([φ , r] s + s [φ , r] + r [φ , s] + [φ , s] r))n) v
  = 0, a contradiction.

So we conclude that {v, φ v} are linearly C-dependent, for all v ϵ V .
Our next goal is to show that there exists α ϵ C such that φ v = vα, for any v ϵ V. In fact, choose v, w ϵ V linearly 

independent. Since dimCV ≥ 3, there exists u ϵ V such that v, w, u are linearly independent, and so there exist αv, αw, αu ϵ C 
such that

φ v = vαv, φ w = wαw, φ u = uαu that is φ (v + w + u) = vαv + wαw + uαu.

Moreover φ (v + w + u) = (v + w + u)αv+w+u, for a suitable αv+w+u ϵ C . Then

0 = v(αv+w+u - αv) + w(αv+w+u - αw) + u(αv+w+u - αu),

and because v, w, u are linearly independent, αu = αw = αv = αv+w+u, that is, α does not depend on the choice of v. Hence we 
have φ v = αv for all v ϵ V.

Now for any r ϵ R, v ϵ V. By Step 2, φ v = vα, r(φ v) = r(vα), and also φ (rv) = (rv)α. Thus, 0 = [φ , r]v, for any v ϵ V, 
that is [φ , R]V = 0. Since V is a left faithful irreducible R-module, hence [φ , R] = 0, i.e., φ  ϵ Z(R) and so a contradiction.

Suppose now that dimCV must be ≤ 2. In this case, R is a simple GPI-ring with 1, so it is a central simple algebra of 
finite dimensional over its center. By Lanski [16, Lemma 2], it follows that there exists a suitable filed F such that R ⊆
Mk(F), the ring of all k × k matrices over F, and moreover Mk(F) satisfies the same GPI as R.

Assume k ≥ 3, then by the same argument as above, we get a contradiction.
Obviously, if k = 1, then R is commutative. Thus we may assume that k = 2, i.e., R ⊆  M2(F), where M2(F) satisfies

( [φ , r] s+s [φ , r]+r [φ , s] +[φ ,s] r)m = (([φ , r] s +s [φ , r] +r [φ , s]+[φ ,s] r) (rs + sr)
                                                                   +((rs + sr)([φ , r] s +s [φ , r]+r [φ , s]+[φ ,s] r))n,
                                                                     for all r, s ϵ M2(F).

Denote eij the usual unit matrix with 1 in (i, j)-entry and zero elsewhere. Let r = e11, s = e12, then we get,

0 = ( [φ , r] s+s [φ , r]+r [φ , s] +[φ ,s] r)m 

       = (([φ , r] s +s [φ , r] +r [φ , s]+[φ ,s] r) (rs + sr)
       +((rs + sr)([φ , r] s +s [φ , r]+r [φ , s]+[φ ,s] r))n

    = ( φ  e12  - e12φ )m .

In any case, we have at 0 = e12( φ  e12 )
m. Set φ  = 

11 12

21 22

φ φ
φ φ
 
 
 

. By calculation, we can have 210
00

mφ 


 
 = 0 which implies 

that φ 21 = 0. In the same manner, we can see that φ 12 = 0. Therefore, φ  is a diagonal in M2(F). Let θ ϵ Aut (M2(F)). Since

([θ (φ ), θ (r)] θ (s) + θ (s)[θ (φ ), θ (r)] + θ (r) [ θ (φ ), θ (s)] + [θ (φ ), θ (s)] θ (r))m

                               = ([θ (φ ), θ (r)] θ (s) + θ (s)[θ (φ ), θ (r)]
                                  + θ (r) [ θ (φ ), θ (s)] + [θ (φ ), θ (s)] θ (r)) (θ (r)θ (s) + θ (s)θ (r))
                                  + (θ (r)θ (s) + θ (s)θ (r)) ([θ (φ ), θ (r)] θ (s) + θ (s)[θ (φ ), θ (r)]
                                  + θ (r) [ θ (φ ), θ (s)] + [θ (φ ), θ (s)] θ (r)))n
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So, θ (φ ) must be a diagonal matrix in M2(F). In particular, let θ (r) = (1 - eij) r (1 + eij) for i ≠ j. Then θ (φ ) = φ  + 
( iiφ  - ijφ ) eij , that is iiφ  = ijφ  for i ≠ j. This implies that φ  is central in M2(F), which leads to d = 0 a contradiction. This 
completes the proof.

