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Abstract: The study of Einstein constraint equations in general relativity naturally leads to considering Riemannian
manifolds equipped with nonsmooth metrics. There are several important differential operators on Riemannian
manifolds whose definitions depend on the metric: gradient, divergence, Laplacian, covariant derivative, conformal
Killing operator, and vector Laplacian, among others. In this article, we study the approximation of such operators,
defined using a rough metric, by the corresponding operators defined using a smooth metric. This paves the road to
understanding to what extent the nice properties such operators possess, when defined with smooth metric, will transfer
over to the corresponding operators defined using a nonsmooth metric. These properties are often assumed to hold when
working with rough metrics, but to date the supporting literature is slim.
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1. Introduction

The study of Einstein constraint equations in general relativity naturally leads to considering Riemannian manifolds
equipped with metrics that are not C* (see e.g. [1-5]). Some of the motivation for developing this understanding came
from studies of the Einstein evolution equation with rough metric [6-7]. In order to fully understand the implications
of a rough metric, one needs to understand the impact of a nonsmooth metric on the various geometric and differential
operators that arise in the formulation of stationary and evolution problems on Riemannian manifolds. The questions we
study in this article fall into the following general form: Let (M", g) be a compact Riemannian manifold. Suppose g <
whP(T 2]\4) where sp > n (it is reasonable to assume that the metric is continuous; the condition sp > n guarantees that g
has a continuous representative, and also it implies that W*”(M) is a Banach algebra, which plays an important role in
some of the calculations). Let {g, } be a sequence of smooth Riemannian metrics on M such that g, — g in W *(T 2M).

For each m, let 4,, be an operator whose definition depends on the metric g, . Let 4 be the corresponding operator that is
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defined in terms of g. What can be said about the relationship between the operators that are defined in terms of g, and
those that are defined in terms of g? Does {4, } converge to 4 (in an appropriate norm)? In particular, we are interested
in the gradient, Laplacian, divergence, covariant derivative, and vector Laplacian operators. Additionally, we will study
the relationship between the corresponding Riemannian curvature tensors, Ricci curvatures, and scalar curvatures.

One of the main applications of such results is in the study of elliptic partial differential equations on manifolds.
An example of the type of question we hope to address is the following: the Laplacian and vector Laplacian of a smooth
metric on a compact Riemannian manifold are Fredholm of index zero. Considering that the index of an operator is
locally constant, in order to see whether this useful property carries over to the case of nonsmooth metrics we need
to determine whether the Laplacian or vector Laplacian defined using a nonsmooth metric can be approximated by
corresponding operators defined by smooth metrics. Results of this type and other related results have been used in
literature without complete proof; they are well-motivated and reasonable assumptions in most cases, but it seems that
a careful study is missing in the literature. This is particularly true in the case of noninteger Sobolev classes. In this
manuscript, we have attempted to fill some of the gaps. This paper can be viewed as a part of our efforts to build a more
complete foundation for the study of differential operators and Sobolev-Slobodeckij spaces on manifolds through a
sequence of related manuscripts [8-11].

Outline of Paper. In Section 2 we summarize some of the basic definitions, notation and conventions used
throughout the paper. In Section 3 we go over some backround material on analysis and differential geometry. In
sections 4-14 we rigorously study the aforementioned question of convergence for various geometric operators that
appear in the study of elliptic partial differential equations on compact manifolds.

2. Notation and conventions

Throughout this paper, R denotes the set of real numbers, N denotes the set of positive integers, and N, denotes
the set of nonnegative integers. For any nonnegative real number s, the integer part of s is denoted by LSJ The letter n
is a positive integer and stands for the dimension of the space. For all £ € N, GL(k, R) is the set of all k£ x k invertible
matrices with real entries.

Q is a nonempty open set in R”. The collection of all compact subsets of Q will be denoted by K(Q). Lipschitz
domain in R” refers to a nonempty bounded open set in R” with Lipschitz continuous boundary.

Each element of Ny is called a multi-index. For a multi-index o = (a,, ... , a,) € Ny, we let|a| == a, + ... + a,. Also,

for sufficiently smooth functions « : Q — R (or for any distribution u) we define the ath order partial derivative of u as
follows:

e ooy,

axlal < Oxn

We use the notation 4 < B to mean 4 < ¢B, where c is a positive constant that does not depend on the non-fixed
parameters appearing in 4 and B. We write 4 ~ Bif 4 < Band B < 4.

We write L(X, Y) for the space of all continuous linear maps from the normed space X to the normed space Y. We
use the notation X — Y to mean X < Y and the inclusion map is continuous.

Definition 2.1 Let Q be a nonempty open set in R” and m € N,,.

C(Q)={f:Q—>R: f is continuous}

C"(Q)={f: Q> R:V]jalcm 0*f eC(Q)} (CO(Q)=C(Q))

BC(Q)={f:Q— R: f is continuous and bounded on Q}

BC"(Q)={f eC™(Q):V|a|<m 0“f is bounded on Q}

BC(Q)={f:Q—>R: feBC(Q)andf is uniformly continuous on Q}
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BC™(Q)={f:Q—>R:feBC™(Q), Y|al<m 8*f is uniformly continuous on Q}

C* (@)= () C"(Q), BC*(Q)= [ BC"(Q), BC*(©Q)= ()] BC"(Q)
meN( meN( meN

CZl(Q)={f e C”(Q):support of f is an element of K(Q)}

Remark 2.2 [12] If f: Q — R is in BC(Q), then it possesses a unique, bounded, continuous extension to the
closure Q of Q.

Definition 2.3 Let Q be a nonempty open set in R”. Let s € R and p € (1, ).

cIlfs=ke N,

k.p — p : = Y
W (Q)—{MEL (Q) ||u||Wk’p(Q)._ Z”a u||Lp(Q)<OO}

<k

“Ifs=0¢e (0, 1),

1
0.0 () — : — [u(x)—u() |” »
WP @ =tue Q) ul0p o= (,[.[ng—d| = xdy)? < oo}

“Ifs=k+6,keN,6e 1),

, _ k, . —
WP (Q)={u e WP (Q): | u ”WS’P(Q)'_“ u ”W’“P(Q) +‘ ‘ZklaVu IWe,p(Q)< oo}
V=

* WyF (Q) is defined as the closure of C;7(Q) in WP (Q).
e Ifs<0,

WP (@) = P (@) (-4 =1)
p p
* For all compact sets K < Q we define
WP (Q) = {u e W*P(Q) : suppu = K’}

with || u ||W1?p @) Z:H u ”Ws,p(Q).
WP (Q)={ueD'(Q):VpeCS(Q) pueW*P(Q)} where D'(Q) is the space of distributions on Q. W, (Q) is

equipped with the natural topology induced by the separating family of seminorms {|. \q,} } where

9peC(Q)
VueWi:r Q) ¢eCr(Q) |ul,=lpul

WP (@)

Let X, Y, and Z be Sobolev spaces (or locally Sobolev spaces). In this manuscript, by writing

Volume 3 Issue 2(2022| 91 Contemporary Mathematics



XxYoZ

we mean that the product of an element of X with an element of Y is an element of Z and moreover this multiplication is
continuous in the following sense: if u;, — u in X and v, — vin Y, then u,y, — uvin Z.

Throughout this manuscript, all manifolds are assumed to be smooth, Hausdorff, and second countable. We usually
use the letter M for manifolds. If M is an n-dimensional smooth manifold, sometimes we use the shorthand notation A"
to indicate that M is n-dimensional.

Definition 2.4

» We say that a smooth atlas for a smooth manifold M is a geometrically Lipschitz (GL) smooth atlas if the image
of each coordinate domain in the atlas under the corresponding coordinate map is a nonempty bounded open set with
Lipschitz boundary.

» We say that a smooth atlas for a smooth manifold M" is a generalized geometrically Lipschitz (GGL) smooth
atlas if the image of each coordinate domain in the atlas under the corresponding coordinate map is the entire R” or a
nonempty bounded open set with Lipschitz boundary.

+ We say that a smooth atlas for a smooth manifold M" is a nice smooth atlas if the image of each coordinate
domain in the atlas under the corresponding coordinate map is a ball in R".

* We say that a smooth atlas for a smooth manifold M" is a super nice smooth atlas if the image of each coordinate
domain in the atlas under the corresponding coordinate map is the entire R".

» We say that two smooth atlases {(U,, ¢,)},e; and (U 8> 98)} pes for a smooth manifold M" are geometrically
Lipschitz compatible (GLC) smooth atlases provided that each atlas is GGL and moreover for all & € / and f € J with
U,N U p* D, 9, U, nU p)and gp(U, N U ) are nonempty bounded open sets with Lipschitz boundary or the entire
R".

Clearly, every super nice smooth atlas is also a GGL smooth atlas; every nice smooth atlas is also a GL smooth
atlas, and every GL smooth atlas is also a GGL smooth atlas. Also, note that two arbitrary GL smooth atlases are not
necessarily GLC smooth atlases because the intersection of two Lipschitz domains is not necessarily Lipschitz (see e.g.
[13], pages 115-117).

The tangent space of a manifold M" at point p € M is denoted by T M, and the cotangent space by T p*M. If (U, ¢
= (x[)) is a local coordinate chart and p € U, we denote the corresponding coordinate basis for 7/ M by 0/, while % e

2

denotes the basis for the tangent space to R" at x = ¢(p) € R”"; that is,

Note that for any smooth function /: M — R we have
1 0 _
©@:/)o0” =— (o9,
Ox

The vector space of all k-covariant, /-contravariant tensors on 7 M is denoted by T [k(T pM). So each element of
le (T,M) is a multilinear map of the form

* *
F:TpM><~--><TpM><TpM><~--><TpM—HR.

[ copies k copies

Let M be a smooth manifold. A (smooth real) vector bundle of rank » over M is a smooth manifold £ together with
a surjective smooth map 7 : E — M such that
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(1) foreachx e M, E = nﬁl(x) is an r-dimensional (real) vector space.

(2) for each x € M, there exists a neighborhood U of x in M and a smooth map p = (pl, oo, p') from E| == ﬂil(U)
onto R” such that:

* forevery x € U, p| g Ec— R" is an isomorphism of vector spaces

*®=(aly, . p) Ey— Ux R’ is a diffeomorphism.

The expressions “E is a vector bundle over M”, or “E — M is a vector bundle”, or “z : E — M is a vector bundle”
are all considered to be equivalent. The space £ is called the total space of the vector bundle £ — M. For eachx € M, E,
= nﬁl(x) is called the fiber over x. We refer to both @ : £, — U x R"and p : E;;, — R as a (smooth) local trivialization
of E over U. We say that E|, is trivial. The pair (U, p) (or (U, ®)) is sometimes called a vector bundle chart. It is easy
to see that if (U, p) is a vector bundle chart and & = V' < U is open, then (V, p| EV) is also a vector bundle chart for E.
Moreover, if V' is any nonempty open subset of M, then £, is a vector bundle over the manifold V. We say that a triple
(U, o, p) is a total trivialization triple of the vector bundle 7 : £ — M provided that (U, ¢) is a smooth coordinate chart
and p = (pl, ..., p'): E; — R’ s a trivialization of E over U. A collection {(U,, ¢, p,)} is called a total trivialization
atlas for the vector bundle £ — M provided that for each a, (U, ¢,, p,) is a total trivialization triple and {(U,, ¢ )} is
a smooth atlas for M. A collection {(U,, ¢, p,, ¥,)}| <, <y Of 4-tuples is called an augmented total trivialization atlas
for E— M provided that {(U,, ¢, p,)}, <, <y is a total trivialization atlas for £ — M and {y_} is a partition of unity
subordinate to the open cover {U,}.

Definition 2.5 Let M" be a compact smooth manifold.

» We say that a total trivialization triple (U, ¢, p) is geometrically Lipschitz (GL) provided that ¢(U) is a nonempty
bounded open set with Lipschitz boundary. A total trivialization atlas is called geometrically Lipschitz if each of its total
trivialization triples is GL.

+ We say that a total trivialization triple (U, ¢, p) is nice provided that ¢(U) is equal to a ball in R". A total
trivialization atlas is called nice if each of its total trivialization triples is nice.

« We say that a total trivialization triple (U, ¢, p) is super nice provided that p(U) is equal to R". A total
trivialization atlas is called super nice if each of its total trivialization triples is super nice.

* A total trivialization atlas is called generalized geometrically Lipschitz (GGL) if each of its total trivialization
triples is GL or super nice.

