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Abstract: The study of Einstein constraint equations in general relativity naturally leads to considering Riemannian 
manifolds equipped with nonsmooth metrics. There are several important differential operators on Riemannian 
manifolds whose definitions depend on the metric: gradient, divergence, Laplacian, covariant derivative, conformal 
Killing operator, and vector Laplacian, among others. In this article, we study the approximation of such operators, 
defined using a rough metric, by the corresponding operators defined using a smooth metric. This paves the road to 
understanding to what extent the nice properties such operators possess, when defined with smooth metric, will transfer 
over to the corresponding operators defined using a nonsmooth metric. These properties are often assumed to hold when 
working with rough metrics, but to date the supporting literature is slim.
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1. Introduction
The study of Einstein constraint equations in general relativity naturally leads to considering Riemannian manifolds 

equipped with metrics that are not C∞ (see e.g. [1-5]). Some of the motivation for developing this understanding came 
from studies of the Einstein evolution equation with rough metric [6-7]. In order to fully understand the implications 
of a rough metric, one needs to understand the impact of a nonsmooth metric on the various geometric and differential 
operators that arise in the formulation of stationary and evolution problems on Riemannian manifolds. The questions we 
study in this article fall into the following general form: Let (Mn, g) be a compact Riemannian manifold. Suppose g ∈ 
W s, p(T 2M) where sp > n (it is reasonable to assume that the metric is continuous; the condition sp > n guarantees that g 
has a continuous representative, and also it implies that W s, p(M) is a Banach algebra, which plays an important role in 
some of the calculations). Let {gm} be a sequence of smooth Riemannian metrics on M such that gm → g in W s, p(T 2M). 
For each m, let Am be an operator whose definition depends on the metric gm. Let A be the corresponding operator that is 
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defined in terms of g. What can be said about the relationship between the operators that are defined in terms of gm and 
those that are defined in terms of g? Does {Am} converge to A (in an appropriate norm)? In particular, we are interested 
in the gradient, Laplacian, divergence, covariant derivative, and vector Laplacian operators. Additionally, we will study 
the relationship between the corresponding Riemannian curvature tensors, Ricci curvatures, and scalar curvatures.

One of the main applications of such results is in the study of elliptic partial differential equations on manifolds. 
An example of the type of question we hope to address is the following: the Laplacian and vector Laplacian of a smooth 
metric on a compact Riemannian manifold are Fredholm of index zero. Considering that the index of an operator is 
locally constant, in order to see whether this useful property carries over to the case of nonsmooth metrics we need 
to determine whether the Laplacian or vector Laplacian defined using a nonsmooth metric can be approximated by 
corresponding operators defined by smooth metrics. Results of this type and other related results have been used in 
literature without complete proof; they are well-motivated and reasonable assumptions in most cases, but it seems that 
a careful study is missing in the literature. This is particularly true in the case of noninteger Sobolev classes. In this 
manuscript, we have attempted to fill some of the gaps. This paper can be viewed as a part of our efforts to build a more 
complete foundation for the study of differential operators and Sobolev-Slobodeckij spaces on manifolds through a 
sequence of related manuscripts [8-11].

Outline of Paper. In Section 2 we summarize some of the basic definitions, notation and conventions used 
throughout the paper. In Section 3 we go over some backround material on analysis and differential geometry. In 
sections 4-14 we rigorously study the aforementioned question of convergence for various geometric operators that 
appear in the study of elliptic partial differential equations on compact manifolds.

2. Notation and conventions
Throughout this paper, R denotes the set of real numbers, N denotes the set of positive integers, and N0 denotes 

the set of nonnegative integers. For any nonnegative real number s, the integer part of s is denoted by s  . The letter n 
is a positive integer and stands for the dimension of the space. For all k ∈ N, GL(k, R) is the set of all k × k invertible 
matrices with real entries.

Ω is a nonempty open set in Rn. The collection of all compact subsets of Ω will be denoted by K(Ω). Lipschitz 
domain in Rn refers to a nonempty bounded open set in Rn with Lipschitz continuous boundary.

Each element of Nn
0 is called a multi-index. For a multi-index α = (α1, … , αn) ∈ Nn

0, we let |α| := α1 + … + αn. Also, 
for sufficiently smooth functions u : Ω → R (or for any distribution u) we define the αth order partial derivative of u as 
follows:
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| |

1

: .
n

α
α
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uu
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∂ =
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We use the notation A ⪯ B to mean A ≤ cB, where c is a positive constant that does not depend on the non-fixed 
parameters appearing in A and B. We write A ≃ B if A ⪯ B and B ⪯ A.

We write L(X, Y) for the space of all continuous linear maps from the normed space X to the normed space Y. We 
use the notation X ↪ Y to mean X ⊆ Y and the inclusion map is continuous.

Definition 2.1 Let Ω be a nonempty open set in Rn and m ∈ N0.
(Ω) { : Ω :  is continuous}C f f= → 

0(Ω) { : Ω : | |   (Ω)} ( (Ω) (Ω))m αC f α m f C C C= → ∀ ≤ ∂ ∈ =

(Ω) { : Ω :  is continuous and bounded on Ω}BC f f= → 

(Ω) { (Ω) : | |    is bounded on Ω}m m αBC f C α m f= ∈ ∀ ≤ ∂

(Ω) { : Ω : (Ω) and  is uniformly continuous on Ω}BC f f BC f= → ∈
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(Ω) { : Ω : (Ω),  | |    is uniformly continuous on Ω}m m αBC f f BC α m f= → ∈ ∀ ≤ ∂

0 0 0

(Ω) (Ω),  (Ω) (Ω),  (Ω) (Ω)m m m

m m m
C C BC BC BC BC∞ ∞ ∞

∈ ∈ ∈
= = =

  

  

(Ω) { (Ω) : support of  is an element of (Ω)}cC f C f∞ ∞= ∈ K

Remark 2.2 [12] If f : Ω → R is in BC(Ω̄ ), then it possesses a unique, bounded, continuous extension to the 
closure Ω̄  of Ω.

Definition 2.3 Let Ω be a nonempty open set in Rn. Let s ∈ R and p ∈ (1, ∞).
• If s = k ∈ N0,

,
,

(Ω) (Ω)
| |

(Ω) { (Ω) : : }k p p
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ν k

W u L u u
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• If s = θ ∈ (0, 1),

,

1
,

(Ω) Ω Ω
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• If s = k + θ, k ∈ N0, θ ∈ (0, 1),

, , ,
, ,
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• , ,
0 (Ω) is defined as the closure of (Ω) in (Ω).s p s p

cW C W∞

• If s < 0,

,, *
0

1 1(Ω) ( (   Ω)) ( 1)s ps pW W
p p

′−= + =
′

• For all compact sets K ⊂ Ω we define

, ,(Ω) { (Ω) : supp }s p s p
KW u W u K= ∈ ⊆

, , (Ω)(Ω)
with : .s p s p

K WW
u u=‖‖ ‖‖ .

• , ,,(Ω) : { (Ω) : (Ω)  (Ω)} where (Ω) is the space of distributions on Ω. (Ω)s p s ps p
cloc locW u D φ C φu W D W∞′ ′= ∈ ∀ ∈ ∈  is the space of distributions on Ω. , ,,(Ω) : { (Ω) : (Ω)  (Ω)} where (Ω) is the space of distributions on Ω. (Ω)s p s ps p
cloc locW u D φ C φu W D W∞′ ′= ∈ ∀ ∈ ∈  is 

equipped with the natural topology induced by the separating family of seminorms 
(Ω)

{| . | } }
c

φ φ C∞∈
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,
,
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Let X, Y, and Z be Sobolev spaces (or locally Sobolev spaces). In this manuscript, by writing
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X × Y ↪ Z

we mean that the product of an element of X with an element of Y is an element of Z and moreover this multiplication is 
continuous in the following sense: if ui → u in X and vi → v in Y, then uivi → uv in Z.

Throughout this manuscript, all manifolds are assumed to be smooth, Hausdorff, and second countable. We usually 
use the letter M for manifolds. If M is an n-dimensional smooth manifold, sometimes we use the shorthand notation Mn 
to indicate that M is n-dimensional.