Now, we prove our next theorem for the central case:
Theorem 2.2. Let R be a prime ring with  characteristics different from 2, center Z(R), I a nonzero ideal of R, and m, 

n are fixed positive integers. If R admits a nonzero derivation d such that (d (r ○ s)(r ○ s) + (r ○ s) d (r ○ s)n - d (r ○ s))m ϵ 
Z(R), for all r, s ϵ I. Then R satisfies s4, the standard identity in four variables.

Proof. On the contrary, suppose that R does not satisfy s4. Since R is prime ring and d is a nonzero derivation of R. If 
d (rs + sr)(rs + sr) + (rs + sr) d (rs + sr))n = (d(rs + sr))m for all r, s ϵ I, then R is commutative by Theorem 2.1. Otherwise,  
we have I ∩ Z(R) ≠ 0 by our assumptions. Let now J be a nonzero two-sided ideal of RZ , the ring of the central quotients of 
R. Since J ∩ R is an ideal of R, then J ∩ R ∩ Z(R)  ≠ 0. Hence, that is, J contains an invertible element in RZ , and so RZ is 
simple with 1. By the hypothesis for any r, s ϵ I and z ϵ R, thus I satisfies the differential identity

[(d(r)s + sd(r) + rd(s) + d(s)r)(rs + sr)
           + (rs + sr)(d(r)s + sd(r) + rd(s) + d(s)r))n                                                                                    (1)
           - (d(r)s + sd(r) + rd(s) + d(s)r)m, z] = 0.

Since I and Q satisfy the same differential identities [11, Theorem 1], we may assume that Q satisfies (1). Now 
consider two cases:

Case 1. If d is not Q-inner. By Kharchenko’s theorem [5], Q satisfies the same polynomial identity,

[((ss + ss + rt + tr)(rs + sr) + (rs + sr)(ss + ss + rt + tr))n

                                                               - (ss + ss + rt + tr)m, z] = 0.

This is a polynomial identity and hence there exists a field F such that Q ⊆  Mk(F) with k > 1 and Q, Mk(F) satisfy the 
same polynomial identity [16]. Now choose r = e12, t = 0, s = e21, w = e13, s = e12 one can get,

0 = ((ss + ss + rt + tr)(rs + sr) + (rs + sr)(ss + ss + rt + tr))n

    - (ss + ss + rt + tr)m, z]
   = 2ne13 - e13, a contradition.

Case 2. If d is a Q-inner derivation induced by an element φ  ϵ Q, such that d(r) = [φ , r] for all r ϵ R. Then by (1) we 
have

(( [φ , r] s + s [φ , r] + r [φ , s] + [φ , s] r)(rs + sr) 

                 + (rs + sr) ([φ , r] s + s [φ , r] + r [φ , s]+[φ , s] r))n                                                        (2)
                 - ([φ , r] s + s [φ , r] + r [φ , s]+[φ ,s] r)m, z] = 0,
                                                                    

for all r, s ϵ I and z ϵ R. By Chuang [11], Q satisfy (2). By localizing R at Z(R) it follows that

(( [φ , r] s+s [φ , r]+r [φ , s] +[φ ,s] r)(rs + sr) 

                 + (rs + sr) ([φ , r] s + s [φ , r] +r [φ , s]+[φ , s] r))n                                 

                 - ([φ , r] s +s [φ , r]+r [φ , s]+[φ , s] r)m ϵ Z(RZ),

for all r, s ϵ RZ. Since R and RZ satisfy the same polynomial identities, by our assumption, we have that RZ does not satisfy 
s4. Thus, replacing R with RZ, we may assume that R is a simple ring with 1. By Martindale theorem [13], R is a primitive 
ring with the minimal right ideal, whose commuting ring C is a division ring that is finite dimensional over Z(R). However, 
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since R is simple with 1, R must be Artinian. Hence R = DS, the s × s matrices over C, for some s ≥ 1. By [16, Lemma 2], 
there exists a field F such that R ⊆  Mk(F), the ring of k × k matrices over field F, with k > 1, and Mk(F) satisfies (2.2) that 
is,

(( [φ , r] s + s [φ , r] +r [φ , s] + [φ , s] r)(rs + sr) 

                 + (rs + sr) ([φ , r] s + s [φ , r] + r [φ , s]+[φ , s] r))n

                 - ([φ , r] s +s [φ , r] + r [φ , s] + [φ , s] r)m ϵ Z(Mk(F)) = F.Ik.