* We say that two total trivialization atlases {(U,, ¢,, p,)},<; and {(ljﬁ s Pp s ﬁﬁ)} pey Are geometrically Lipschitz

compatible (GLC) if the corresponding atlases {(U,, ¢,)} ,; and {(013 , q?)ﬂ)} pesare GLC.
A section of a vector bundle 7 : £ — M is a map u : M — E such that 7 o u = Id,,, We denote the space of all
sections of E by I'(M, E). The space of all smooth sections of E is denoted by C*(M, E). In this manuscript, unless

stated otherwise, a section of £ refers to an element of I'(M, E) (no implicit smoothness assumption is made). Note that
a section of the trivial vector bundle £ = M x R can be identified with a scalar function on M. In fact, C*(M, M x R)

can be identified with C*(M) where C”(M) is the collection of all smooth functions from M to R. One can define sets of

measure zero on a compact manifold using charts and it can be shown that such a definition is independent of the charts.
In this manuscript, when we explicitly talk about the support of u € I'(M, E) we mean the complement of the union of
all open sets V'in M such that u = 0 almost everywhere on V.

We are primarily interested in the bundle of (];)—tensors on M whose total space is

= | 1t M.
peM

A section of this bundle is called a (f)—tensor field. We set 7'M =T, é‘(M). TM denotes the tangent bundle of M and
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T"M is the cotangent bundle of M. We set rlk (M)=C" (M,le (M)) and y(M) = C™(M,TM).
For certain vector bundles there are standard methods to associate with any given smooth coordinate chart (U,
¢ = (x")) a total trivialization triple (U, ¢, p). We call such a total trivialization triple the standard total trivialization

associated with (U, ¢). For example, consider £ = T, lk(M). The collection of the following tensor fields on U form a local

frame for £, associated with (U, ¢ = (xi)) in the sense that at each point p € U, they form a basis for 7, lk(T pM):

i@---@i@dxﬁ ®- @ dx'k
ox'1 ox'

So, given any atlas {(U,, ¢,)} of a manifold M", there is a corresponding total trivialization atlas for the tensor
bundle 7, lk (M), namely {(U,, ¢, p,)} Where for each a, p, has nt! components which we denote by (p, )lfllil For all ¥
1
e I'(M, le(M)), we have

Jui _ Ui
(pa)il"'ik (F)_(Fa)ilmik :

Here (F, )lj1 11/{ !"denotes the components of F with respect to the standard frame for T lk U, described above. When
there is no possibility of confusion, we may write lej llkj ! instead of (F, )l.]1 ll]i L

A symmetric positive definite section of T°M is called a Riemannian metric on M. If M is equipped with a
Riemannian metric g, the combination (M, g) will be referred to as a Riemannian manifold. For each p € M, the norm
induced by g on the tangent space 7’ M will be denoted by ||.|| () OF just ||| - The corresponding operator norm for linear

maps from 7, Mto T M will be denoted by H.||Up( <)) OF just ||.||0p. We say that g is smooth (or the Riemannian manifold is
smooth) if g € C*(M, T°M).

We denote the exterior derivative by d and grad : C*(M) — T'(M, TM) denotes the gradient operator which is
defined by g(grad £, X) = df(X) for all f € C*(M) and X € C*(M, TM).

Given a metric g on M, one can define the musical isomorphisms as follows:
%
flat, :T,M —T,M
XX =g(X, ),
sharp, : T,M —T,M
f._ flat™!
y >yt =flat, ().

Using sharp, we can define the (g)—tensor field g71 (which is called the inverse metric tensor) as follows

g (1. w2) = g(sharp, (), sharp, (3)).

Let {£,} be a local frame for the tangent bundle on an open subset U < M and {n'} be the corresponding dual
coframe. So, we can write X = X’ E;and y = l//l.i’]i. It is standard practice to denote the i" component of ﬂath by X; and

the i component of sharp () by l//[Z
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ﬂath = X,-ni, sharpgt// = l//iEi.
It is easy to show that
Xi=g; X', v' =¢";,

where g; = g(E, E) and gij = g_l(ni, nj). It is said that ﬂath is obtained from X by lowering an index and sharpgt// is
obtained from y by raising an index.

If (M, g) is a Riemannian manifold, then there exists a unique inner product on each fiber of T lk(M) with the
property that for all x € M, if {e,} is an orthonormal basis of 7 M with dual basis {'}, then the corresponding basis of
T lk (T M) is orthonormal (see e.g. [14], page 29). We call this inner product the fiber metric on the bundle of (f) tensors

and denote it by (.,.) . The corresponding norm is denoted by |.|. If 4 and B are two tensor fields, then with respect to
any local frame

— ol ok . AT SIS
<A9 B)F =8 g gjlsl ngSlAi1-~~ik B"l"'rk :
Let (M", g) be a compact Riemannian manifold. Let B : M — Hom(TM, TM) be a continuous section of the vector
bundle Hom(7TM, TM); in particular, for each p € M, B(p) : T, M— T M is a linear map. We define

”B”oo:”f” 0 = sup |f(p)|s
L7 () PEM

where the continuous function /' : M — R is defined by

Theorem 3.3

f(p) :” B(p) ||0p(g(p)) = sup | g(BXs Y) |
Il =l =1

Note that, as a direct consequence of the above definition, forallp e Mand X, Y € T pM we have

1g(BX, V)| < [BILIx vl

3. Background material

Some background material on analysis, differential geometry, and function spaces and their properties are presented
in this section. We simply state the basic results we need for the theorems we want to prove in the future sections.
Almost all the theorems that are cited here, with proofs or appropriate references for the proofs, can be found in [8-10],
and [15].

Theorem 3.1 Let (V, (.,.)) be a finite dimensional (real) inner product space. If B : V' x V' — R is a bilinear form,
then there exists a unique linear transformation 7': " — V' such that

Vx,yeV B(x,y)=(T(x), y).

Moreover, if B is positive definite, then 7 is bijective. (Recall that a symmetric bilinear form B is called positive
definite if B(x, x) > 0 for all nonzero x.)
Theorem 3.2 ([15], Page 154) Let B : V' x IV — R be a bilinear form on a normed space / and let Q be the
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associated quadratic form (Q(x) = B(x, x)). If B is symmetric and bounded, then ||B|| = ||Q||, that is,
1Bl =sup{] Bx, )| = lx =l yl=13 =sup{| Bx, )| = Ixl=13= [ Ql.

Theorem 3.3 ([15], Page 155) Let 4 be a bounded linear operator on a Hilbert space (H, (.,.)). Then the bilinear
form defined by B(x, y) = (4x, y) is bounded and ||4|| = ||B]|.
Theorem 3.4 Let X, Y, and Z be normed spaces. Suppose 4, — 4 in L(X, Y) and B, — B in L(Y, Z). Then

B, oA, > BodinL(X, Z).

In particular, if 4, — A in L(X, Y) and B € L(Y, Z), then Bc A, — B ° A.
Theorem 3.5 Let 4 : V' — W be a linear transformation between the normed spaces V" and . Then

lAlyp= sup [y, Ax) - L
llly =1, Iyl » =1

Proof. It is a direct consequence of Hahn-Banach theorem that for any z € W, |[w||,, = sup{y(w) : y € W*, IWllys=1}
(see e.g. [16]). So,

[4lp= sup ldshy=  swp 1 ADye, | ;
llxll =1 Il =1, Iyl » =1

Lemma 3.6 ([9], Page 20) Let M be a compact smooth manifold. Suppose {U, },_,.y is an open cover of M.
Suppose C is a closed set in M (so C is compact) which is contained in Uy for some 1 < f < N. Then there exists a
partition of unity {y_} .,y subordinate to {U,_} .,y such that yy=1onC.

Theorem 3.7 ([9], Page 50) [Multiplication by smooth functions] Lets € R, 1 <p <o, and ¢ € BC”(R"). Then the
linear map

my WP (R") > WP (RY), u - gu

is well-defined and bounded.

Theorem 3.8 ([9], Pages 54-55) Let Q be a nonempty bounded open set in R” with Lipschitz continuous boundary.
Suppose s € Rand p € (1, o).

(1) If € BC™(Q), then the linear map W*"(Q) — W*(Q) defined by u > gu is well-defined and bounded.

(2) Let K € K(Q). If p € C*(Q), then the linear map W' (Q) — W'(Q) defined by u > ¢u is well-defined and
bounded.

Theorem 3.9 ([9], Page 67) Lets € R, 1 <p <o, and a € Nj. Suppose Q is a nonempty open set in R". Then

(1) the linear operator 8% W*"(R") — W* 1*"(R") is well-defined and bounded;

(2) for s < 0, the linear operator 8% W*"(Q) — W* “?(Q) is well-defined and bounded;

(3) for s > 0 and |a| < s, the linear operator 8% W**(Q) — W*~“(Q) is well-defined and bounded;

(4) if Q is bounded with Lipschitz continuous boundary, and if s >0, s — % # integer (i.e. the fractional part of s is

not equal to %), then the linear operator 8% W*7(Q) — W* “*(Q) for |a| > s is well-defined and bounded.

Theorem 3.10 ([10], Page 24) Let s € R, 1 < p <oo. Let Q be a nonempty open set in R”. Either assume Q = R" or
Q is Lipschitz or else assume s is not a noninteger less than —1. If 4 is a subset of C zo(Q) with the following property:
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VxeQ Jpe A suchthat >0 and ¢(x) =0,

then we say A is admissible. If 4 is an admissible family of functions then
VVIZ::p Q) ={ueD(Q):Voped oueW Q).

Theorem 3.11 ([10], Page 36) Lets € R, 1 <p <o, and o € N;. Suppose € is a nonempty bounded open set in R”
with Lipschitz continuous boundary. Then

(1) the linear operator 6% : W, -7 (R") — WhS);IGI,P (R™) is well-defined and continuous;

(2) for s < 0, the linear operator 8* : W,>F (Q) — Wlija"p (Q) is well-defined and continuous;

(3) for s > 0 and |a| <, the linear operator 8* : ;¥ (Q) — le;\a\,p (Q) is well-defined and continuous;

4)ifs>0,s— % # integer (i.e. the fractional part of s is not equal to %), then the linear operator 0% : WIZ’CP Q)—>
Wl‘;j“"p (Q) for |a| > s is well-defined and continuous.

Theorem 3.12 ([8], Page 295, Page 298) Suppose Q = R" or Q is a bounded domain with Lipschitz continuous
boundary. Assume s, s and 1 < p, <p <oo (i = 1, 2) are real numbers satisfying

es;2s520fori=1, 2,

1 1
o §;—s2n(——-—),
i
1 1
o S| +5y—8s>n(—+—-—).
p PP

Then, if u e WP1(Q) and v € W*2°P2(Q), uv € W (Q), and moreover, the pointwise multiplication of functions
is a continuous bilinear map

WEPL Q) x W2 P2 (Q) — WP (Q),

Remark 3.13 A number of other results concerning the sufficient conditions on the exponents s,, p;, s, p that
guarantee the multiplication W*I'P1(Q)x W52°P2 (Q)>W*P(Q) is well-defined and continuous are discussed in detail
in [8].

Theorem 3.14 ([10], Page 38) Let Q = R" or Q be a bounded open set in R” with Lipschitz continuous boundary.

Suppose s, 5,5, s € Rand 1 <p,, p,, p < oo are such that

WEPL Q)X IT52P2 (Q) ISP (Q)

(Here the symbol < should be interpreted as described in Section 2). Then
(1) WL PH@Q)x W22 (Q) = WP ().

loc

(2) For all K € K(Q), WL (Q)x W2 P2 (Q) = WP (Q). In particular, if /' € W, "' (Q), then the mapping u >
fir is a well-defined continuous linear map from 272 (Q) to W7 (Q).
Theorem 3.15 ([10], Pages 39-40) Let Q be the same as the previous theorem. If sp > n, then WZZ’CP (Q) is closed

under multiplication. Moreover, if

(Fm = /i 0 WE(Q), s (f)yy = f1 in WP (Q),
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then

Dm - )m = fi--- f1 In VV]Z’CP(Q)

Theorem 3.16 ([10], Page 40) Let Q = R” or let Q be a nonempty bounded open set in R" with Lipschitz
continuous boundary. Let s € R and p € (1, ©) be such that sp > n. Let B : Q — GL(k, R). Suppose for allx € Q and 1 <,
Jj <k By (x) € WP (Q). Then

(1) detB e W, P (Q).

(2) Moreover if for each m € N, B, : Q — GL(k, R) and for all 1 <7,/ <k(B,), — B in WP (Q), then det B, —
det B in WP (Q).