Definition 2.4
• We say that a smooth atlas for a smooth manifold M is a geometrically Lipschitz (GL) smooth atlas if the image 

of each coordinate domain in the atlas under the corresponding coordinate map is a nonempty bounded open set with 
Lipschitz boundary.

• We say that a smooth atlas for a smooth manifold Mn is a generalized geometrically Lipschitz (GGL) smooth 
atlas if the image of each coordinate domain in the atlas under the corresponding coordinate map is the entire Rn or a 
nonempty bounded open set with Lipschitz boundary.

• We say that a smooth atlas for a smooth manifold Mn is a nice smooth atlas if the image of each coordinate 
domain in the atlas under the corresponding coordinate map is a ball in Rn.

• We say that a smooth atlas for a smooth manifold Mn is a super nice smooth atlas if the image of each coordinate 
domain in the atlas under the corresponding coordinate map is the entire Rn.

• We say that two smooth atlases {( ,  )}  and {( ,  )}α α α I β β β JU φ U φ∈ ∈


  for a smooth manifold Mn are geometrically 

Lipschitz compatible (GLC) smooth atlases provided that each atlas is GGL and moreover for all α ∈ I and β ∈ J with 

,  ( ) and ( )α β α α β β α βU U φ U U φ U U∩ ≠ ∅ ∩ ∩  

  are nonempty bounded open sets with Lipschitz boundary or the entire 

Rn.
Clearly, every super nice smooth atlas is also a GGL smooth atlas; every nice smooth atlas is also a GL smooth 

atlas, and every GL smooth atlas is also a GGL smooth atlas. Also, note that two arbitrary GL smooth atlases are not 
necessarily GLC smooth atlases because the intersection of two Lipschitz domains is not necessarily Lipschitz (see e.g. 
[13], pages 115-117).

The tangent space of a manifold Mn at point p ∈ M is denoted by TpM, and the cotangent space by Tp
*M. If (U, φ 

= (xi)) is a local coordinate chart and p ∈ U, we denote the corresponding coordinate basis for TpM by ∂i|p while |i xx
∂

∂
 

denotes the basis for the tangent space to Rn at x = φ(p) ∈ Rn; that is,

*
.i iφ

x
∂

∂ =
∂

Note that for any smooth function f : M → R we have

1 1( ) ( ).i if φ f φ
x

− −∂
∂ =

∂
 

The vector space of all k-covariant, l-contravariant tensors on TpM is denoted by Tl
k(TpM). So each element of 

Tl
k(TpM) is a multilinear map of the form

* *

 copies  copies

: .p p p p

l k

F T M T M T M T M× × × × × →  

 

Let M be a smooth manifold. A (smooth real) vector bundle of rank r over M is a smooth manifold E together with 
a surjective smooth map π : E → M such that
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(1) for each x ∈ M, Ex = π−1(x) is an r-dimensional (real) vector space.
(2) for each x ∈ M, there exists a neighborhood U of x in M and a smooth map ρ = (ρ1, … , ρr) from E|U := π−1(U) 

onto Rr such that:
• for every x ∈ U, ρ|Ex

 : Ex → Rr is an isomorphism of vector spaces

• Φ = (π|EU 
, ρ) : EU → U × Rr is a diffeomorphism.

The expressions “E is a vector bundle over M”, or “E → M is a vector bundle”, or “π : E → M is a vector bundle” 
are all considered to be equivalent. The space E is called the total space of the vector bundle E → M. For each x ∈ M, Ex 
:= π−1(x) is called the fiber over x. We refer to both Φ : EU → U × Rr and ρ : EU → Rr as a (smooth) local trivialization 
of E over U. We say that E|U is trivial. The pair (U, ρ) (or (U, Φ)) is sometimes called a vector bundle chart. It is easy 
to see that if (U, ρ) is a vector bundle chart and ∅ = V ⊆ U is open, then (V, ρ|EV 

) is also a vector bundle chart for E. 

Moreover, if V is any nonempty open subset of M, then EV is a vector bundle over the manifold V. We say that a triple 
(U, φ, ρ) is a total trivialization triple of the vector bundle π : E → M provided that (U, φ) is a smooth coordinate chart 

and ρ = (ρ1, … , ρr) : EU → Rr is a trivialization of E over U. A collection {(Uα, φα, ρα)} is called a total trivialization 

atlas for the vector bundle E → M provided that for each α, (Uα, φα, ρα) is a total trivialization triple and {(Uα, φα)} is 

a smooth atlas for M. A collection {(Uα, φα, ρα, ψα)}1 ≤ α ≤ N of 4-tuples is called an augmented total trivialization atlas 

for E → M provided that {(Uα, φα, ρα)}1 ≤ α ≤ N is a total trivialization atlas for E → M and {ψα} is a partition of unity 

subordinate to the open cover {Uα}.

Definition 2.5 Let Mn be a compact smooth manifold.
• We say that a total trivialization triple (U, φ, ρ) is geometrically Lipschitz (GL) provided that φ(U) is a nonempty 

bounded open set with Lipschitz boundary. A total trivialization atlas is called geometrically Lipschitz if each of its total 
trivialization triples is GL.

• We say that a total trivialization triple (U, φ, ρ) is nice provided that φ(U) is equal to a ball in Rn. A total 
trivialization atlas is called nice if each of its total trivialization triples is nice.

• We say that a total trivialization triple (U, φ, ρ) is super nice provided that φ(U) is equal to Rn. A total 
trivialization atlas is called super nice if each of its total trivialization triples is super nice.

• A total trivialization atlas is called generalized geometrically Lipschitz (GGL) if each of its total trivialization 
triples is GL or super nice.

• We say that two total trivialization atlases {(Uα, φα, ρα)}α∈I and {(Ũβ , φ̃β , ρ̃β)}β∈J are geometrically Lipschitz 

compatible (GLC) if the corresponding atlases {(Uα, φα)}α∈I and {(Ũβ , φ̃β)}β∈J are GLC.

A section of a vector bundle π : E → M is a map u : M → E such that π ° u = IdM. We denote the space of all 
sections of E by Γ(M, E). The space of all smooth sections of E is denoted by C∞(M, E). In this manuscript, unless 
stated otherwise, a section of E refers to an element of Γ(M, E) (no implicit smoothness assumption is made). Note that 
a section of the trivial vector bundle E = M × R can be identified with a scalar function on M. In fact, C∞(M, M × R) 
can be identified with C∞(M) where C∞(M) is the collection of all smooth functions from M to R. One can define sets of 
measure zero on a compact manifold using charts and it can be shown that such a definition is independent of the charts. 
In this manuscript, when we explicitly talk about the support of u ∈ Γ(M, E) we mean the complement of the union of 
all open sets V in M such that u = 0 almost everywhere on V. 

We are primarily interested in the bundle of ( 
l
k )-tensors on M whose total space is

( ) ( ).k k
l l p

p M
T M T T M

∈
= 

A section of this bundle is called a ( 
l
k )-tensor field. We set TkM := T0

k(M). TM denotes the tangent bundle of M and 
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T*M is the cotangent bundle of M. We set ( ) ( , ( )) and ( ) ( , ).k k
l lτ M C M T M χ M C M TM∞ ∞= =

For certain vector bundles there are standard methods to associate with any given smooth coordinate chart (U, 
φ = (xi)) a total trivialization triple (U, φ, ρ). We call such a total trivialization triple the standard total trivialization 
associated with (U, φ). For example, consider E = Tl

k(M). The collection of the following tensor fields on U form a local 
frame for EU associated with (U, φ = (xi)) in the sense that at each point p ∈ U, they form a basis for Tl

k(TpM):

1
1

.k
l

jj
i i dx dx

x x
∂ ∂

⊗ ⊗ ⊗ ⊗ ⊗
∂ ∂

 

So, given any atlas {(Uα, φα)} of a manifold Mn, there is a corresponding total trivialization atlas for the tensor 

bundle Tl
k(M), namely {(Uα, φα, ρα)} where for each α, ρα has nk+l components which we denote by 1