If k ≥ 2, now let φ  = ( ijφ )k×k. By assumption, for all r, s ϵ R,

(( [φ , r] s + s [φ , r] + r [φ , s] + [φ , s] r)(rs + sr) 

                 + (rs + sr) ([φ , r] s + s [φ , r] +r [φ , s]+[φ , s] r))n

                 - ([φ , r] s + s [φ , r] + r [φ , s] + [φ , s] r)m

is zero or invertible. We choose r = eii, s = eij for any i ≠ j. Then we have

(( [φ , r] s + s [φ , r] + r [φ , s] + [φ , s] r)(rs + sr) 

                 + (rs + sr) ([φ , r] s + s [φ , r] + r [φ , s] + [φ , s] r))n

                 - ([φ , r] s + s [φ , r] + r [φ , s] + [φ , s] r)m

                         = -[ φ , eij ]
m

Since rank of [φ , eij ]
m is ≤ 2, it cannot be invertible in R and so [φ , eij ]

m = 0. By solving above and left multiplying 
by eij, one can get

0 = eij ( φ  eij )
m = eij

m
jiφ

implying jiφ  = 0. Thus, for any i ≠ j, jiφ  = 0, φ  is diagonal. Now set φ  = t tt tteφ∑  with ttφ  ϵ F. For any F-automorphism 
θ of R, we have

([θ (φ ), θ (r)] θ (s) + θ (s)[θ (φ ), θ (r)] + θ (r) [ θ (φ ), θ (s)] + [θ (φ ), θ (s)] θ (r))m

                               = ([θ (φ ), θ (r)] θ (s) + θ (s)[θ (φ ), θ (r)]
                                  + θ (r) [ θ (φ ), θ (s)] + [θ (φ ), θ (s)] θ (r)) (θ (r)θ (s) + θ (s) θ (r))
                                  + (θ (r)θ (s) + θ (s)θ (r)) ([θ (φ ), θ (r)] θ (s) + θ (s)[θ (φ ), θ (r)]
                                  + θ (r) [ θ (φ ), θ (s)] + [θ (φ ), θ (s)] θ (r)))n

is zero or invertible for every r, s ϵ R. By the above argument θ (φ ) must be diagonal. Therefore, for each j ≠ i, we have θ (φ

) = (1 +eij )φ (1 - eij ) = 1 ( )k
i ii ii jj ii ije eφ φ φ=∑ + −  is diagonal. Therefore, jjφ  = iiφ  and so φ  ϵ F.Ik, and hence d = 0, which is a 

contradiction and completes the proof.
The following example demonstrates that R to be prime is essential in the hypothesis.

Example 2.1. Let S be any ring, R = : ,
0 0
ab

a b S
  

∈  
  

 and I = 
0

:
00

a
a S

  
∈  

  
 be a nonzero ideal of R. We define 

a map d: R → R by d(a) = e11a - ae11. Then it is easy to see that d is a nonzero derivation. It is straightforward to check that 
d satisfies the property d(r ○ s)(r ○ s) + (r ○ s) d(r ○ s)n = (d(r ○ s))m. However, R is not commutative. 

Example 2.2. Let S be any ring, R = : , ,
0
ab

a b c S
c

  
∈  

  
 and I = 

0
:

00
a

a S
  

∈  
  

 be a nonzero ideal of R. Define a
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a map d: R → R by d(a) = [a, e11+ e12]. It is easy to see that d is a nonzero derivation and satisfies the property, d(r ○ s)(r ○ s) 
d(r ○ s)(r ○ s)+ (r ○ s) d(r ○ s)n = (d(r ○ s))m., but R is not commutative. 