Theorem 3.17 ([10], Page 40) Let Q = R” or let Q be a nonempty bounded open set in R" with Lipschitz
continuous boundary. Let s > 1 and p € (1, «©) be such that sp > n.

(1) Suppose that u € WIZ’CP () and that u(x) € I for all x € Q where [ is some interval in R. If F: I - Ris a
smooth function, then F(u) € WP (Q).

(2) Suppose that 1, — u in WIZ’CP (Q) and that for all m > 1 and x € Q, u,,(x), u(x) € I where I is some open interval
inR. If F : I — R is a smooth function, then F(u,,) — F(u) in WP (Q).

(3) If F: R — R is a smooth function, then the map taking u to F(u) is continuous from W,>F (Q) to W7 (Q).

Theorem 3.18 ([9], Page 22) Let E be a vector bundle of rank » over an n-dimensional compact smooth manifold M.
Then E admits a finite total trivialization atlas that is GL compatible with itself. In fact, there exists a total trivialization
atlas {(U_, 9, p,)} 1<,y Such that

sforall 1 <a <N, ¢, (U,) is bounded with Lipschitz continuous boundary, and,

eforalll1<a, f<N, U, N op is either empty or else ¢, (U, N Uﬁ) and (pﬂ(Ua N Uﬁ) are bounded with Lipschitz
continuous boundary.

Definition 3.19 Let M" be a compact smooth manifold. Let 7 : E — M be a vector bundle of rank r. Let A = {(U,,
Do Py W)} <4<y D an augmented total trivialization atlas for E — M. For e € R and ¢ € (1, ), W*/(M, E; A) is defined
as the completion of C*(M, E) with respect to the norm

N r
! -1
””“we,q(M,E;A)ZZEH Ca) o)t fyea i, v,y

a=l1

It can be proved that if e is not a noninteger less than —1 (that is, e ¢ (—o, —1)\Z), the above definition is
independent of the choice of the total trivialization atlas. Also if e is a noninteger less than —1 (that is, e € (—o0, —=1)\Z),
the definition does not depend on A as long as it is assumed that A is GL compatible with itself (see e.g. [9] for detailed
discussion). So, we set WM, E) := WU (M, E; A) where if e ¢ (—o0, —1)\Z, A is any augmented total trivialization atlas,
and if e € (—oo, —1)\Z, A is any augmented total trivialization atlas that is GL compatible with itself. Sometimes, instead
of W*(M, E), we may just write W*/(E).

Theorem 3.20 ([9], Page 83) Let M" be a compact smooth manifold and £ — M be a vector bundle of rank 7.
Suppose A= {(U_, ¢, p,» 1//0()}2/:1 is an augmented total trivialization atlas for £ — M. Let u be a section of £, ¢ € R,
and g € (1,00). Ifforall ISa<Nand 1 <j<r,(p,) cu° go;l e WA, (U)), thenu € WM, E; A).

Theorem 3.21 ([9], Page 84) Let M" be a compact smooth manifold and E — M be a vector bundle of rank 7. Let
e € R, and g € (1, «). Suppose A= {(U_, ¢, p, z,ua)}g/:l is an augmented total trivialization atlas for £ — M. If e is a
noninteger less than —1 further assume that A is GL compatible with itself. If a section u of the vector bundle E belongs
to WM, E; A), then forall 1 <a<Nand 1 <i<r, (pa)i oy o ;o;l (i.e. each component of the local representation of u
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with respect to (U, ¢, p,)) belongs to W, % (U,)). Moreover, if ¢ € C, (¢,(U,), then

loc

‘j o o _1
1((pa) ouog, )”We,q(wa(ya))j”u”We"’(M,E;A)’

where the implicit constant may depend on & but does not depend on u.

Theorem 3.22 ([9], Page 81) Let M" be a compact smooth manifold. Let 7 : E — M be a smooth vector bundle
of rank r over M equipped with fiber metric (.,.),; (so it is meaningful to talk about L*(M, E)). Suppose s € R and p
(1, o) are such that sp > n. Then W*’(M, E) < L”(M, E). Moreover, every element u in W*’(M, E) has a continuous
representative.

The following corollary is an immediate consequence of Theorem 3.21.

Corollary 3.23 Let (M", g) be a compact Riemannian manifold with g € W**(T°M), sp > n. Let {U, 04 P} 122

be a standard total trivialization atlas for 7°M — M. Fix some « and denote the components of the metric with respect to
WUy 005 ) bY 852 U, = R (g; = (p,); © g)- Then

-1 ,
glj O(Da € VV]ZL:D((DOL (Ua))

Theorem 3.24 ([9], Page 85) Let (M", g) be a compact Riemannian manifold with g € W**(T°M), sp>n, s > 1. Let
{(U,, 0,5 P,)} <4<y be @ GGL standard total trivialization atlas for T°M — M. Fix some & and denote the components of

the metric with respect to (U, ¢,,, p,) by g;; : U, = R (g;; = (p,); © g)- Then
(1) det g, € W,7(¢,(U,) where g,(x) is the matrix whose (i, j)-entry is g;; ° 0.
(2) Jdetg og, ! =[detg, €W P (p,(U,)).
1
@) —=—=——¢ Wk (9,(U,)).
Jdetgog,
Theorem 3.25 ([9], Pages 85-86) Let (M", g) be a compact Riemannian manifold with g € W**(T°M), sp > n, s > 1.
{(U,, 9,)} 1<,<y be @ GGL smooth atlas for M. Denote the standard components of the inverse metric with respect to this

chart by gij: U,— R. Then

S
8" op, €W P (9, (U,)),
moreover,

-1 _1 -1 -1,
T o' =2 8" 0ig;1 + 0,81 =018y o905 €Wio” (9uUa).
(l"l;’s denote the Christoffel symbols.)
Theorem 3.26 ([9], Page 91) Let M" be a compact smooth manifold and let z : E — M be a vector bundle of
rank 7 equipped with a fiber metric {.,.).. Let e € R and ¢ € (1, ). Suppose A = {(U,, ¢, p, y/a)};\/:l is an augmented

total trivialization atlas for £ — M. If e is a noninteger whose magnitude is greater than 1 further assume that the total
trivialization atlas in A is GL compatible with itself. Fix a positive smooth density x# on M.

Consider the L* inner product on C*(M, E) defined by

(u, vy =IM(u, V) g U
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Then

(i) {.,.), extends uniquely to a continuous bilinear pairing {.,.), : W (M, E; A) x WM, E; A) — R. (We are
using the same notation (i.e. (.,.)2) for the extended bilinear map!)

(ii) The map S : W/ (M, E; A) — [W*(M, E; A)]” defined by S(u) = I, where

LWl (M, E; N) >R, L,(v)=(u, v),

is a well-defined topological isomorphism.
In particular, [W°/(M, E; A)]" can be identified with W~ (M, E; A).

4. Preliminary results

Suppose (M", g) is a compact Riemannian manifold with g WS”’(TZJ\/O, sp > n, and s > 1. Suppose {g,,} is
a sequence of smooth metrics that converges to g in W™ (72 M). In this section we go over some of the immediate
consequences of this assumption which will be useful in the study of the main results presented in this work. As it
was pointed out in the introduction, the ultimate goal of this manuscript is to study the relationship between various
geometric operators (like Laplacian) that are defined in terms of g, ’s and those that are defined in terms of g. We will
present two rather distinct methods to accomplish this goal:

(1) The first approach works for a limited range of Sobolev spaces and follows (and extends) the argument
presented in [17] for the Laplace operator with the domain H : (M) = WI’Z(M). This method is based on the notion of
“metric distortion tensor” and duality arguments.

(2) The second approach works for a wider range of Sobolev spaces and will be based on the previously mentioned
characterization of Sobolev spaces in terms of local coordinates and theorems on multiplication properties of Sobolev
spaces and behavior of Sobolev functions under composition.

Let’s begin with the notion of metric distortion tensor. By Theorem 3.1 for each m and at each p € M there exists
a linear operator 4
that

ml T M— T M (when the basepoint is clear from the context instead of Am|p we just write 4,,) such

VXY eT,M g,(X.Y)=g(4,X.Y).

A, is called the metric distortion tensor associated with g, (see [17] and [18]). 4,, can be viewed as a continuous
section of the bundle Hom(7M, TM); we have

4, —1dl,=| sup |g((4,—1d)X,Y)) ,

Xllg=lYlly=1
Il =7l o

where Id, : T M — T M is the identity map. In particular, note that for allp € Mand X, Y € T M
| g((4, — 1) X, V) |<] 4, —1d ||, X 1|, 1 ¥ Il
The following two theorems play a key role in the first approach mentioned above.

Theorem 4.1 Let M" be a compact smooth manifold equipped with a Riemannian metric g. Denote the norm

induced by the fiber metric on the bundle of ((2]) tensors by |.|5. If S is a symmetric covariant tensor field of order 2, then
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VpeM sup{|S,(X. N XY eT,M, | Xll=lYl,=1} < S|r (p).
Note that the left hand side of the above inequality is the norm of S, as a bilinear form on the inner product space
(T, M, g,).

Proof. In this proof we will not use the summation convention. Let p € M. Let {£,} be an orthonormal basis for
T, M. At p the components of the metric with respect to {£,} are given by g;= 5[]‘- We have

|S|%7 (p)= Z glrngSiers |p= Z 5W5]sSiers |p=zzsij2'(p)'

i,7,r,8 i,],r,8 i=l j=1
Now, let A4 : T M—TM be the unique linear transformation such that (see Theorem 3.1)
VX, YeT,M S,(X,Y)=g,(4X.Y).

If X € T, M is such that ||X]|, = I (note that since g = J at p, we have [|X[|, =%, ; gi/.X’Xj =3, LX), then

|8, (X, X) P =l g, (X, X) Pl ax [y I

Jax RS xicary 2
i=1

<(S 11451, < (S PUE )

=D NAE S =Y g, (AELE))* =33 Si(p) = S |E (p).
i=l1

i=1 j=1 i=1 j=1

Note that we used the fact that since {£,} is orthonormal

n n
AE; =Y ¢ (AEL,ENE; S| AE; 3= ¢ (AE, E})*.
Jj=1

Jj=1
Therefore,
Theorem 3.2
sup{|S, (XN XY eT,M, [ Xl AlYll,=1} = sup{ks,(X.X) | X eT,M )| X ,=1}
S| (p)- O

Theorem 4.2 Let M" be a compact smooth manifold. Let {g,} be a sequence of smooth metrics on M. Let g €
['(M, T*M) be a metric on M that belongs to W**(T*M) with sp > n and s > 1. Suppose g, — g in W**(T*M). Denote
the metric distortion tensor associated with g, by 4, . Then
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) [ A, —1d ||Ooj|| gn—8 ||S,p . As aresult, since I gn—8 ||S,p—> 0, we have I A, —1d ||OO—> 0.
) 1If | 4, —1d | ,,— 0, then || 4,' —1d ||, — 0.
3)If [ A4, —1d ||Oo—> 0 and det4,, — 1 uniformly on M, then [ JJdet4,, A;ll —1d ||OO—> 0.
-1 _
(4) 4,, grad, = gradgm.

5)dr, o = A /det4,,dV o v, e denotes the Riemannian density with respect to the metric g).

Proof.
. . . . . . 2
(1) Denote the norm induced by the corresponding fiber metric (associated with the metric g) on the bundle of (i)
tensors by |.|.

|| E&n—8 ||S,pt|| 8n — &8 ”LOO(TzM):” |gm _g|F ||L°°(M) (WS,P ;)LOO)

> sup | gn(X.,Y)-g(X, Y)| (see Theorem 4.1)

Il =¥l =1 0

=|  sup |g(4,X.Y)-g(X.Y)
Ll =I¥llg=1

L°(M)
= sup  |g((4,, —1d)X.Y)|
Il =¥l = )
=l 4, -1dll,.

(2) By assumption, sup I A, (x)—-1d ||0p(g(x))—> 0. Therefore, there exists m, € N such that
xeM

Vm 2 my VxeM [l A, (x)-1d ||op(g(x))< 1.

o8]
Note that, as a consequence, for all m > m, and x € M, we have A,;l (%)= Z (Id -4, (x))k ,and so
k=0

I
) lopcgey

I 4, (x)_1 ||0 < E | 1d - 4 x) ||k =
p(g(x)) m op(g(x))
=0 1 1d A,

Therefore, for all m > m,,

4, ~1d |l,= sup || 4,,(x)"" - 1d lop(gey=sup | A, (07 (1d - 4,,(x)) lopce ey
xeM xeM
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< sup (| 4, 0™ loparopl 1 = 4w () lop(aen)
xeM

1
={sup sup || 1d - 4, (x) | 0.
(XEM 1= 1d - A,(x) ||0p(g(x)) )(xeM " Op(g(x)))

(3) Note that for each m, the function x + det 4, (x) is a continuous function from M to R. Therefore, since M is
compact, for each m, sup, _,, det 4, (x) is finite. This together with the assumption that det 4, (x) converges uniformly to

1 implies that the functions {x > det 4, (x)} w are uniformly bounded. That is, there exists R > 0 such that

xeM, me

VvmeN VxeM det4,,(x) < R.