1
( ) l

k
j j

α i iρ 



. For all F 

∈ Γ(M, Tl
k(M)), we have

1 1
1 1

( ) ( ) ( ) .l l
k k

j j j j
α αi i i iρ F F= 

 

Here 1
1

( ) l
k

j j
α i iF 



 denotes the components of F with respect to the standard frame for Tl
kUα described above. When 

there is no possibility of confusion, we may write 1 1
1 1

 instead of ( ) .l l
k k

j j j j
αi i i iF F 

 

A symmetric positive definite section of T2M is called a Riemannian metric on M. If M is equipped with a 
Riemannian metric g, the combination (M, g) will be referred to as a Riemannian manifold. For each p ∈ M, the norm 
induced by g on the tangent space TpM will be denoted by ||.||g(p) or just ||.||g. The corresponding operator norm for linear 
maps from TpM to TpM will be denoted by ||.||op(g(p)) or just ||.||op. We say that g is smooth (or the Riemannian manifold is 

smooth) if g ∈ C∞(M, T2M).
We denote the exterior derivative by d and grad : C∞(M) → Γ(M, TM) denotes the gradient operator which is 

defined by g(grad  f , X) = df(X) for all  f  ∈ C∞(M) and X ∈ C∞(M, TM).
Given a metric g on M, one can define the musical isomorphisms as follows:

*flat :g p pT M T M→

: ( , ), X X g X= ⋅



*sharp :g p pT M T M→

1: flat ( ).gψ ψ ψ−=



Using sharpg we can define the (2
0)-tensor field g−1 (which is called the inverse metric tensor) as follows

1
1 2 1 2( ,  ) : (sharp ( ),  sharp ( )).g gg ψ ψ g ψ ψ− =

Let {Ei} be a local frame for the tangent bundle on an open subset U ⊂ M and {ηi} be the corresponding dual 
coframe. So, we can write X = XiEi and ψ = ψiη

i. It is standard practice to denote the ith component of flatgX by Xi and 
the ith component of sharpg(ψ) by ψi:
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flat ,  sharp .i i
g i g iX X η ψ ψ E= =

It is easy to show that

,  ,j i ij
i ij jX g X ψ g ψ= =

where gij = g(Ei, Ej) and gij = g−1(ηi, η 
j). It is said that flatgX is obtained from X by lowering an index and sharpgψ is 

obtained from ψ by raising an index.
If (M, g) is a Riemannian manifold, then there exists a unique inner product on each fiber of Tl

k(M) with the 
property that for all x ∈ M, if {ei} is an orthonormal basis of TxM with dual basis {ηi}, then the corresponding basis of 
Tl

k(TxM) is orthonormal (see e.g. [14], page 29). We call this inner product the fiber metric on the bundle of ( 
l
k ) tensors 

and denote it by ⟨.,.⟩F. The corresponding norm is denoted by |.|F. If A and B are two tensor fields, then with respect to 
any local frame

1 11 1
1 1 1 1

,  .l lk k
l l k k

j j s si ri r
F j s j s i i r rA B g g g g A B〈 〉 =  

 

 

Let (Mn, g) be a compact Riemannian manifold. Let B : M → Hom(TM, TM) be a continuous section of the vector 
bundle Hom(TM, TM); in particular, for each p ∈ M, B(p) : TpM → TpM is a linear map. We define

( )
: sup | ( ) |,

L M p M
B f f p∞∞

∈
= =‖ ‖ ‖ ‖

where the continuous function  f  : M → R is defined by

Theorem 3.3
( ( ))

1
( ) ( ) sup | ( ,  ) |.

g g
op g p

X Y
f p B p g BX Y

= =
= =

‖‖ ‖‖
‖ ‖

Note that, as a direct consequence of the above definition, for all p ∈ M and X, Y ∈ TpM we have

| ( ,  ) |   .g gg BX Y B X Y∞≤ ‖ ‖‖ ‖‖ ‖

3. Background material
Some background material on analysis, differential geometry, and function spaces and their properties are presented 

in this section. We simply state the basic results we need for the theorems we want to prove in the future sections. 
Almost all the theorems that are cited here, with proofs or appropriate references for the proofs, can be found in [8-10], 
and [15].

Theorem 3.1 Let (V, ⟨.,.⟩) be a finite dimensional (real) inner product space. If B : V × V → R is a bilinear form, 
then there exists a unique linear transformation T : V → V such that

,  ( ,  ) ( ),  .x y V B x y T x y∀ ∈ = 〈 〉

Moreover, if B is positive definite, then T is bijective. (Recall that a symmetric bilinear form B is called positive 
definite if B(x, x) > 0 for all nonzero x.)

Theorem 3.2 ([15], Page 154) Let B : V × V → R be a bilinear form on a normed space V and let Q be the 
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associated quadratic form (Q(x) = B(x, x)). If B is symmetric and bounded, then ||B|| = ||Q||, that is,

 : sup{| ( ,  ) |  : 1} sup{| ( ,  ) |  : 1} :  .B B x y x y B x x x Q= = = = = =‖ ‖ ‖‖‖ ‖ ‖‖ ‖ ‖

Theorem 3.3 ([15], Page 155) Let A be a bounded linear operator on a Hilbert space (H, ⟨.,.⟩). Then the bilinear 
form defined by B(x, y) = ⟨Ax, y⟩ is bounded and ||A|| = ||B||.

Theorem 3.4 Let X, Y, and Z be normed spaces. Suppose An → A in L(X, Y) and Bn → B in L(Y, Z). Then

 in ( ,  ).n nB A B A L X Z→ 

In particular, if An → A in L(X, Y) and B ∈ L(Y, Z), then B ° An → B ° A.
Theorem 3.5 Let A : V → W be a linear transformation between the normed spaces V and W. Then

*
*1, 1

sup | ,  |.
V W

op W Wx y
A y Ax

×= =
= 〈 〉
‖‖ ‖‖

‖ ‖

Proof. It is a direct consequence of Hahn-Banach theorem that for any z ∈ W , ||w||W = sup{y(w) : y ∈ W*, ||y||W* = 1} 
(see e.g. [16]). So,

*
*1 1 1 ,

sup sup | , |. 
V V W

op W W Wx x y
A Ax y Ax

×= = =
= = 〈 〉
‖‖ ‖‖ ‖‖

‖ ‖ ‖ ‖

Lemma 3.6 ([9], Page 20) Let M be a compact smooth manifold. Suppose {Uα}1≤α≤N is an open cover of M. 
Suppose C is a closed set in M (so C is compact) which is contained in Uβ for some 1 ≤ β ≤ N. Then there exists a 
partition of unity {ψα}1≤α≤N subordinate to {Uα}1≤α≤N such that ψβ = 1 on C.

Theorem 3.7 ([9], Page 50) [Multiplication by smooth functions] Let s ∈ R, 1 < p < ∞, and φ ∈ BC∞(Rn). Then the 
linear map

, ,: ( ) ( ),  s p n s p n
φm W W u φu→  

is well-defined and bounded.
Theorem 3.8 ([9], Pages 54-55) Let Ω be a nonempty bounded open set in Rn with Lipschitz continuous boundary. 

Suppose s ∈ R and p ∈ (1, ∞).
(1) If φ ∈ BC∞(Ω), then the linear map W s,p(Ω) → W s,p(Ω) defined by u  φu is well-defined and bounded.
(2) Let K ∈ K(Ω). If φ ∈ C∞(Ω), then the linear map WK

s,p(Ω) → WK
s,p(Ω) defined by u  φu is well-defined and 

bounded.
Theorem 3.9 ([9], Page 67) Let s ∈ R, 1 < p < ∞, and α ∈ N0

n. Suppose Ω is a nonempty open set in Rn. Then
(1) the linear operator ∂α: W s,p(Rn) → W s−|α|,p(Rn) is well-defined and bounded;
(2) for s < 0, the linear operator ∂α: W s,p(Ω) → W s−|α|,p(Ω) is well-defined and bounded;
(3) for s ≥ 0 and |α| ≤ s, the linear operator ∂α: W s,p(Ω) → W s−|α|,p(Ω) is well-defined and bounded;

(4) if Ω is bounded with Lipschitz continuous boundary, and if s ≥ 0, s − 1
p   ≠ integer (i.e. the fractional part of s is 

not equal to 1
p ), then the linear operator ∂α: W s,p(Ω) → W s−|α|,p(Ω) for |α| > s is well-defined and bounded.