3.The case: R a semiprime ring
In this section, we extended Theorem 2.1 and Theorem 2.2 to the semiprime ring. Let R be a semiprime ring and U be 

its left Utumi quotient ring. Then C = Z(U) is extended centroid of R (see [17, p-38]). It is well known that “any derivation 
of semiprime ring R can be extended to a derivation of its left Utumi quotient ring U and so any derivation of R can be 
defined on the whole of U ” [6, Lemma 2].

Theorem 3.1. Let R be a semiprime ring, U the left Utumi quotient ring of R, and m, n are fixed positive integers. If 
R admits a nonzero derivation d such that d(x ○ y)(x ○ y) + (x ○ y) d(x ○ y)n = (d(x ○ y))m  for all x, y ϵ R, then there exists a 
central idempotent element e in U such that on the direct sum decomposition R = eU ⊕  (1 - e)U, d vanishes identically on 
eU and the ring (1 - e)U is commutative.

Proof. by Beidar [1] “any derivation of a semiprime ring R can be defined on the whole U ”, the Utmi quotient ring 
R. In view of Lee [6], R and U satisfy the same differential identities, hence d(x ○ y)(x ○ y) + (x ○ y) d(x ○ y)n = (d(x ○ y))m  
for all x, y ϵ U.

Let B be the complete boolean algebra of idempotents in C and let M be any maximal ideal of B. Due to Chuang [17, 
p. 42], U is an orthogonal complete B-algebra and MU is a prime ideal of U, which is d-invariant. Denote U  = U/MU and 
d  the derivation induced by d on U , i.e., ( )d u  = ( )d u  for all u ϵ U. Therefore, d  has in U  the same property as d in 
U. In particular, U  is prime and so, by Theorem 2.1, we have either U  is commutative or d  = 0 in U . This implies that, 
for any maximal ideal M of B, either d(U) ⊆  MU or [U, U] ⊆  MU. In any case, d(U)[U, U] ⊆  MU, for all M, where MU 
runs over all prime ideals of U. Therefore, d(U)[U, U] ⊆  M  MU = 0, we obtain d(U)[U, U] = 0. By using the theory 
of orthogonal completion for semiprime rings [1, Chapter 3], it is clear that there exists a central idempotent element e 
in U such that on the direct sum decomposition R = eU ⊕  (1 - e)U, d vanishes identically on eU and the ring (1 - e)U is 
commutative. This completes the proof of the theorem.

Theorem 3.2. Let R be a semiprime ring with characteristics different from 2, U the left Utumi quotient ring of R and 
m, n are fixed positive intemgers. If R admits a nonzero derivation d such that d(x ○ y)(x ○ y) + (x ○ y) d(x ○ y)n - (d(x ○ 
y))m  ϵ Z(R) for all x, y ϵ R, then there exists a central idempotent element e in U such that on the direct sum decomposition 
R = eU ⊕  (1 - e)U, d vanishes identically on eU and the ring (1 - e)U satisfies s4, the standard identity in four variables.

Proof. Since “any derivation d can be uniquely extended to a derivation in U, and U and R satisfy the same differential 
identities” (see [6]), then d(x ○ y)(x ○ y) + (x ○ y) d(x ○ y)n - (d(x ○ y))m  ϵ Z(R) for all x, y ϵ U.

Let B be the complete boolean algebra of idempotents in C and let M be nay maximal ideal of B. Due to Chuang [17, 
p. 42] U is an orthogonal complete B-algebra and MU is a prime ideal of U, which is d-invariant. Denote U  = U/MU and 
d  the derivation induced by d on U , i.e., ( )d u  = ( )d u  for all u ϵ U. Therefore d  has in U  the same property as d in U. 
In particular, U  is prime and so, by Theorem 2.2, either U  satisfies s4 or d  = 0 in U . This implies that, for any maximal 
ideal M of B, either d(U) ⊆  MU or s4(x1, x2, x3, x4) ⊆  MU, for all x1, x2, x3, x4 ϵ U. In any case d(U)s4(x1, x2, x3, x4) ⊆  M  
MU = 0. From [1, Chapter 3], there exists a central idempotent element e of U, the left Utumi quotient ring of R, such that 
on the direct sum decomposition R = eU ⊕  (1 - e)U, d(eU) = 0 and the ring (1 - e)U is satisfies s4.
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