Also, note that since det 4, (x) — 1 uniformly and square root is uniformly continuous, we have /det4,, (x) =1
uniformly. Hence we can write

sup || \/det 4,, A;,l —1d |
xeM

op(g(x))

< sup (” \/detAm A,,;ll —\/detAm Id ||0p(g(x)) + || ,;detAmId —1d ||0p(g(x)))
xeM

< sup (det,, | 4, ~1d o)) + sup ((Jdetd,, ~D 11 1d |, g(x)))
Xe

xeM

<R sup || 4, = 1d | gy + sup (JJdet 4, —1) — 0.
xeM xeM

Items (4) and (5) are direct consequences of the definition of grad and the standard expression for dV in each

coordinate neighborhood. |
The next theorem plays an important role in the second approach that was mentioned in the beginning of this
section.
Theorem 4.3 Let (M", g) be a Riemannian manifold. Let {g,} be a sequence of smooth metrics on M. Suppose

g, — gin WSP(T*M) with sp > n and s > 1. Let {U, ¢, P} 1=gey and {(U,, ¢, p,)}1<,<y be GGL standard total
trivialization atlases for 7°M and T. »M, respectively. Then

(1) Forall ISa <N, 1<i, j<n:(g,); o0a = g5 o0, in Wl (0, (U,)).

loc

(2) Forall ISa <N, 1<i, j<n:(g,)" og,' > g¥ o, in W5 (0, (U,)).

loc

3) (g,) ' =g " in WP (TM).

loc

. k-l ko1 -1,
(4) Forall 1<i,j,k<n:(Ty )jiop, —(Tg)jog, in WP (9, (U,)).
Proof. First let us define a suitable family of admissible test functions (see Theorem 3.10) on ¢ (U,). For each x €

¢,(U,), choose > 0 such that

B, (1) 0, (U,).
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Let V, = go;l(Br (x)). Clearly ¥_< V_c U,. Therefore, by Lemma 3.6 there exists a partition of unity {‘///;,x}
subordinate to {Ug}; _,_ y such that y, . =1 on V.. We define = Yo © go;'. {V} vep, (v, 1s an admissible family of test

functions on ¢ (U,). So, in order to prove that a sequence {f, } converges to f in W, (¢ (U,) it is enough to show that

Vxep,(Uy) Yfon = WS in WP (0, (Uy)).

(1) Letx € ¢ (U,). We have

N =n
~ o — o rs
I gn—g ”s,p_ ﬂz:zll%l” (Pﬁ )y (V/ﬂ,x (&gnm—2) ?p ”Ws’p((/)/}(U/i))

M=

n
-1
iéln Vipal(&n)y ~y1o0p ”WS’P(W(U/J))'

T

By assumption ||g,, — gl|; , — 0 and so
.. —1
VISBSN Vi<ij<n llyg [(gn);—gjlovs ||WS~P(¢ﬁ(Uﬁ))_’ 0.
In particular,

. . -1
vi<ij<n lvoil@ny=g5lo0a lysn, )= 0

—l:
a

Considering that y, . © ¢ ., we get

VI<ij<n 1aln)y =)0 Mg, 1)) =0

Since x € ¢ (U,) is arbitrary and {1,T/V}yE o (U.) form an admissible family of test functions, we can conclude that

-1 -1 - ,
(gm)zj °Py gz] °py 1N VV[f]cp (¢a(Ua))'

(2) Let C=(Cy) and C, = ((C,),) where C; = g,;° ¢, and (C,); = (g,,); ° @, - Our goal is to show that

loc

(G = (C7hy in W5P (0, (U,)).

Recall that

My,
detc 7

€y =
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D™
detC,,

(G ™My = (M,);-

where Ml/ and (Mm)l.]. are the determinants of the (n — 1) x (n — 1) matrices formed by removing the jlh row and i

column of C and C,

'» respectively. By item 1 we know that (Ci—Cy in W,%(¢,(U,). So, it follows from Theorem 3.16
that

loc

detC,, = detC, (M,,); = M in WX (9,(U,)).

loc

As a direct consequence of Theorem 3.17,

1 I
dote. ~ dete ™ Wioe (#aUa))-
m

Hence by Theorem 3.14 and Theorem 3.15 we can conclude that

—1 i+j —1 i+j
=D (Mm)ij—>( )
detC,, detC

Mij in VV]Z’CP (¢a (Ua ))

(3) Let {(9/),} 1<p<N be a partition of unity subordinate to {U ﬁ} 1<p<n- We have

N n B B
lg) ™" =g s =2 S 10sgn)" —g" Novs'

p=1ij=1 WP (ppUp)

According to item 2, for all 1 <S <N,
_—_— — ,
(gm) ocop = &"opp WP (ps(Up)).
Therefore, it follows from the definition of convergence in I, % (¢p,(U) that
i gliy)o !

Hence [(g,) ' — & 'll,, = 0.
(4) Recall that

k_ 1 u
L =58 (0181 +0;&i1 —0,8i)>

1
Tk = > (&n W (0i(gm) j1 +0 1(8m)it =01 (gm)ip)-
By item 1 and item 2 we have
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)kl

(&) > &, (@)t = 2jis @it = &t (@) = & I Wl (9,(U)).

By Theorem 3.11, partial differentiation with respect to any one of the variables is continuous from W, (¢ (U,)) to
focl P(p,(U,)). Also, it follows from Theorem 3.14 that

WP (0 U)X WP (0,(U,)) S WP (0, U,).

The claim of this item is a direct consequence of the above observations. i

5. Sharp operator with rough metric

Theorem 5.1 Let (M”, g) be a compact Riemannian manifold. Assume g € W**(T>M) with sp > n and s > 1.
Suppose e € R and g € (1, ) are such that for balls Q = R” or for Q =R"

WP (Q)x W4 (Q) o W1 (Q).

Then sharpg (C°WM, T *M), [-]] e’q) — W*U(TM) is continuous and so it has a unique extension to a continuous
operator sharp, : WeUT My — Wo(TM).

Proof. Let A = {(U,, ¢, pa)}ﬁ;’:l be a standard total trivialization atlas for 7M and A (W, 0, ﬁm)};\/:1 be a standard
total trivialization atlas for 7' M. Without loss of generality we may assume that each of A and A is nice (or super nice)

and GL compatible with itself (see Theorem 3.18 and [9]). Let {t//a};vzl be a partition of unity subordinate to the open

2
cover {U}" . Lety, = ﬁ—“z Note that ————o0," € BC* (9, (U,,)). We have
s1VB 2 sV

N n
” sharpngWe q(TM) Z:IZ;” tl/oz(poc) (Sharpga)) ¢a ”We q(%[(U )
a=li

= ZZ” '//ag CL) ° Py ”Wel]((p U,)
a=1i=1

N n
2
j ZZ” t//ozgl]w (Da ”We,lI(%[(Ua))

oa=1li=1

n

-1
<212;‘21”%‘g 0 by g 1V 0 Ve 0,
a=li=1j

ool

1
<le ”WS’I’(TZOM) wed (T M)’

Note that the inequality in the third line follows from Theorem 3.7 and Theorem 3.8. ]
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Theorem 5.2 Let (M", g) be a compact Riemannian manifold. Assume g € W**(T*M) with sp > n and s > 1.
Suppose e € R and ¢ € (1, ) are such that for balls Q = R" or for Q = R"

WP (Q)x W (Q) = W1 (Q).
Suppose {g,,} is a sequence of smooth (C*) metrics on M such that g, — g in W*(T 2M). Then
sharp, —> sharp,, in LW (I" M), W (TM)).
Proof.

[ (sharpgm —sharpg )10} ”We’q(TM)

[ sharpgm —sharp, ||0p= sup
ol g0 Lol eariar,

LetA={(U, ¢, pa)}fj:1 be a standard total trivialization atlas for 7M and A= (W, 0, /30[)}(]::1 be a standard total

trivialization atlas for 7" M. Without loss of generality we may assume that each of A and A is nice (or super nice) and

2
GL compatible with itself. Let {gz/a}a/\/:1 be a partition of unity subordinate to the open cover {Ua};\’:l. Lety, = ]l/\;—az
1 I ﬁzll’l/ﬁ
Note that s ¢, €BC”(p,(U,)). We have
p=1Y'8
N n . i
~ 77 L — o
| (sharp, —sharp,)e ||We,q(TM)_ ZZIZ;” Vo (pg) (sharpg —sharpg)wo g, ”We’q(wa(Ua))
o=li=
N n B B |
= 7 (o — oV 00
=2 2 17ulem —gM0p 0 lyeay, )
a=li=l
53 S Iyl g | ey
=< U _o¥Yoq~ o
- azz:léjz::l Val&m =800 Ny (g, Ve °0a lypea o,
-1 -1
o sl RN P
Now the claim follows from Theorem 4.3. o

If F is a general covariant k-tensor field (k> 2), we let sharng tobea (kIl)-tensor field defined by
sharp, F(w, Xy,-++, Xy 1) = F(Xy,--, X} _y,sharp, (w)).
In any local coordinate chart

. i
(Sharng)£~~ik_l = gj F}l"'ik—ll'
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The proof of the next two theorems is completely analogous to the proof of Theorems 5.1 and 5.2 and will be
omitted.

Theorem 5.3 Let (M", g) be a compact Riemannian manifold. Assume g € W*?(T*M) with sp > n and s > 1.
Suppose e € R and g € (1, o) are such that for balls Q € R" or for Q = R"

WP (Q)x W1 (Q) = W9 (Q).

Then sharp, : (WM, T kM), ll-lley) — weNT lk _IM) is continuous and so it has a unique extension to a continuous
operator sharp, : WU T My — WoUT, lk )

Theorem 5.4 Let (M", g) be a compact Riemannian manifold. Assume g € W*™(T 2M) with sp > n and s > 1.
Suppose e € R and p € (1, «) are such that for balls Q € R" or for Q =R"

WS (Q)x W41 (Q) = W9 ().
Suppose {g,} is a sequence of smooth (C*) metrics on M such that g, — g in W**(T ’M). Then

sharp, ~— sharp, in LV (T* M), wed (le'lM)).

6. Gradient with rough metric

Let M be a compact smooth manifold and let g be a Riemannian metric on M. Let f': M — R be a scalar function.
grad fis defined as sharp (df). If (U, (x")) is any local coordinate chart, then

of i j of 70
df = iidx’, grad f =[ ¢ (ii)]—,.
ox ox' "o/

Theorem 6.1 Let (M", g) be a compact Riemannian manifold. Assume g € W**(T*M) with sp > n and s > 1.
Suppose e € R and p € (1, ) are such that for balls Q = R" or for Q = R"

WP (Q)x W1 (Q) = W1 (Q).
Suppose {g, } is a sequence of smooth (C*) metrics on M such that g, — g in W*(T 2M). Then
grad, — grad, in LV (ar), wed (TM)).

Proof. First note that, under the hypotheses of the theorem, grad, and grad, belong to LWy, WH(TM)) (see
Appendix A).

” gradgm - gradg ||L(We+],q’We,q):” (Sharpgm - Sharpg ) od ||L(We+1,q,We,q)

=< sharpgm —sharp, I Il

Ly (@ M) () Lyt () e (T M)
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However, we have already proved that under the hypothesis of the theorem

[ sharpgm —sharp, ||L(We,q(T*M)’We,q(TM))—> 0.

Also, in Appendix A it is shown that d : W™ /(M) — WU(T" M) is continuous. Therefore,

| grad g grad 0. o

g ”L(W“L‘J,WW)_)
Alternatively, a rather special case of the above result can be proved using the technique introduced in [17] for
H 1(M). This will be the context of the following theorem.