Theorem 3.10 ([10], Page 24) Let s ∈ R, 1 < p < ∞. Let Ω be a nonempty open set in Rn. Either assume Ω = Rn or 
Ω is Lipschitz or else assume s is not a noninteger less than −1. If A is a subset of Cc

∞(Ω) with the following property:

□
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Ω    such that  0  and  ( ) 0,x φ A φ φ x∀ ∈ ∃ ∈ ≥ ≠

then we say A is admissible. If A is an admissible family of functions then

, ,(Ω) { (Ω) : (Ω)}.s p s p
locW u D φ A φu W′= ∈ ∀ ∈ ∈

Theorem 3.11 ([10], Page 36) Let s ∈ R, 1 < p < ∞, and α ∈ N0
n. Suppose Ω is a nonempty bounded open set in Rn 

with Lipschitz continuous boundary. Then
(1) the linear operator , | |,: ( ) ( )s p s α pα n n

loc locW W −∂ →   is well-defined and continuous;

(2) for s < 0, the linear operator , | |,: (Ω) (Ω)s p s α pα
loc locW W −∂ →  is well-defined and continuous;

(3) for s ≥ 0 and |α| ≤ s, the linear operator , | |,: (Ω) (Ω)s p s α pα
loc locW W −∂ →  is well-defined and continuous;

(4) if s ≥ 0, s − 1
p   ≠ integer (i.e. the fractional part of s is not equal to 1

p ), then the linear operator , | |,: (Ω) (Ω)s p s α pα
loc locW W −∂ → 

, | |,: (Ω) (Ω)s p s α pα
loc locW W −∂ →  for |α| > s is well-defined and continuous.

Theorem 3.12 ([8], Page 295, Page 298) Suppose Ω = Rn or Ω is a bounded domain with Lipschitz continuous 
boundary. Assume si, s and 1 ≤ pi ≤ p < ∞ (i = 1, 2) are real numbers satisfying

• 0 for 1,  2,is s i≥ ≥ =

• 
1 1( ),i
i

s s n
p p

− ≥ −

• 1 2
1 2

1 1 1( ).s s s n
p p p

+ − > + −

Then, if 1 1 2 2, , ,(Ω) and (Ω),  (Ω),s p s p s pu W v W uv W∈ ∈ ∈  and moreover, the pointwise multiplication of functions 
is a continuous bilinear map

1 1 2 2, , ,(Ω) (Ω) (Ω).s p s p s pW W W× →

Remark 3.13 A number of other results concerning the sufficient conditions on the exponents si, pi, s, p that 
guarantee the multiplication 1 1 2 2, , ,(Ω) (Ω)    (Ω)s p s p s pW W W× ↪  is well-defined and continuous are discussed in detail 
in [8].

Theorem 3.14 ([10], Page 38) Let Ω = Rn or Ω be a bounded open set in Rn with Lipschitz continuous boundary. 
Suppose s1, s2, s ∈ R and 1 < p1, p2, p < ∞ are such that

1 1 2 2, , ,(Ω) (Ω)    (Ω)s p s p s pW W W× ↪

(Here the symbol ↪ should be interpreted as described in Section 2). Then
(1) 1 1 2 2, , ,(Ω) (Ω)     (Ω).s p s p s p

loc loc locW W W× ↪
(2) For all 1 1 2 2, , ,(Ω),  (Ω) (Ω)     (Ω).s p s p s p

KlocK W W W∈ ×K ↪  In particular, if  f  ∈ 1 1 2 2, , ,(Ω),  (Ω) (Ω)     (Ω).s p s p s p
KlocK W W W∈ ×K , then the mapping u  

fu is a well-defined continuous linear map from 2 2, ,(Ω) to (Ω).s p s p
KW W

Theorem 3.15 ([10], Pages 39-40) Let Ω be the same as the previous theorem. If sp > n, then 1 1 2 2, , ,(Ω) (Ω)     (Ω).s p s p s p
loc loc locW W W×  is closed 

under multiplication. Moreover, if

, ,
1 1( ) in (Ω), ,   ( ) i (Ω ,  n ) s p s p

m l m lloc locf f W f f W→ →
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then

,
1 1( ) ( ) in (Ω).  s p

m l m l locf f f f W→ 

Theorem 3.16 ([10], Page 40) Let Ω = Rn or let Ω be a nonempty bounded open set in Rn with Lipschitz 
continuous boundary. Let s ∈ R and p ∈ (1, ∞) be such that sp > n. Let B : Ω → GL(k, R). Suppose for all x ∈ Ω and 1 ≤ i, 

j ≤ k, Bij (x) ∈ 1 1 2 2, , ,(Ω) (Ω)     (Ω).s p s p s p
loc loc locW W W×  Then

(1) ,det (Ω).s p
locB W∈

(2) Moreover if for each m ∈ N, Bm : Ω → GL(k, R) and for all 1 ≤ i, j ≤ k(Bm)ij → Bij in 1 1 2 2, , ,(Ω) (Ω)     (Ω).s p s p s p
loc loc locW W W× , then det Bm → 

det B in 1 1 2 2, , ,(Ω) (Ω)     (Ω).s p s p s p
loc loc locW W W×

Theorem 3.17 ([10], Page 40) Let Ω = Rn or let Ω be a nonempty bounded open set in Rn with Lipschitz 
continuous boundary. Let s ≥ 1 and p ∈ (1, ∞) be such that sp > n.

(1) Suppose that u ∈ 1 1 2 2, , ,(Ω) (Ω)     (Ω).s p s p s p
loc loc locW W W×  and that u(x) ∈ I for all x ∈ Ω where I is some interval in R. If F : I → R is a 

smooth function, then F(u) ∈ 1 1 2 2, , ,(Ω) (Ω)     (Ω).s p s p s p
loc loc locW W W× .

(2) Suppose that um → u in 1 1 2 2, , ,(Ω) (Ω)     (Ω).s p s p s p
loc loc locW W W×  and that for all m ≥ 1 and x ∈ Ω, um(x), u(x) ∈ I where I is some open interval 

in R. If F : I → R is a smooth function, then F(um) → F(u) in 1 1 2 2, , ,(Ω) (Ω)     (Ω).s p s p s p
loc loc locW W W×

(3) If F : R → R is a smooth function, then the map taking u to F(u) is continuous from 1 1 2 2, , ,(Ω) (Ω)     (Ω).s p s p s p
loc loc locW W W×  to 1 1 2 2, , ,(Ω) (Ω)     (Ω).s p s p s p

loc loc locW W W×
Theorem 3.18 ([9], Page 22) Let E be a vector bundle of rank r over an n-dimensional compact smooth manifold M. 

Then E admits a finite total trivialization atlas that is GL compatible with itself. In fact, there exists a total trivialization 
atlas {(Uα, φα, ρα)}1≤α≤N such that

• for all 1 ≤ α ≤ N, φα(Uα) is bounded with Lipschitz continuous boundary, and,
• for all 1 ≤ α, β ≤ N, Uα ∩ Uβ is either empty or else φα(Uα ∩ Uβ) and φβ(Uα ∩ Uβ) are bounded with Lipschitz 

continuous boundary.
Definition 3.19 Let Mn be a compact smooth manifold. Let π : E → M be a vector bundle of rank r. Let Λ = {(Uα, 

φα, ρα, ψα)}1≤α≤N be an augmented total trivialization atlas for E → M. For e ∈ R and q ∈ (1, ∞), We,q(M, E; Λ) is defined 
as the completion of C∞(M, E) with respect to the norm

, ,
1

( , ;Λ) ( ( ))
1 1

( ) ( ) .e q e q
α α

N r
l

α α αW M E W φ U
α l

u ρ ψ u φ−

= =
= ∑ ∑  ‖‖ ‖ ‖

It can be proved that if e is not a noninteger less than −1 (that is, e ∈/ (−∞, −1)\Z), the above definition is 
independent of the choice of the total trivialization atlas. Also if e is a noninteger less than −1 (that is, e ∈ (−∞, −1)\Z), 
the definition does not depend on Λ as long as it is assumed that Λ is GL compatible with itself (see e.g. [9] for detailed 
discussion). So, we set We,q(M, E) := We,q(M, E; Λ) where if e ∈/ (−∞, −1)\Z, Λ is any augmented total trivialization atlas, 
and if e ∈ (−∞, −1)\Z, Λ is any augmented total trivialization atlas that is GL compatible with itself. Sometimes, instead 
of We,q(M, E), we may just write We,q(E).