Theorem 6.2 Let (M", g) be a compact Riemannian manifold. Assume g € W**(T*M) with sp > n, s > 1. Suppose
{g,} is a sequence of smooth (C*) metrics on M such that g, — g in W*(T *M). Then

grad, —> grad, in LGV (M), L7 (TM)).
Proof. First note that since sp > n, W*” < L” and therefore for all 1 < g < o0, we have
W x 19 L

Thus, this theorem is indeed a special case of the previous theorem. Denote the distortion tensor associated with g,
by 4

| grad g grad g

I,y

Theorem 3.5 © .
= sup{|(Y.(grad, —grady )u) g [:ueC(M), ¥ e C™(IM), |lull - Y, =1}

= sup{| IM gV (4, —Id)grad ju)dV, [:u e C* (M), Y € C*(TM), lull Al Y, = 1}

<sup {|| At —1dl, IM|| Yl lgradgully vy :ue M), Y e (M), llull =Y ,= 1}.
Now, note that
[ 17l leradgulyavy < || Dgradgul |l 171, ]l

< Nl Ivl,=1

Therefore,
[ gradgm —gradg ||Opj|| A,;ll —id|,.

Finally, notice that by Theorem 4.2, | 41 = 1d ||, — 0 as m — . O
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7. Linear connection with rough metric

Given a Riemannian manifold (M, g), we denote the corresponding Levi-Civita connection on 7M by V .

Theorem 7.1 Let (M", g) be a compact Riemannian manifold. Let g € W*”(T*M) with sp > n and s > 1. Suppose
e € Rand g € (1, w) are such that

WS—],p (Rn ) % W€+1,£] (Rn) o W@,q (Rl’l ).
Also, let X e Wb (TM') where § and p have the property that

WEP (R )< P (R x WO (R™) & w4 (R™),

In particular, X can be any smooth vector field.

Suppose {g,,} is a sequence of smooth (C*) metrics on M such that g, — g in W*"(T 2M). Then
(Vo )x = (V) y = 0in LIy (T M), w4 (11 M)).

Proof. In this proof we will not use the summation convention. Let A = {(U,, ¢, pa)}f;/:l be a standard total

trivialization atlas for 7, lk(M) — M. Without loss of generality we may assume that A is super nice and GL compatible

3
with itself. Let {t//a}f:’:l be a partition of unity subordinate to the open cover {Ua}izv:r Let y, = ;g—“} Note that
p=1¥B
1 _ o . . . . .
Wo goal € BC” (¢, (U,)). Using techniques discussed in Appendix A, one can show that under the hypotheses of
1¥Yp
p=1

the theorem, (V, )y and (V,) indeed belong to L( wetr lkM), WeUT, lk M)).

I(Ve )x F-(V)xF
|| 4% )X _(V )X ” e+l,q ok gk = sup Em g e,q .
&m g LA (T M) 4 (T M) F0.FeC® | F ||e+1,q

n n n n
We have (in what follows z represents z Z Z z )

Jolf A=l g=li=l =l

N o .
(Vg x F = dx Fllog= 2 Y 10al(V g Dy O =V )x )] 1oy |

- il W (9, (Ug )
o=l j i

Recall thaton U,

Vg, x F =2 X" (Vg ) Fs (Vo) F =3 X" (Vy), F,

r=l1 r=l1

and
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(Vg ) P oy

= o¢‘1>+ZZ[F“””’”'ﬂoqo;‘][( Vs e ]ZZ[F’}..’.%. °0a Ty, ) >0a']

-
ax §=1 p=1 §=1 p=1

(V) FY o)

0y

d i e e ko 1 1
(L o, ey SR 0 g T o0 1= X MU 00, )7, o0’
8x §=1p=l1 §=1p=l1
(Here FJI"'I’"'” represents F e 1’ with j; replaced by p; similarly, F; i ]’ 4, Tepresents F; /1 ';{jl with i; replaced
by p.) Therefore,
[(Vg, )x F)i 3 = (V) x )} 1o,
Il n n
P T A
:ZZZ(X O(Da )(Fllh lkp ”0% )[(r )rp ¢a _(r )rp°¢a ]
s=1 p=1r=l
k n n e {
, -
_ZZZ(X O% )(F .1.. '{'lk Owa )[( gm )n 0(005 _(Fg)fif °Pq ]
s=1 p=lr=1
Thus

1V )x F- ) Fley

N I n n
=3 S o0 [ 3 S (X 0 WER P 0 (T, ) ey — (Tl 00"

“ il
o=l jz,iz s=1 p=1r=1

k n n
IR IPNC R P Ca BRTnb (VTR A PR b |

< i pei w4 (9, (Ug))
s=1 p=lr=1

N Il n n .
=DIDIDINIDN RO 10 G | [ o |

ol
a=1 ji,iz $=1 p=1r=1

w002 T, V5 00" — T 00 1 ]

Volume 3 Issue 2|2022| 111 Contemporary Mathematics



a=1 jz iz §=1 p=lr=1

-1 -1 -1
2T 70 (P AR e (VR Ao | N

_<||X||Wy p(TM)”F”WeJr]q(Tk(M)) ZZIZ‘;Z:IZ‘T” (t//a (oa [(r )rp (oa _(r )rp ¢a ]”sthp(wa(Ua))
a=15=1 p=lr=

p -1 p —1
+ || X ||W_g p(TM)” F ||We+] q(Tk (M)) Z Z Z z” (l//a °¢a ( gm ) lSA‘ 0(0(1 _(rg )”6 °§0a ] ||WS—1,[7( (U ))'
a=15=1 p=lr=1 Ya'Za

Therefore,

(Ve )xF~(Vo)x F
(vl

25202039 [T R R URY Pl N

e+l,q a=15=1 p=lr=1
N k n n | | |
+z Z Z ZH (V/a ° Py )[(Fg )pA ° Py _(rg)pu ° @y ] ” s=1,p .
‘n m T rig w (q)a (Ua ))
a=1s5=1 p=1r=1
Since g, — g in W*7, it follows from Theorem 4.3 that the right hand side goes to zero as m — . o

8. Covariant derivative with rough metric

LetF e rlk(M"). The map

VF ' (M)x..xt (M) x x(M)x...x y(M)— C* (M)

1

(@0 Y, Y X) o (Vy F)@,.. 0l Y, Y,).

is C”(M)-multilinear and so it defines a (k;’l)-tensor field. The tensor field VF is called the (total) covariant derivative of F.
Note that in any local coordinates (in this section we do not use the summation convention)

(VR oy = (VY T o gy

iy

D i by e §
= (EN o, )+ZZ(F,1” e N ews') - ZZ( oo NTE 0g,').

ox s=1 p=1 s=1 p=l1

Theorem 8.1 Let (M", g) be a compact Riemannian manifold. Assume g € W*?(T>M) with sp > n and s > 1.
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Suppose e € R and g € (1, ) are such that for balls Q = R” or for Q =R"

wSTLP (@) x e (Q) o e (Q).

In the case that the above multiplication property holds only for balls Q < R” and not R" itself, further assume that

e and g are such that 6J e (Q) — W9(Q) (1< j < n) is continuous (see Theorem 3.9).
Ox

Suppose {g,} is a sequence of smooth (C”) metrics on M such that g, —gin wP(T 2M). Then
Vo =V in Ly m), wol (14 u)).

Proof. Let A= {(U,, ¢, p 0{)}2?;1 and A {(U o Do /306)}2/:1 be standard total trivialization atlases for 7, lk(M) — M and

T, lk +](M) — M, respectively. Without loss of generality, we may assume that each of A and A is nice (or super nice) and

2
GL compatible with itself. Let {y/u}flv:l be a partition of unity subordinate to the open cover {U a}ivzl. Lety, = ;C—az
| p=1VB
Note that — 3 °%a "' BC* (9, (U,)). Also under the hypotheses of the theorem, V, and V, belong to L( we (T M,
"7 "
p=1"8

We’q(ﬂkﬂM)) (see Example 5 in Appendix A).

” Veu ' ~Vel ”e,q

v, -v
£

|| 1 k k+1 =
&m & L et (T M) (T M)

sup

F#0,FeC® et+l,q

We have (in what follows Z represents Zn: i zn: i i)

j;,i;,}" j1=1 jl=] i1=1 ik=1 r=l1

N
~ ~ JiJ JiJi -1
1V, F=VeFleg=2 20 10al(Ve, L~V P00 pea, )

n-- lkr
a=1 jzij.r

N
=20 2 Il g, ) PO =V ) P 00

= W (g (Ug))
o=l jz,iz,r

The exact same procedure as the one given in the proof of Theorem 7.1 shows that the above expression is bounded
by a constant times

N | n n
1 g [ 2 3 Xl 0o 002 T, s 002 =Tt 002 s, 1)

a=15=1 p=lr=1

N k n n

+Z Z Z Z” ({//a 0(00; om )}l’;_; 0(0;1 _(Fg)flg O(ﬂa_l] ||Ws—1,p(¢a(Ua))].

a=15=1 p=lr=1
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Since g,, — g in W7, it follows from Theorem 4.3 that the right hand side divided by ||F],,, .
o0, o

goes to zero as m —

9. Continuity of trace

It is well known that we can associate with any (}) tensor field a corresponding field of endomorphisms of tangent
spaces. If Fis a (}) tensor field, then the trace of F at each point p € M is defined as the trace of the corresponding
endomorphism of 7' M. So, tr will be a scalar field on M. More generally, let ' be a (;‘)-tensor field where k, [ > 1. We

can define the trace of F" with respect to the pair (r, s) (1 <r <1, 1 <s <k) as follows: tr F'is a (ll‘:ll )-tensor field defined
by

(rF)@',...,0" o™ Lol X, Xoitsoon X)) =1rG,

s—1>

where G € TII(V) is given by

G(w,X)=F(o,....0" oo™, . o, X,..., X, X itoon X1).

s—1»

In this section, in computing trace we assume (r, s) = (/, k). With respect to any local coordinate chart we have

(trF)fl---jI—l — phedim
il"'ikfl i1...ik,1m :

Theorem 9.1 Let M " be a compact smooth manifold. Let e € R and ¢ € (1, o). Suppose k, [ > 1. Then tr :

(C°(M, T, ,k(M), ||.||e’q) — WOUT, /:l(M)) is continuous and so it has a unique extension to a continuous operator tr :
Ak g k=1
WEUT (M) — WHT L (M)).
Proof. Let {(U,, ¢, pa)}i/:1 be a standard total trivialization atlas for 7, lk (M) — M that is GL compatible with itself.
Let {y/a}f:’:l be a partition of unity subordinate to the open cover {Ua}g:l. Note that 7, lk(M) is a bundle of rank n* ™. So

for each a, p,, has """ components which we denote by (p,, )[]1 IZZ ! Forall F e T(M, le(M)), we have

Jin _ Jidp
(pa)il"'ik (l//aF)_l//a(Fa)l'l...l'k >

where F = (F, )jl"ﬁj’@- ®-®0,; ®dxl ®---®dx'* on the coordinate chart (U , ¢ ). Therefore, (in what follows
O gty 1 Ji o o

n n n n
Z representsz-u Z Z )
oty A=l ==l g =l
& Ji i 1
trF || ~ 1 Ji-1 trF —1g
I ”We’q(Tzkjl(M)) 2, 2 )il e vatrF)op, ”We%a(ua»

o=l jy.iy

N .
- z Z ” (t//a)((trF)a );lllil:ll o¢;1 ”l]

e.q
arm W4 (9, (U,)
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_ g
Z P (A CA ARGl

a5 W9 (9, (U,)

N
< Z Z [ (W (F, )11 Ji-1J1 °‘/’a1 &

“Te—1ik €4
a=1j, i, W= (0o (Ug))

N
=2 Y e e waFyog I

eq
a5 W (9, (Uy))

74
| F IIWe gk ony D

Note that in the above proof the trace was computed on the last pair of indices. Of course, clearly the same
procedure shows that taking trace on any pair of indices is continuous.

10. Divergence with rough metric

We begin with studying the divergence of a vector field. Then we will consider the divergence of more general
tensor fields.

Theorem 10.1 Let (M”, g) be a compact Riemannian manifold. Assume g € W*#(T*M) with sp > n and s > 1.
Suppose e € R and ¢ € (1, ) are such that for balls Q = R" or for Q = R"

WP @)W (@) o (),
WP (Q)x WS (Q) = W1(Q),

wSTbP Q) x e Q) o e (Q).

In the case that the above multiplication property holds only for balls Q < R" and not R" itself, further assume that
e and ¢ are such that aij e (Q) > W9 (Q) (1< j < n) is continuous.
X

Suppose {g,,} is a sequence of smooth (C*) metrics on M such that g, — g in W""(T *M). Then

div, — div, in LV (TM), W9 (M),

Proof. Let A= {(U,, ¢, pm)}f:[:1 be a standard total trivialization atlas for 7M. Without loss of generality we may

assume that A is nice (or super nice) and GL compatible with itself. Let {gz/a}glzl be a partition of unity subordinate to

2
the open cover {Ua}i\;l. Let w, = Jlil/—az Note that +20¢;1 € BC” (¢, (U,)). Also, divg and dng belong to
s VB 2 5V

LW ™M(TM), W (M)) (see Example 3 in Appendix A). We have
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ldivy —div sup [(divg, —dive)X|

Il g1 eC”

g ||0p: We,q(M)~

Note that

N
. . - . . 1
I (divy —divy)X ”WW(M): ZIH (//a((dlvgm —dlvg)X)o% ||We,q(%(Ua))
o=

_Z” ((//ao(pa )((dlvg Xotpa ) (le XO% ))||W611(¢ U,

a=1

Recall that (in what follows we will not use the summation convention)

n

: ool 1 0 ool Jor e @ v -l
div, X og, —Z—det il Wetg o0, D)X og e (X o0,

n
div, Xop '=>— (= (/det o X7 o +—X]o .
ivg, Xog, ]Zl J@ _1( - (Jdetg,,, og, )X 0g, )+ ——(X7 0,

Therefore,
div, Xog,' —divyXog,'
S -1 P
D (—(\/detgm o9, )~ o (—(Jdetgwa n]exr’ egrh.
j=1 \/detgm o \/de
Let

By = ———( (\/detgm °0, ),
Jdet gm © qoa

1 0 _
B=————(—(Jdetg 0, ).
detgogp, ox/

Since s >% WP x w7 « WP Considering this, it follows from Theorem 3.14, Theorem 3.11, and

Theorem 3.24 that B, —B € W, 7 Also, note that X € W™, So,

loc
— 1
(Wa ° (pa ! )(Bm - B) € VV[ZC P ((ﬂa (Ua ))9
-1 J —1 e+l,q
(Wa o0y X7, )€ VVloc (2 Uy))
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. —1, +1, . .
By assumption W* ¥ x W9 — W “. Consequently, we can write

N n .
I (ivg, =dive) X leq % 20 21 0o 002 W By =BYWo 20 XX 00 e,

parfeat w(Ua)

N n .
<SSy 002 )By-B)L o1 (0710 ST "0 I
=45 WP (9, (Uy) W (9, (U)

= (yy 00, )B, ~B)| x|

WP (g U)W (T

By assumption g, — g in W*>”. Therefore, (g,)), — g, in W;”. Consequently, B, — B in W} "”. Thus (v, ° ¢,
B, — (y,°p,)Bin w*"". o

Theorem 10.2 Let (M”, g) be a compact Riemannian manifold. Assume g € W**(T*M) with sp > n and s > 1.
Suppose e € R and ¢ € (1, ) are such that for balls Q < R" or for Q = R"

wEbP Q) x et Q) W (Q).

In the case that the above multiplication property holds only for balls Q < R" and not R" itself, further assume that
e and q are such that ij e (Q) > W9 (Q) (1< j < n) is continuous.
Ox

Suppose {g,} is a sequence of smooth (C”) metrics on M such that g, — g in W*(T 2M). Assume k>0and /> 1.
Then

divy —div, in LV (T M), W1 (T M),

Proof. The divergence of a tensor field F is defined as the trace of the total covariant derivative of F:
divF =tr(VF).

By Theorem 8.1,
Vo =V in Ly @ m), wol (14 u)).
Also, by Theorem 9.1, tr : W*/(T, lk +1M) — Wg’q(T/flM) is a linear continuous operator. Therefore, by Theorem 3.4,
. 1 k k
troVy, —troV, in LW (T M), W9 (T)5 M)). O

For a general (g)—tensor field F (k> 1), VFisa( kgl)—tensor field and sharp(VF) is (]f)-tensor field. Divergence of
is the (k(; Y-tensor field defined by
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div F = tr(sharp(VF)).
Theorem 10.3 Let (M ", g) be a compact Riemannian manifold. Assume g € W**(T 2M) with sp > n and s > 1.

Suppose {g,,} is a sequence of smooth (C) metrics on M such that g, — g in W* (T 2M). Suppose e € R and g € (1, )
are such that either

WS—l,p (Rn ) x W€+1,q (Rn) [N We,q (Rl’l )’
WP (R x W9 (R ) W4 (R™),

or for balls Q c R", aif e (Q) 5> w1 (Q) (1< j < n) is continuous and

X
WSTLP (Q)xw et (Q) o w1 (Q).

WP (Q)x W4 (Q) = W4 (Q),

Assume k> 1. Then
div, — div, in LGV (T M), WO (TH M),

Proof. By Theorem 8.1,

Vo =V in Ly rka, wod (7t ).

By Theorem 5.4,
sharp, ~—> sharp, in L(W*4 (T, wed (T my).

Also, by Theorem 9.1, tr :W(T{M) — W*T*"'M) is a linear continuous operator (tr € L(W “U(T,'M), W(T*"'M)).
It follows from Theorem 3.4 that

trosharp, oV, — trosharp, oV, in LV (T My, wed (T ). o

11. Laplacian with rough metric

Theorem 11.1 Let (M", g) be a compact Riemannian manifold. Assume g € W*/(T 2M) with sp > n and s > 1.

Suppose {g,,} is a sequence of smooth (C”) metrics on M such that g, — g in W* (T 2M). Suppose e € R and g € (1, )
are such that either
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PRI (RY) > W (R,
WS,p (Rn ) x We—l,q (Rn) [N We—l,q (Rn ),
WS*],p (Rn ) x W@,q (Rl’l) [N Wé‘*l,q (Rn )’

or for balls Q < R”, aif W(Q) — W (Q) (1< j < n) is continuous and

x

WP (Q)x W4 (Q) = W4 (Q),

WP (Q)x W4 (Q) = w4 (Q),

WP Q) x e (Q) o W (Q).
Then

Ay, —Ag in LIV (M), W (M),
Proof. Note that A = div © grad. By Theorem 6.1,
grad, — grad, in LV (M) > w4 (TM)).

Also, by Theorem 10.1,

div, = div, in LV (IM) — W (M)).

Therefore, it follows from Theorem 3.4 that
div, ograd, —div,ograd, in LoV () —» w4 (ar). o

As an alternative, for a certain range of Sobolev spaces, we may use the technique employed in [17] to prove the
following result.

Theorem 11.2 Let (M", g) be a compact Riemannian manifold. Assume g € W**(T*M) with sp > n, s > 1. Further
assume that

WP (R x WP (R?) & W= bP(R™).

Suppose {g,} is a sequence of smooth (C”) metrics on M such that g, — g in W (T 2M). Let 4, denote the metric
distortion tensor associated with g, and further assume det 4,, — 1 uniformly. Then
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Ay —>Ag in LYY (M), WP (M),

Proof. First note that since sp > n, we have W*?(R") x W*?(R") & w"?(R"). This together with the assumption
that W P(R") x W "P(R") & W “P(R") ensures that A, = div, © grad, is a well-defined continuous operator from

WMy to W "P(M) (see Appendix A).
By Theorem 4.2 we have

-1 -1
I JJdetd, 4, —Id ||Oo—> 0, 4, gradg = gradgm, dng = detAdeg.
So, it is enough to show that
-1
| Jdet 4, 4, —1d ||, — 0 =l Ay —A, IIL FPan ey~ 0.
For all u and v in C*(M),

(v,Agm u) = IM (Agm u)vdng (see Theorem 3.26)

whP =P

= —I o &m(@radg ugradg v)dV, - (integration by parts)
= —IM g(A,gradg u,grad, v)\/detd, dV,
= [ g(Ay 4y grad u, 4, 'grad v)\Jdet 4,, dV,,
-1
= —IM g(4,, gradgu,grad,v)/det 4, dV,.
In the last equality we used the fact that 4, and A;l] are symmetric. Also,
VA 1y = jM (AguyvdVy, = —jM g(grad gu, grad ;v)dV,.

Therefore,

Theorem 3.5

la, -A = sup{[(n(Ag —Apu) u,ve CTM)Nlully ,=lv =1

Em g “0!7
=sup{| - jM g((JJdet4,, 4, - Id)grad gu, grad ,v)aV,, |:u,v e C* (M)l , =l vl =1}
<sup{ll \/det 4, A,;ll —-id|l, J.M” grad u ||g I grad,v ||g dVy iu,ve C” (M), u ||1’p=|| v Hl,p/: 1}

Now note that,
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[, Neradgull, Igrad vl avy < (| 1lgradgu /], ) grad i l,)
= grad gu Il grad vl

Ll vl =1

Hence

lag =gl =l det, 4, ~1d ... :

12. Conformal Kkilling operator with rough metric

Suppose (M, g) is a Riemannian manifold and V is the corresponding Levi-Civita connection. For all vector fields X,
Y, Z € C*(TM) we have

(Lyg)(¥.2)=X(g(¥.2))-g([X.Y].Z)-g(1.[X.Z])
=g(VxY.Z)+g(Y.VxZ)-g([X.Y].Z)-g(V.[X.Z])
=g(VyY-[X.Y].2)+g(Y,VyZ-[X,Z])

=g(VyX,Z)+g(Y,VX).

Here L denotes the Lie derivative with respect to the vector field X. Therefore, with respect to any local coordinate
chart we have

It follows that tr(L, g) = 2divX. Therefore we can decompose L, g into the pure trace part and the trace-free part as
follows:

Lyg=[-@anx)g]+[Lyg - @divig]

pure trace trace-free

The conformal Killing operator, L, is defined as follows:

LX = the trace-free part of Ly g.

That is, with respect to any local chart (U, ¢)
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2 .

Note that
VX =0,X" +x*r})He,.
Therefore,
[ViX1; +[V ;X1 = g4IV XT + gV XT
= g[0: X" + X" Tl 1+ gylo; X" + X* T ]
Thus

2
(LX) =g plo. X"+ X T 1+ g0, X' +X"r§k]—;(dw)()g,.j. (12.1)

Theorem 12.1 Let (M", g) be a compact Riemannian manifold. Assume g € W**(T 2M) with sp > n and s > 1.
Suppose e € R and g € (1, o) are such that for balls Q < R" or for Q = R"

WP @)x T (@) S W (@),
WP (Q)x WS (Q) > W1 (Q),

WP (Q)x e (Q) > et (Q).

In the case that the above multiplication properties hold only for balls Q € R" and not R" itself, further assume that

e and ¢ are such that aif e (@) - w9(Q) (1< j < n) is continuous. Suppose {g,} is a sequence of smooth (C*)
X

metrics on M such that g, — g in W>*(T ’M). Then
L, = Ly in LZH(TM), W (T M)).

Proof. In this proof we do not use the summation convention. Let A = {(U,, ¢,, ,00()}57\'[:l and A W, 0,p0,)}
2/:1 be standard total trivialization atlases for TM and T*M, respectively. Without loss of generality we may assume
that each of A and A is super nice (or nice) and GL compatible with itself. Using Equation 12.1 and techniques
discussed in Appendix A, one can show that under the hypotheses of the theorem, Egm and ,Cg indeed belong to

LV M (TMY, WUT*M)).
2
Ya
N—Z' Note that
p=1¥B

Let {wa}g:l be a partition of unity subordinate to the open cover {Ua}i\z[:l' Let y, =
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1

v 5 op, ! € BC* (¢, (U,)). We have
> p=1Vp

Iz, —£,l,p= sup

g g
' iy oxecs  1X]

e+l,q

Note that

N n
I (L, —£g)X ”We’q(TzM): Zl .ZIH Vo (Lg, —Lg)X)y 0 |
o=li,j=

By equation 12.1 we have

n

L, ~£X ey

W (0 (Ug))

(Lo, Xy = (Lg Xy = DU(2m) 1~ g p 10, X + D (&) 1Ty, ik — &1 T IX*

=1 k=1

n

=1 k=1

2 .. .
—;[(legm X)(gpm)yj —(divg X)g; |-

Therefore,

N n
~ I~
” (ﬁgm _‘Cg)X ”We,q(TZM)j Z z ” V/a[(gm)jl _gjl]aiX © Py, ”e,q
a=l11i,j,k,I=1

~ / / k -1
+ 16 [(2m) 1 T, ik = €1 T )ik X" 20y lleg

1&g — 10X + 3 ()T )i — € (Tg) s 1%

- I -1 ~ / / k-1
+ ” Val(&m)it — it ]an ° Py ||e,q + ” Val(&m)i (Fgm )jk —&il (Fg )jk 1X" og, ”e,q