Theorem 3.20 ([9], Page 83) Let Mn be a compact smooth manifold and E → M be a vector bundle of rank r. 
Suppose Λ = {(Uα, φα, ρα, ψα)}N

α=1 is an augmented total trivialization atlas for E → M. Let u be a section of E, e ∈ R, 
and q ∈ (1, ∞). If for all 1 ≤ α ≤ N and 1 ≤ j ≤ r, (ρα) j ° u ° φα

−1 ∈ W 
e,q
loc(φα(Uα)), then u ∈ We,q(M, E; Λ).

Theorem 3.21 ([9], Page 84) Let Mn be a compact smooth manifold and E → M be a vector bundle of rank r. Let 
e ∈ R, and q ∈ (1, ∞). Suppose Λ = {(Uα, φα, ρα, ψα)}N

α=1 is an augmented total trivialization atlas for E → M. If e is a 
noninteger less than −1 further assume that Λ is GL compatible with itself. If a section u of the vector bundle E belongs 
to We,q(M, E; Λ), then for all 1 ≤ α ≤ N and 1 ≤ i ≤ r, (ρα)i ° u ° φα

−1 (i.e. each component of the local representation of u 
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with respect to (Uα, φα, ρα)) belongs to W 
e,q
loc(φα(Uα)). Moreover, if ξ ∈ Cc

∞(φα(Uα), then

, ,
1

( ( )) ( , ;Λ)
( ) ,( ) e q e q

α α

j
α α W φ U W M E

ξ ρ u φ u−
  ‖ ‖ ‖‖

where the implicit constant may depend on ξ but does not depend on u.
Theorem 3.22 ([9], Page 81) Let Mn be a compact smooth manifold. Let π : E → M be a smooth vector bundle 

of rank r over M equipped with fiber metric ⟨.,.⟩E (so it is meaningful to talk about L∞(M, E)). Suppose s ∈ R and p ∈ 
(1, ∞) are such that sp > n. Then W 

s,p(M, E) ↪ L∞(M, E). Moreover, every element u in W 
s,p(M, E) has a continuous 

representative.
The following corollary is an immediate consequence of Theorem 3.21.
Corollary 3.23 Let (Mn, g) be a compact Riemannian manifold with g ∈ W 

s,p(T2M), sp > n. Let {(Uα, φα, ρα)}1≤α≤N 
be a standard total trivialization atlas for T2M → M. Fix some α and denote the components of the metric with respect to 
(Uα, φα, ρα) by gij : Uα → R (gij = (ρα)ij ° g). Then

,1 ( ( )).s p
ij α α αlocg φ W φ U− ∈

Theorem 3.24 ([9], Page 85) Let (Mn, g) be a compact Riemannian manifold with g ∈ W 
s,p(T2M), sp > n, s ≥ 1. Let 

{(Uα, φα, ρα)}1≤α≤N be a GGL standard total trivialization atlas for T2M → M. Fix some α and denote the components of 

the metric with respect to (Uα, φα, ρα) by gij : Uα → R (gij = (ρα)ij ° g). Then

(1) det gα ∈ Wloc
s,p(φα(Uα) where gα(x) is the matrix whose (i, j)-entry is gij ° φα

−1.

(2) ,1det det ( ( )).s p
α α α αlocg φ g W φ U− = ∈

(3) ,
1

1 ( ( )).
det

s p
α αloc

α
W φ U

g φ−
∈



Theorem 3.25 ([9], Pages 85-86) Let (Mn, g) be a compact Riemannian manifold with g ∈ W 
s,p(T2M), sp > n, s ≥ 1. 

{(Uα, φα)}1≤α≤N be a GGL smooth atlas for M. Denote the standard components of the inverse metric with respect to this 

chart by gij: Uα → R. Then

,1 ( ( )),s pij
α α αlocg φ W φ U− ∈

moreover,

1,1 11Γ ( ) ( ( )).
2

s pk kl
ij α i jl j il l ij α α αlocφ g g g g φ W φ U−− −= ∂ + ∂ − ∂ ∈ 

(Γk
ij’s denote the Christoffel symbols.)

Theorem 3.26 ([9], Page 91) Let Mn be a compact smooth manifold and let π : E → M be a vector bundle of 
rank r equipped with a fiber metric ⟨.,.⟩E. Let e ∈ R and q ∈ (1, ∞). Suppose Λ = {(Uα, φα, ρα, ψα)}N

α=1 is an augmented 
total trivialization atlas for E → M. If e is a noninteger whose magnitude is greater than 1 further assume that the total 
trivialization atlas in Λ is GL compatible with itself. Fix a positive smooth density µ on M. 

Consider the L2 inner product on C∞(M, E) defined by

2,  ,  .EM
u v u v μ〈 〉 = 〈 〉∫
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Then
(i) ⟨.,.⟩2 extends uniquely to a continuous bilinear pairing ⟨.,.⟩2 : W 

−e,q'(M, E; Λ) × W 
e,q(M, E; Λ) → R. (We are 

using the same notation (i.e. ⟨.,.⟩2) for the extended bilinear map!)

(ii) The map S : W 
−e,q'(M, E; Λ) → [We,q(M, E; Λ)]* defined by S(u) = lu where

,
2: ( , ; Λ) ,  ( ) , e q

u ul W M E l v u v→ = 〈 〉

is a well-defined topological isomorphism.
In particular, [W 

e,q(M, E; Λ)]* can be identified with W 
−e,q'(M, E; Λ).

4. Preliminary results
Suppose (Mn, g) is a compact Riemannian manifold with g ∈ W 

s,p(T2M), sp > n, and s ≥ 1. Suppose {gm} is 
a sequence of smooth metrics that converges to g in W 

s,p(T2M). In this section we go over some of the immediate 
consequences of this assumption which will be useful in the study of the main results presented in this work. As it 
was pointed out in the introduction, the ultimate goal of this manuscript is to study the relationship between various 
geometric operators (like Laplacian) that are defined in terms of gm’s and those that are defined in terms of g. We will 
present two rather distinct methods to accomplish this goal:

(1) The first approach works for a limited range of Sobolev spaces and follows (and extends) the argument 
presented in [17] for the Laplace operator with the domain H1(M) = W1,2(M). This method is based on the notion of 
“metric distortion tensor” and duality arguments.

(2) The second approach works for a wider range of Sobolev spaces and will be based on the previously mentioned 
characterization of Sobolev spaces in terms of local coordinates and theorems on multiplication properties of Sobolev 
spaces and behavior of Sobolev functions under composition.

Let’s begin with the notion of metric distortion tensor. By Theorem 3.1 for each m and at each p ∈ M there exists 
a linear operator Am|p : TpM → TpM (when the basepoint is clear from the context instead of Am|p we just write Am) such 
that

, ( , ) ( , ).p m mX Y T M g X Y g A X Y∀ ∈ =

Am is called the metric distortion tensor associated with gm (see [17] and [18]). Am can be viewed as a continuous 
section of the bundle Hom(TM, TM); we have

1
( )

sup (( ) , )) ,
g g

m m
X Y

L M

A Id g A Id X Y
∞

∞
= =

− = −
‖‖ ‖‖

‖ ‖

where Idp : TpM → TpM is the identity map. In particular, note that for all p ∈ M and X, Y ∈ TpM

| (( ) , )) | .m m g gg A Id X Y A Id X Y∞− ≤ − ‖ ‖‖ ‖ ‖

The following two theorems play a key role in the first approach mentioned above.
Theorem 4.1 Let Mn be a compact smooth manifold equipped with a Riemannian metric g. Denote the norm 

induced by the fiber metric on the bundle of (2
0) tensors by |.|F. If S is a symmetric covariant tensor field of order 2, then
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  sup | ( , ) |: , ,  1 | | ( ).{ }p p g g Fp M S X Y X Y T M X Y S p∀ ∈ ∈ = = ≤‖ ‖ ‖ ‖

Note that the left hand side of the above inequality is the norm of Sp as a bilinear form on the inner product space 
(TpM, gp).