20~ . . _
=74V, X))y~ ([divg X)gglop, g

Now, we consider each summand separately:

(M

~ -1 -1 -1
” t//oz[(gm)jl _gjl]ain ° Py ”e,q j” l//a[(gm)jl _gjl]o(ﬂa ”s,p” l//aain ° Py, ||e,q'

Note that,
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I -1 0 1 1
I o0 g A X o2 g
X

0 - - 0 - -
« ;[(th °¢al)(Xl °‘ﬂa])] ”e,q +l [F(‘/’a °¢’a])](Xl °0;') ”e,q
x x

<Ny, X" op! lo+1.4 +11 X ll,., (see Theorem 3.21)

<X Ny

Also,
-1
lval(gm)ji=gjiloea s S gm—gls -
)
¥ 1T, =g T 1X ol
l//oz[(gm)]l( m )zk g]l( g)lk] © Py e,q
/ / -1 k-1
NyalCem) i Ty, ik =21 Tl 1o v lso plwaX™ o0y llesrg
/ / -1
Mol 1 (Tg, ik = &1 T k1o 05 sy pll X llesr g
3)
~ I | -1 I -1
”'//a[(gm)il_gil]an °Pq ”e,qj”‘//a[(gm)il_gil]o(pa ”s,p”l//aan °Pq ”e,q
<lg,-g ||S,p|| X ||e+1,q (see the procedure in item (1)).
“4)

- / / k-1

10 [(2m )i (Tg, Vit = & T 51X 005 lleg

< wol(gm)i (T ik = 80T o0 ooyl X ot
SMval(gmi g jk ~8illlg ]k] Do Ns—1,p1¥q Do Nletl,g

1 1 -1
<Nyal(gm)i T, Yk =& T 1ota o pll X llosrg-
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)
| Fal(divg, X)(gm)y —(dive X)gglog," g

1y [(divg X)gp)j —(dive X)(gm)y +(divg X))y~ (@ivg X)gy1o 0z oy

. . - —1 . - —1
<l (divy X) = (dive X) o ol 70 (gm)y o 0a s, p +1dive X [l 415 ()5 —gi) 000 s p
< (divg )~ @ive) ol X ey gl g s +1ivg ol X oy g — -
Consequently, we have

” (Le,, — L)X le.q

Iz, —c,ll

- = sup
Em g "op
1111 40, xeC™ Ilx ||e+l,q
N n l l 1
<> > +ldivg ) g -2l p +lwal(enm) i T, ik =21 Teiklo v lsorp
a=1i,jk.l=1

! ! -1 . .
+lyal(gm)uTg, Vi — 8T jplovg lioy,p +1(divg )=(divg) oyl gy s, -
Now, note that
* Under the hypotheses of this theorem, dng : Wm’q(T M) — W*I(M) is a continuous linear operator (see Example
3 in Appendix A). Therefore, [|div,||,, is a finite number.

* By assumption [ig,, — g, , — 0.

* As a consequence of Theorem 4.3 we have
-1 1. ,
(&m)j1°0a = &j1o0a MW (9, (U,),
[ -1 s -1 . s—1,p
(rgm )ik Py — (rg )ik °P, 1M VV]OC (¢a (Uoc ))-
Since W,"F xWSThP o Wligl’p, we get

loc
/ -1 / -1 -1,
(gm )jl (Fgm )ik °Py — gjl (rg )ik °P, m VV[ZC P (¢a (Ua ))’
which implies that
/ ! -1
lwal(gm) 1 (Tq, ik =1 T ix 1o 0 ls—1,p—> 0.
Similarly,
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-1
lyal(gm)in (Tg, ik = €0 (Te)i o0 iy p =0
* It follows from Example 3 in Appendix A and Theorem 10.1 that

div, — div, in LV (TM), W9 (M)).

Also, since g, — g in W*/(T°M), ||g, ||, is bounded.

Thus \|£gm—£g||0p—>0asm—>oo. i

13. Vector Laplacian with rough metric

divL is sometimes called vector Laplacian and is denoted by A, .
Theorem 13.1 Let (M", g) be a compact Riemannian manifold. Assume g € W*?(T*M) with sp > n and s > 1.
Suppose e € R and g € (1, ) are such that for balls Q = R” or for Q = R"

WP (@) x e (Q) o W (Q),
WP (Q)x W (Q) = W1 (Q),

WP (©Q)x T (Q) - e (@),
WP (Q)x I (Q) = W (Q),
WP (Q)x W (Q) - weha ().

In the case that the above multiplication properties hold only for balls Q < R" and not R" itself, further assume that

e and g are such that a% e (Q) - w9 (Q) and a% We9(Q) > W (Q) (1< j < n) are continuous.
X X
Suppose {g,} is a sequence of smooth (C”) metrics on M such that g, — g in W"*(T 2M). Then

(Ap)g, —(Ap)g in LV (TM), Wb (T M),
Proof. By Theorem 12.1,
Ly = Ly in LZH(TM) > W (T M)).
Also, by Theorem 10.3,

divy = divg in LGV (T M) - W4 (T M)).
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Therefore, it follows from Theorem 3.4 that

divy oL, —>divy oLy in LV (TM) — W 4(T'M)). o

14. Curvature with rough metric
Let (M", g) be a Riemannian manifold. The Riemannian curvature tensor is the covariant 4-tensor field defined by
Rm(X,Y,Z,W)=g(VxVyZ-VyVxZ-Vx y\/Z,W).
With respect to any local chart (U, ¢) we have [0, , 0] = 0 and

2%

ViV 0y = Vi(Tj0,) = 0;(Tj)0, + T T3,0;

=[orh +T5I2 1o,

Therefore, by subtracting the same expression with 7 and j interchanged we get

ViV 0k =V Vi =[0Th -0, T] + ThTE —13Th Jo,,.
Subsequently,

Rl]kl = R.l’l'l(al,aj ,8k ,81) = g(Vlvlak —V]Vlﬁk ,81)
:gpl[al Jjk -0 rli + th’) krjl'; :
The Ricci tensor is the covariant 2-tensor field defined by
Ric = tr(sharpng).

where the trace is on the leftmost covariant component and the only contravariant component of sharp  Rm. With respect
to any local coordinate chart

Ric;; = g™ Ryjjpy -
The scalar curvature Scal is the function defined as the trace of the Ricci tensor
Scal = tr(sharp g Ric).

Theorem 14.1 Let (M", g) be a compact Riemannian manifold. Assume g € W*?(T°M) with sp > n, s >2, and n > 2.
Then Rm belongs to W* 7(T*M), Ric belongs to W* >7(T>M), and Scal belongs to W* >#(M).
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Proof. Let {(U,, ¢,)}, <, <y be an atlas for M. By Theorem 3.20 it is enough to show that for each I <a < N and
1<i,j,k1<n

-1 s=2,
Rmijkl °P, € VV];C P ((oa (Ua ))

Recall that,

. .
Rmy 00, = gpl[airﬁc —0, TR +TxIY ‘Fi?crjpr] °P, -

By Corollary 3.23, Theorem 3.25, and Theorem 3.11 we have

-1 s -1 -1 -2,
gp1°0s €Wl (9,(Uy)), 0T 00,7 ,0, T gy €Wy P (9, (Uy))-

Also, considering Theorem 3.14, since W* "% x W* "7 & W *” we have
—1 s=2, -1 s=2,
F]r'krif op, €Wy = (9, (Uy)), z?crﬁ op, €W, (9, (U,)).
Finally, since W7 x WP o WP,

gpz[airﬁ =0, Ty + Ty — T, Jou' e W/Z;z’p (94 Uy)).

So, Rm e W >2(T*M).

Since W*F x WP < W*>”_it follows from Theorem 5.3 that sharp, : W ENT M) > W p(T13M) is well-
defined and continuous. Also, by Theorem 9.1, tr : W* /(T 13 M) — W*3P(T*M) is well-defined and continuous.
Therefore, Ric = tr(sharp,Rm) belongs to W (T M)

The same argument shows that Scal := tr(sharp X Ric) must belong to WP (M). ]

Theorem 14.2 Let (M", g) be a compact Riemannian manifold. Assume g € W*?(T°M) with sp > n, s > 2, and n > 2.
Suppose {g,,} is a sequence of smooth (C*) metrics on M such that g, — g in W*(T 2M). Then

Rm, —Rm, in 7727 (T*M).

Proof. In this proof we will not use the summation convention. Let {(U,, ¢,)}, <, < 5 be a super nice atlas for M

that is GL compatible with itself and {i} be a subordinate partition of unity. We have

N n
1
” Rmg —Rmg l2p=2 2 lwg (Rmg —Rmg )y © Py ”WS‘Q’P(%(U,Z))
a=1i,j,k,l=1

n

N
= Z z ” l//a((gm)plai(rgm )fk _gplai(rg)j?k)c’(p;l ”WS_Z’p((/)a

U,
a=1i,j.k,1,p,r=1 Ua))
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-1
+ ” l//a((gm)pléj(rgm )11/7C _gplaj(rg)i)oq)a ”

W52 (py (Ug)
-1
+ ” Ya ((rgm );k (rgm )5‘ - ;kr;f ) °Pq ”WS—Z,P (0, (Uy))

-1
+ ” Ya ((Fgm )fk (rgm )fr - l?(rjliﬂ) °Pq ”WS—Z»P(%[ W)

We consider each term separately:

-1 R -1 .
(1) By Theorem 4.3 (I, );’k °@, —>(Fg)§k op, in W, P and (g,) 00, = gp o9, WP It follows

from Theorem 3.11 that 9;(Iy );’k o, =0, (T, )j’k o, in Wl‘zzz’p and subsequently, since W57 x W 3P o = 2P,
we get
—1 -1 . -2,
(gm )pl 61’ (rgm )fk ° Py - gplﬁi (rg )ik °Q, N VV[ZC P (¢a (Ua ))
Therefore,

-1
” Yo ((gm )pl ai (rgm )fk - gplai (Fg )fk ) ° Py ”WS-Z,P (2 (Uy) —0asm— oo
(2) Interchanging the roles of 7 and j in the above argument shows that
-1
” Yo ((gm )pl a] (rgm )ll[jc - gplaj (rg )1117() ° Yy ”WS_Z“B(%L(U(Z))_) 0 as m — 0.
(3) By Theorem 4.3,
-1 -1 -1 -1 . -1,
(rgm );k °Py — (rg );k °Po > (rgm )zl; °Po = (rg )IIZ‘ °¢y 1M Wltsyc b
Since WS P x WP s S2P we obtain
-1 -1 . -2,
(T, Vi (T, )i 005 = (L) (T oy in Wy, =P
Therefore,
-1
lya (g, Vi (T, i =TT o0 Ny, ) > 0 a8 m >
(4) Interchanging the roles of i/ and j in the above argument shows that
-1
” Ya ((Fgm ){k (Fgm )7” - FI’I’CFJIZ’)O P ||Ws—2,p ((ﬂa (Ua ) > 0asm— .

Hence
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I Rm, —Rm, IIS_Z,p—> 0. 0

Theorem 14.3 Let (M", g) be a compact Riemannian manifold. Assume g € W*?(T°M) with sp > n, s > 2, and n > 2.
Suppose {g, } is a sequence of smooth (C*) metrics on M such that g, — g in W*(T 2M). Then

Ric, — Ric, in W~ (T*M).

Proof. By Theorem 14.2, Rm, — Rm, in W2 P(T*M). Also it follows from the hypotheses of the theorem that

WP x WP « W " Thus by Theorem 5.4,

sharp, ~— sharp, in LW 2P (T* M), w2 (T13M)).
Consequently,
sharp, (Rm, )—>sharp, (Rm,) in wS=EP(T3M).
Now, it follows from Theorem 9.1 that
trsharp, (Rm, ) — trsharp, (Rm, ) in WP (T2 M),
That is,
Ric, = Ric,in W57 (1> M), o

Theorem 14.4 Let (M", g) be a compact Riemannian manifold. Assume g € W*?(T°M) with sp > n, s > 2, and n > 2.
Suppose {g,,} is a sequence of smooth (C*) metrics on M such that g, — g in W*(T *M). Then

Scal, — Scal in W7*">7 (M),

Proof. By Theorem 14.3, Ric, — Ric, in W > P(T*M). Also it follows from the hypotheses of the theorem that
WP x WP — W *” Thus by Theorem 5.4,

sharp, ~— sharp, in LWS™2P (T M), WS™2P(TIM)).
Consequently,
sharp, (Ric, ) — sharp, (Ricg) in W*~>7 (5 M).

Now, it follows from Theorem 9.1 that
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tr sharp, (Rmyg )—> trsharp, (Rm,) in WS=2P (T2 M).

That is,

Scal, ~—>Scal, in WP (M). o
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APPENDIX A. Differential operators on compact manifolds

First we recite several definitions and facts from [9]. Let M" be a compact smooth manifold. Let £ and E be two
vector bundles over M of ranks  and 7, respectively. A linear operator P : C°(M, E) — T'(M, E) is called local if

VueC”(M,E) supp Pu < supp u.

As it is discussed in [9], if P is a local operator, then it is possible to have a well-defined notion of restriction of P
to open sets U S M, that is, if P : C"(M, E) — I'(M, E) is local and U S M is open, then we can define a map

Ply:C*(U,Ey) - T(U,Ey)

with the property that
VueC*(M,E)  (Pu)ly=Ply (uly).

For any nonempty set 7 in R’, let Func(¥, R") denote the vector space of all functions from ¥ to R". By the local

representation of P with respect to the total trivialization triples (U, ¢, p) of E and (U, ¢, p) of E we mean the linear

transformation Q : C*(p(U), R") — Func(p(U), ]RF) defined by

O(f)=poP(p ' ofop)og™.

If we denote the components of £ € C*(p(U), R") by (f', ..., /'), then we can write O(f", ..., )= (h', ... , i)
where forall 1 <k<r

Q is linear

W= 001 f7) = mo0(f1,0,,0) 441, 00(0,+-,0, 1),

So, if for each 1 <k <7 and 1 <i<rwe define O, : C*(p(U), R) — Func(p(U), R) by

Qki(g):ﬂkoQ(O,“':O: § :07"'30)5

ih position

then we have

o 1) =0 D O (f)).

i=1 i=1

Results of the following type are discussed in [9].

Theorem A.1 ([9], Page 100) Let M" be a compact smooth manifold. Let P : C*(M, E) — T'(M, E) be a local
operator. Let A= {(U,, ¢, p» W)} < o< yand A= LU 04 P W)} 1 < o< v bE tWO augmented total trivialization atlases
for E and E, respectively. Suppose the atlas {(U,, ¢,)}, <, < v is GL compatible with itself. For each 1 <a <N, let o
denote the local representation of P with respect to the total trivialization triples (U, ¢, p,) and (U, ¢, p,) of E and E,
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respectively. Suppose e, é e R, 1 <¢q, <o, and foreach | <a<N,1<i<r,and 1 <j<r,

05 (€2 @aWal-leg) = W (9, (U,)

is well-defined and continuous and does not increase support. Then

- P(C™(M,E) e W*1 (M, E; R),

«P:(C*(M,E),|. ||e’q) > wed (M, E; /~\) is continuous and so it can be extended to a continuous linear map P : W*?
(M,E;A) —> Wi (M, E; ).

In the following examples we assume (M", g) is a compact Riemannian manifold with g € W*” (T2 M), sp>n, s>
1. The local representations are all assumed to be with respect to charts in a super nice total trivialization atlas that is GL
compatible with itself. The first example is taken from [9].

Example 1: Differential Consider d : C”(M) — C*(T M). The local representation of d is O : C*(p(U)) —
C”(p(U), R") which is defined by

O(f)a)=pod(p o fop)op ' (a)

o ;
—po( L L ad|
PeC @y * @)

:(i‘a’...’

ox!

o

ox"

la)-

Here we used p = Id and the fact that if g : M — R is smooth, then

d(gog! :
(dg)(p)z%‘(a(p) dxl |p'

Clearly, each component of Q is a continuous operator from (C,"(p(U)), |||, o W (p(U)) = WIZ;' Up(U)) (see
Theorem 3.9; note that p(U) = R"). Hence d can be viewed as a continuous operator from W4(M) to W " 4(T"M).

+ Example 2: Gradient Suppose e and ¢ are such that for balls Q < R" or for Q = R"
WP (Q)x W4 (Q) = W4 (Q),
In section 5 we proved that sharpg cWeUT *M) — W*U(TM) is well-defined and continuous. Also in the previous
example we showed that for all e and ¢, d : W™ 9(M) — W* T M) is well-defined and continuous. Consequently,
grad, : W€ 9(M) — W Y(TM) defined by

grad, =sharp, od

is also continuous.
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 Example 3: Divergence Consider div : C*(TM) — Func(M, R). Here we will show that if e and ¢ are such that
wEP(R")x WO (R™) = W4 (R"), €]

WP (Rn ) « We—l,q (Rn) N We—l,q (Rn )’ (2)

then div can be considered as a continuous operator from W */(TM) to weh 9(M). The local representation of divergence
with respect to the coordinate chart (U, ¢) is Q : C*(p(U), R") — Func(p(U), R) defined by

O(Y) = podiv(ip™ oY op)og™ (Yip(U) >R", ¥ =¥, 7))
=div((Y! 0 9)d) +-+ (" 0)d, ) o™

N iy
=Y [(Jdetg oY)
,-z:1 detg o™ ox/ [(Jactg <o)

Note that in the above, p = Id and
p Yop)=p ' (Y op, ¥ 0p)= (Y 0)0y +--+(Y" 0 )0,

Moreover, we used the fact that for any vector field X defined on U

n .
div)ep” =Y ——— [(Jactg og X op™]
i=1+/detg o o ! ox/

Also, note that Q(Y) = Zj‘:l oF (Yj) where )y ; : C”(p(U),R) = Func(p(U),R) and for all f e C”(pU),R),

0, j(f) is the first (the only) component of

jth position

That 1s,

Vi< <n ()= [(Jaetg oo™ )(1)]
detg o™ oOx’

Now, suppose f € C.(p(U)). So, clearly, f € W, (p(U)). It follows from the hypotheses on e and ¢ that (see
Theorem 3.14)
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Wi (@UNx Wt (p(U)) = W (9(U)),

WEP (pU)x W (p(U)) = W (p(U)).

_ 1
Also, by Theorem 3.24 we know that \/detg cp !and =y are in Wloc (p(U)). Hence we have the
detgop™

following chain of continuous maps

e.q e,q Lg e-l,q
VVI _>W _)VVIOL _)VI/I()C

—((\/ detgop™")/)

S (Jdetgep )f'—>—((\/det °p )f)'—>—
\detgop™ ox’

which proves the continuity of Oy ; : (CX(p(U DAR ||e ) >W, cl pU)).

Remark A.2 Instead of (1) and (2), we may alternatively assume that for all balls Q = R"
WP Q) x W (Q) = W (Q),

WP (Q)x e (Q) o Wk (),
and work with nice charts instead of super nice charts. However, if we do so, then we need to additionally assume that e

and ¢ are such that ij We9(Q) > WeM(Q) (1< j<n) is continuous (see Theorem 3.9).

ox:
« Example 4: Lie Derivative Let X e WP (TM). Consider Ly : C*(T*M) — T(T*M). Here we will show that if
e and ¢ are such that
WSN',i) (Rn ) x Wefl,q (Rn ) (3N Wefl,q (Rn) (3)

Wg_l’ﬁ (Rn)XWe,q (Rl’l) ,_)We—l,q (Rn), (4)

then L can be considered as a continuous operator from W /(T My to W4T M). The local representation of L ¢ With

respect to the coordinate chart (U, ¢) is Q : C*(p(U), ]R("k)) — Func(p(U), R("k)) defined by

O(F)=poLy(p™ e Fog)op™ (FipU) >R, F=(F, ;).

In components

-1 -1 -1 -1
(O iy = Piiyy o Lx (p " 0 Fop)og ™ =(Ly(p™ o Fog))y.. °9

Recall that if T is any k-covariant tensor field on U then
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-1
OTyq 29™")

n
LyT) o oo ' =S (XPogp™!
( X )ll"-lk (0 Z( ¢ ) axp

p=l

a(‘kp 0(071) -1
+ax—i1(lpi2“'iko(p )+...+
lherefore,

oF; ... Pyl P oyl
i OXTop ) o UGS

ox? ol Pl o'k

1P

n
(Q(F))jqp = 2, (X7 o)
p=1
Now, note that

OFVjiy = 20 Qi) ri) Ejooji )

R

where
Q(il"'ik i) - c”® (p(U),R) — Func(p(U),R),

and for all f € C* (p(U),R), Q(ir"ik)(h'“jk)(f) is the (4 ---i; )-component of Q(F') with

S R = g =k
1% 10 otherwise '

Hence

n
NSk (xP o)
Q(il---ikle---jk)(f)—;5}1 o (X eo -7

" |
452 gt Mf+---+5i.l U M _
J2 Jk ol J1 Jk-1 ox'k

Now, suppose f € C fo (p(U)). So, clearly, 1 € W, U(p(U)). It follows from the hypotheses on e and ¢ that (see
Theorem 3.14)

WP (p(U)) x WM (p(U)) = WEH (p(U)),

loc loc

WP (pU) < WL (pU) = W (p(U)).

loc
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a(xPop7hy
o4

Also, by Corollary 3.21 and Theorem 3.11, we know that for all p and ¢, X” ° go_l is in Wli’cﬁ and is in

Wlizl’i’ . Hence
0 —1
Qiy--ig) i) - (Ce ().l ”eﬂ) - Wlie (o))

is continuous.
Remark A.3 Instead of (3) and (4), we may alternatively assume that for all balls Q € R”

WP (Q)x W (Q) - W (Q),

WP Q) x4 (Q) - WM (Q),
and work with nice charts instead of super nice charts. However, if we do so, then we need to additionally assume that (see

Theorem 3.9)

+ 5 and p are such that ai] TSP Q)—> wsLp (Q) (1< j < n) is continuous.
X

« e and ¢ are such that 6% e (Q) - W (Q) (1< j < n) is continuous.
X

» Example 5: Covariant Derivative Consider V : C* (leM )—> F(Y}kHM ). Here we will show that if e and ¢ are
such that

WP (RO (R < W (R, ®)

then V can be considered as a continuous operator from W “/(T, ,kM) to W (T, ,kHM). The local representation of

k+l k+l+1
covariant derivative with respect to the coordinate chart (U,¢) is Q: C” (p(U),R" : ) — Func(p(U),R" o ) defined

by
- 1 -1 k+l el q
O(F)=poV(p~ e Fog)og™ (FipU) »R™ D, F=(F17).
In components
IO -1 -1 -1 -1
QUEN =B oV (p™ o Fog)op™ =(V(p™ o Fog)il "/ o™
Recall that if T is any (f)-covariant tensor field on U then
Judi g =1 VRV
(VT)il--'ikr 9 = (V”T)ilmik @
_i(lefl ° —1)+ i(TPIZ]l ° —1)(1—~jl ° —1)+”'+(Tj1---j1,1p ° —])(Fjl ° —1)
T i iy 4 i 9 p ® iy 1 157 2
p=1
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Therefore,

Z(,f}z ST AT EE (T (S ATt

rn lk 1P Vlk

QU = LRIy 3 (EPE NI o o (B ™)

Now, note that

where

lkr

ron
ox p=1

FUI TP 0] USNV/BYG N
Z( pigerig Wiy 0@ ) (7 I o h.

n
N/ G Jl)(]l 11) Ji ]l
(OF )),1 iy = Z ) Q(ll Wit (F ),

Jises T ode=

G- /1)(/1 Jl) R F R
AT C7 (p(U), R) > Func(pU),R),

and for all f € C* (p(U), R), Q(f1 NG ”)(f) is the (i, -++i, )"/ -component of Q(F) with

Hence

Gy )iy -+ )

i)y
Fhn :{f if iy =iy, esiy =l i = Jio s i =JA'1.
etk 0 otherwise
QUi () 5;11 f,f 5;: 51111 axi’
P s N
_5;22 5;? 5;;1 5/111 (f)(ril op )+ ...+5lf11 ...5;::11 5}111 ¥ (f)(rrlfk g ).

Now, suppose f e C. (p(U)). So, clearly, f € Wleq((p(U)) It follows from the hypotheses on e and ¢ that (see

Theorem 3.14)

Volume 3 Issue 2(2022| 139

WP (pU) <2 (p(U)) = WE (p(U)).
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Also, we know that for all @, b, and ¢, I}, ¢ isin lezl’p . Hence

QI (CE (U] g) > Wi, (o)

is continuous.
Remark A.4 Instead of (5), we may alternatively assume that for all balls Q € R”

WP (@)X (Q) o T (),

and work with nice charts instead of super nice charts. However, if we do so, then we need to additionally assume that e

and g are such that aif We9(Q) > W (Q) (1< j < n) is continuous (see Theorem 3.9).
X
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