Proof. In this proof we will not use the summation convention. Let p ∈ M. Let {Ei} be an orthonormal basis for 
TpM. At p the components of the metric with respect to {Ei} are given by gij = δij. We have

2 2

, , , , , , 1 1
| | ( ) | | ( ).

n n
ir js ir js

F ij rs p ij rs p ij
i j r s i j r s i j

S p g g S S δ δ S S S p
= =

= = =∑ ∑ ∑∑

Now, let A : TpM → TpM be the unique linear transformation such that (see Theorem 3.1)

,   ( , ) ( , ).p p pX Y T M S X Y g AX Y∀ ∈ =

If X ∈ TpM is such that ||X||g = 1 (note that since g = δ at p, we have ||X||g = Σi, j gij X 
iX 

j = Σn
i=1 |X 

i|2), then

22 2

1 1 1
| | | |( ) ( )( )

n n n
i i

i ig g
i i i

X AE X AE
= = =

≤ ≤∑ ∑ ∑

2 2 2 2| ( , ) | | ( , |  )p p g gS X X g AX X AX X= ≤‖ ‖‖ ‖

2 2

1
( )

n
i

g i g
i

AX X AE
=

= = ∑‖ ‖‖ ‖

2 2 2 2

1 1 1 1 1
( , ) ( ) | | ( ).

n n n n n

i g p i j ij F
i i j i j

AE g AE E S p S p
= = = = =

= = = =∑ ∑∑ ∑∑‖ ‖

Note that we used the fact that since {Ei} is orthonormal

2 2

1 1
( , ) ( , ) .

n n

i p i j j i g p i j
j j

AE g AE E E AE g AE E
= =

= =⇒∑ ∑‖ ‖

Therefore,

Theorem 3.2
sup | ( , ) |: , , 1 sup | ( , ) |: , 1{ } { }p p g g p p gS X Y X Y T M X Y S X X X T M X∈ = = = ∈ =‖ ‖ ‖ ‖ ‖ ‖

| | ( ).FS p≤

Theorem 4.2 Let Mn be a compact smooth manifold. Let {gm} be a sequence of smooth metrics on M. Let g ∈ 
Γ(M, T 

2M) be a metric on M that belongs to W 
s,p(T 

2M) with sp > n and s ≥ 1. Suppose gm → g in W 
s,p(T 

2M). Denote 
the metric distortion tensor associated with gm by Am. Then

□

□
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(1) , ,. As a result, since 0, we have 0.m m s p m s p mA Id g g g g A Id∞ ∞− − − → − →‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

(2) 1If 0, then 0.m mA Id A Id−
∞ ∞− → − →‖ ‖ ‖ ‖

(3) 1If 0 and det 1 uniformly on , then det 0.m m m mA Id A M A A Id−
∞ ∞− → → − →‖ ‖ ‖ ‖

(4) 1grad grad .
mm g gA− =

(5) det (  denotes the Riemannian density with respect to t he metric ).
mg m g gdV A dV dV g=

Proof.
(1) Denote the norm induced by the corresponding fiber metric (associated with the metric g) on the bundle of (2

0) 
tensors by |.|F.

1
( )

sup ( , ) ( , ) (see Theorem 4 1 . )
g g

m
X Y

L M

g X Y g X Y
∞= =

≥ −
‖‖ ‖‖

1
( )

sup ( , ) ( , )
g g

m
X Y

L M

g A X Y g X Y
∞= =

= −
‖‖ ‖‖

1
( )

sup (( ) , )
g g

m
X Y

L M

g A Id X Y
∞= =

= −
‖‖ ‖‖

.mA Id ∞= −‖ ‖

2
,

, ( ) ( )
( )     s p

m s p m m FL T M L M
g g g g g g W L∞ ∞

∞− − = −‖ ‖ ‖ ‖ ‖ ‖ ↪

(2) By assumption, ( ( ))sup ( ) 0.m op g x
x M

A x Id
∈

− →‖ ‖  Therefore, there exists m0 ∈ N such that

0 ( ( ))( ) 1.m op g xm m x M A x Id∀ ≥ ∀ ∈ − <‖ ‖

Note that, as a consequence, for all m ≥ m0 and x ∈ M, we have 1

0
( ) ( ( )) ,k

m m
k

A x Id A x
∞

−

=
= −∑  and so

1
( ( )) ( ( ))

( ( ))0

1( ) ( ) .
1 ( )

k
m op g x m op g x

m op g xk
A x Id A x

Id A x

∞
−

=
≤ − =

− −∑‖ ‖ ‖ ‖
‖ ‖

Therefore, for all m ≥ m0,

1 1 1
( ( )) ( ( ))sup ( ) sup ( ) ( )( )m m op g x m m op g x

x M x M
A Id A x Id A x Id A x− − −

∞
∈ ∈

− = − = −‖ ‖ ‖ ‖ ‖ ‖
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1
( ( )) ( ( ))sup ( ) ( )( )m op g x m op g x

x M
A x Id A x−

∈
≤ −‖ ‖ ‖ ‖

( ( ))
( ( ))

1sup sup ( ) 0.
1 ( )

( )( )m op g x
x M x Mm op g x

Id A x
Id A x∈ ∈

≤ − →
− −

‖ ‖
‖ ‖

(3) Note that for each m, the function x  det Am(x) is a continuous function from M to R. Therefore, since M is 
compact, for each m, supx∈M det Am(x) is finite. This together with the assumption that det Am(x) converges uniformly to 
1 implies that the functions {x  det Am(x)}x∈M, m∈N are uniformly bounded. That is, there exists R > 0 such that

det ( ) .mm x M A x R∀ ∈ ∀ ∈ ≤

Also, note that since det Am(x) → 1 uniformly and square root is uniformly continuous, we have det ( ) 1mA x →  
uniformly. Hence we can write

1
( ( ))sup det m m op g x

x M
A A Id−

∈
−‖ ‖

1
( ( )) ( ( ))sup det det det( )m m m op g x m op g x

x M
A A A Id A Id Id−

∈
≤ − + −‖ ‖ ‖ ‖

1
( ( )) ( ( ))sup det sup ( det 1)( ) ( )m m op g x m op g x

x M x M
A A Id A Id−

∈ ∈
≤ − + −‖ ‖ ‖ ‖

1
( ( ))sup sup ( det 1) 0.m op g x m

x M x M
R A Id A−

∈ ∈
≤ − + − →‖ ‖

Items (4) and (5) are direct consequences of the definition of grad and the standard expression for dV in each 
coordinate neighborhood.                                                                                                                                                     □

The next theorem plays an important role in the second approach that was mentioned in the beginning of this 
section.

Theorem 4.3 Let (Mn, g) be a Riemannian manifold. Let {gm} be a sequence of smooth metrics on M. Suppose 
gm → g in W 

s,p(T 
2M) with sp > n and s ≥ 1. Let {(Uα, φα, ρα)}1≤α≤N and {(Uα, φα, ρ̃α)}1≤α≤N be GGL standard total 

trivialization atlases for T 
2M and T2M, respectively. Then

(1) ,1 1For all 1 ,  1 ,  : ( )  in ( ( )).s p
m ij α ij α α αlocα N i j n g φ g φ W φ U− −≤ ≤ ≤ ≤ → 

(2) ,1 1For all 1 ,  1 ,  : ( )  in ( ( )).s pij ij
m α α α αlocα N i j n g φ g φ W φ U− −≤ ≤ ≤ ≤ → 

(3) 1 1 ,
2( )  in ( ).s p

mg g W T M− −→

(4) 1,1 1For all 1 , , : (Γ ) (Γ )  in ( ( )).
m

s pk k
g ij α g ij α α αloci j k n φ φ W φ U−− −≤ ≤ → 

Proof. First let us define a suitable family of admissible test functions (see Theorem 3.10) on φα(Uα). For each x ∈ 
φα(Uα), choose rx > 0 such that

( ) ( ).
xr α αB x φ U⊆
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Let Vx = φα
−1(Brx

(x)). Clearly Vx ⊆ V̄ x ⊆ Uα. Therefore, by Lemma 3.6 there exists a partition of unity {ψβ,x} 

subordinate to {Uβ}1 ≤ β ≤ N such that ψα,x = 1 on V̄x. We define ψ̃x = ψα,x ° φα
−1. {ψ̃x}x∈φα(Uα) is an admissible family of test 

functions on φα(Uα). So, in order to prove that a sequence { fm} converges to  f  in Wloc
s,p(φα(Uα) it is enough to show that

,( )  in ( ( )).s p
α α x m x α αx φ U ψ f ψ f W φ U∀ ∈ → 

(1) Let x ∈ φα(Uα). We have

,
1

, , ( ( ))
1 , 1

( ) ( ( )) s p
β β

N n

m s p β ij β x m β W φ U
β i j

g g ρ ψ g g φ−

= =
− −∑ ∑  ‖ ‖ ‖ ‖

,
1

, ( ( ))
1 , 1

[( ) ] .s p
β β

N n

β x m ij ij β W φ U
β i j

ψ g g φ−

= =
−∑ ∑ ‖ ‖

By assumption ||gm − g||s,p → 0 and so

,
1

, ( ( ))
1 1 , [( ) ] 0.s p

β β
β x m ij ij β W φ U

β N i j n ψ g g φ−∀ ≤ ≤ ∀ ≤ ≤ − →‖ ‖

In particular,

,
1

, ( ( ))
1 ,  [( ) ] 0.s p

α α
α x m ij ij α W φ U

i j n ψ g g φ−∀ ≤ ≤ − →‖ ‖

Considering that ψα,x ° φα
−1 = ψ̃x, we get

,
1

( ( ))
1 , [(( ) ) ] 0.s p

α α
x m ij ij α W φ U

i j n ψ g g φ−∀ ≤ ≤ − →
‖ ‖

Since x ∈ φα(Uα) is arbitrary and {ψ̃y}y∈φα(Uα) form an admissible family of test functions, we can conclude that

,1 1( )  in ( ( )).s p
m ij α ij α α αlocg φ g φ W φ U− −→ 

(2) Let C = (Cij) and Cm = ((Cm)ij) where Cij = gij ° φα
−1 and (Cm)ij = (gm)ij ° φα

−1. Our goal is to show that

,1 1( ) ( )  in ( ( )).s p
m ij ij α αlocC C W φ U− −→

Recall that

1 ( 1)( ) ,
det

i j

ij ijC M
C

+
− −

=
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1 ( 1)(( ) ) ( ) .
det

i j

m ij m ij
m

C M
C

+
− −

=

where Mij and (Mm)ij are the determinants of the (n − 1) × (n − 1) matrices formed by removing the jth row and ith 
column of C and Cm, respectively. By item 1 we know that (Cm)ij → Cij in Wloc

s,p(φα(Uα). So, it follows from Theorem 3.16 
that

,det det ,  ( )  in ( ( )).s p
m m ij ij α αlocC C M M W φ U→ →

As a direct consequence of Theorem 3.17,

,1 1  in ( ( )).
det det

s p
α αloc

m
W φ U

C C
→

Hence by Theorem 3.14 and Theorem 3.15 we can conclude that

,( 1) ( 1)( )  in ( ( )).
det det

i j i j
s p

m ij ij α αloc
m

M M W φ U
C C

+ +− −
→

(3) Let {θβ}1 ≤ β ≤ N be a partition of unity subordinate to {Uβ}1 ≤ β ≤ N. We have

,
1 1 1

, ( ( ))
1 , 1

( ) ( (( ) )) .s p
β β

N n
ij ij

m s p β m β W φ U
β i j

g g θ g g φ− − −

= =
− −∑ ∑ ‖ ‖ ‖ ‖

According to item 2, for all 1 ≤ β ≤ N,

,1 1( )  in ( ( )).s pij ij
m β β β βlocg φ g φ W φ U− −→ 

Therefore, it follows from the definition of convergence in Wloc
s,p(φβ(Uβ) that

,
1

( ( ))
( (( ) )) 0.s p

β β

ij ij
β m β W φ U

θ g g φ−− →‖ ‖

Hence ||(gm)−1 − g−1||s,p → 0.
(4) Recall that

1Γ ( ),
2

k kl
ij i jl j il l ijg g g g= ∂ + ∂ − ∂

1(Γ ) ( ) ( ( ) ( ) ( ) ).
2

k kl
m ij m i m jl j m il l m ijg g g g= ∂ + ∂ − ∂

By item 1 and item 2 we have
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,( ) ,  ( ) ,  ( ) ,  ( )  in ( ( )).s pkl kl
m m jl jl m il il m ij ij α αlocg g g g g g g g W φ U→ → → →

By Theorem 3.11, partial differentiation with respect to any one of the variables is continuous from Wloc
s,p(φα(Uα)) to 

Wloc
s−1,p(φα(Uα)). Also, it follows from Theorem 3.14 that

↪, 1, 1,( ( )) ( ( ))     ( ( )).s p s p s p
α α α α α αloc loc locW φ U W φ U W φ U− −×

The claim of this item is a direct consequence of the above observations.                                                                  □

5. Sharp operator with rough metric
Theorem 5.1 Let (M 

n, g) be a compact Riemannian manifold. Assume g ∈ W 
s,p(T 

2M) with sp > n and s ≥ 1. 
Suppose e ∈ R and q ∈ (1, ∞) are such that for balls Ω ⊆ Rn or for Ω = Rn

, , ,(Ω) (Ω)     (Ω).s p e q e qW W W× ↪

Then sharpg : (C
∞(M, T*M), ||.||e,q) → We,q(TM) is continuous and so it has a unique extension to a continuous 

operator sharpg : W
e,q(T*M) → We,q(TM).

Proof. Let Λ = {(Uα, φα, ρα)}N
α=1 be a standard total trivialization atlas for TM and Λ̃ {(Uα, φα, ρ̃α)}N

α=1 be a standard 

total trivialization atlas for T*M. Without loss of generality we may assume that each of Λ and Λ̃ is nice (or super nice) 

and GL compatible with itself (see Theorem 3.18 and [9]). Let {ψα}N
α=1 be a partition of unity subordinate to the open 

cover {Uα}N
α=1. Let 

2
1

2 2
1 1

1. Note that ( ( )).α
α α α αN N

β ββ β

ψ
ψ φ BC φ U

ψ ψ
− ∞

= =

= ∈
∑ ∑


  We have

, ,
1

( ) ( ( ))
1 1

sharp ( ) (sharp )e q e q
α α

N n
i

g α α g αW TM W φ U
α i

ω ψ ρ ω φ−

= =
∑ ∑ 

 ‖ ‖ ‖ ‖

,
1

( ( ))
1 1

e q
α α

N n
ij

α j α W φ U
α i

ψ g ω φ−

= =
∑ ∑ 

 ‖ ‖

,
2 1

( ( ))
1 1

e q
α α

N n
ij

α j α W φ U
α i

ψ g ω φ−

= =
∑ ∑ ‖ ‖

, ,
1 -1

( ( )) ( ( ))
1 1 1

s p e q
α α α α

N n n
ij

α α α j αW φ U W φ U
α i j

ψ g φ ψ ω φ−

= = =
∑ ∑∑  ‖ ‖ ‖ ‖

, 0 , *
2

1
( ) ( )

.s p e qW T M W T M
g ω−‖ ‖ ‖ ‖

Note that the inequality in the third line follows from Theorem 3.7 and Theorem 3.8.                                               □
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Theorem 5.2 Let (M 
n, g) be a compact Riemannian manifold. Assume g ∈ W 

s,p(T 
2M) with sp > n and s ≥ 1. 

Suppose e ∈ R and q ∈ (1, ∞) are such that for balls Ω ⊆ Rn or for Ω = Rn

, , ,(Ω) (Ω)     (Ω).s p e q e qW W W× ↪

Suppose {gm} is a sequence of smooth (C∞) metrics on M such that gm → g in W 
s,p(T 

2M). Then

, * ,sharp sharp  in ( ( ),  ( )).
m

e q e q
g g L W T M W TM→

Proof.

,

, *,

( )

0 ( )

(sharp sharp )
sharp sharp sup .

e qm
m

e qe q

g g W TM
g g op

ω W T M

ω

ω≠

−
− =

‖‖

‖ ‖
‖ ‖

‖ ‖

Let Λ = {(Uα, φα, ρα)}N
α=1 be a standard total trivialization atlas for TM and Λ̃ = {(Uα, φα, ρ̃α)}N

α=1 be a standard total 

trivialization atlas for T 
*M. Without loss of generality we may assume that each of Λ and Λ̃ is nice (or super nice) and 

GL compatible with itself. Let {ψα}N
α=1 be a partition of unity subordinate to the open cover {Uα}N

α=1. Let 
2

2
1

.α
α N

ββ

ψ
ψ

ψ=

=
∑

 . 

Note that 1
2

1

1 ( ( )).α α αN
ββ

φ BC φ U
ψ

− ∞

=

∈
∑

  We have

, ,
1

( ) ( ( ))
1 1

(sharp sharp ) ( ) ( )e q e qm m α α

N n
i

g g α α g g αW TM W φ U
α i

ω ψ ρ sharp sharp ω φ−

= =
− −∑ ∑ 

 ‖ ‖ ‖ ‖

,
1

( ( ))
1 1

( ) e q
α α

N n
ij ij

α m j α W φ U
α i

ψ g g ω φ−

= =
−∑ ∑ 

 ‖ ‖

, ,
1 1

( ( )) ( ( ))
1 1 1

( ) s p e q
α α α α

N n n
ij ij

α m α α j αW φ U W φ U
α i j

ψ g g φ ψ ω φ− −

= = =
−∑ ∑∑  ‖ ‖ ‖ ‖

, , *
2

1 1
( ) ( )

.s p e qm W T M W T M
g g ω− −−‖ ‖ ‖ ‖

Now the claim follows from Theorem 4.3.                                                                                                                   □
If F is a general covariant k-tensor field (k ≥ 2), we let sharpgF to be a (  1

k−1)-tensor field defined by

1 1 1 1sharp ( , , , ) : ( , , ,sharp ( )).g k k gF ω X X F X X ω− −= 

In any local coordinate chart

1 11 1
(sharp ) .

kk
j jl

g i i li iF g F
−−

=
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The proof of the next two theorems is completely analogous to the proof of Theorems 5.1 and 5.2 and will be 
omitted.

Theorem 5.3 Let (M 
n, g) be a compact Riemannian manifold. Assume g ∈ W 

s,p(T 
2M) with sp > n and s ≥ 1. 

Suppose e ∈ R and q ∈ (1, ∞) are such that for balls Ω ⊆ Rn or for Ω = Rn

, , ,(Ω) (Ω)     (Ω).s p e q e qW W W× ↪

Then sharpg : (C
∞(M, T 

kM), ||.||e,q) → W 
e,q(T1

k−1M) is continuous and so it has a unique extension to a continuous 

operator sharpg : W 
e,q(T 

kM) → W 
e,q(T1

k−1M).

Theorem 5.4 Let (M 
n, g) be a compact Riemannian manifold. Assume g ∈ W 

s,p(T 
2M) with sp > n and s ≥ 1. 

Suppose e ∈ R and p ∈ (1, ∞) are such that for balls Ω ⊆ Rn or for Ω = Rn

, , ,(Ω) (Ω)     (Ω).s p e q e qW W W× ↪

Suppose {gm} is a sequence of smooth (C∞) metrics on M such that gm → g in W 
s,p(T 

2M). Then

, , -1
1sharp sharp  in ( ( ),  ( )).

m
e q k e q k

g g L W T M W T M→

6. Gradient with rough metric 
Let M be a compact smooth manifold and let g be a Riemannian metric on M. Let f : M → R be a scalar function. 

grad  f  is defined as sharpg(df). If (U, (xi)) is any local coordinate chart, then

,  grad ( ) .[ ]i ij
i i j

f fdf dx f g
x x x

∂ ∂ ∂
= =

∂ ∂ ∂

Theorem 6.1 Let (M 
n, g) be a compact Riemannian manifold. Assume g ∈ W 

s,p(T 
2M) with sp > n and s ≥ 1. 

Suppose e ∈ R and p ∈ (1, ∞) are such that for balls Ω ⊆ Rn or for Ω = Rn

, , ,(Ω) (Ω)     (Ω).s p e q e qW W W× ↪

Suppose {gm} is a sequence of smooth (C∞) metrics on M such that gm → g in W 
s,p(T 

2M). Then

1, ,grad grad  in ( ( ),  ( )).
m

e q e q
g g L W M W TM+→

Proof. First note that, under the hypotheses of the theorem, gradgm
 and gradg belong to L(W 

e+1,q(M), W 
e,q(TM)) (see 

Appendix A).

1, , 1, ,( , ) ( , )
grad grad (sharp sharp )e q e q e q e qm mg g g gL W W L W W

d+ +− = − ‖ ‖ ‖ ‖

, * , 1, , *( ( ), ( )) ( ( ), ( ))
sharp sharp .e q e q e q e qmg g L W T M W TM L W M W T M

d +−‖ ‖ ‖ ‖
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However, we have already proved that under the hypothesis of the theorem

, * ,( ( ), ( ))
sharp sharp 0.e q e qmg g L W T M W TM

− →‖ ‖

Also, in Appendix A it is shown that d : W 
e+1,q(M) → W 

e,q(T*M) is continuous. Therefore,

1, ,( , )
grad grad 0.e q e qmg g L W W+− →‖ ‖

Alternatively, a rather special case of the above result can be proved using the technique introduced in [17] for 
H1(M). This will be the context of the following theorem.

Theorem 6.2 Let (M 
n, g) be a compact Riemannian manifold. Assume g ∈ W 

s,p(T 
2M) with sp > n, s ≥ 1. Suppose 

{gm} is a sequence of smooth (C∞) metrics on M such that gm → g in W 
s,p(T 

2M). Then

1,grad grad  in ( ( ), ( )).
m

q q
g g L W M L TM→

Proof. First note that since sp > n, W 
s,p ↪ L∞ and therefore for all 1 < q < ∞, we have

W 
s,p × Lq ↪ Lq.

Thus, this theorem is indeed a special case of the previous theorem. Denote the distortion tensor associated with gm 
by Am.

grad grad
mg g op−‖ ‖

Theorem 3.5
1,

 
sup | , (grad grad ) |: ( ),  ( ), 1{ }q qmg g q qL L

Y u u C M Y C TM u Y′
∞ ∞

′×
= 〈 − 〉 ∈ ∈ = =‖‖ ‖ ‖

1
1,sup | ( , ( )grad ) |: ( ),  ( ),  1{ }m g g q qM

g Y A Id u dV u C M Y C TM u Y− ∞ ∞
′= − ∈ ∈ = =∫ ‖‖ ‖ ‖

1
1,sup grad : ( ),  ( ), 1 .{ }m g g g g q qM

A Id Y u dV u C M Y C TM u Y− ∞ ∞
′∞≤ − ∈ ∈ = =∫‖ ‖ ‖ ‖‖ ‖ ‖‖ ‖ ‖

Now, note that

grad  gradg g g g g g q g qM
Y u dV u Y ′≤∫ ‖ ‖‖ ‖ ‖ ‖ ‖ ‖‖ ‖‖ ‖

1, 1.q qu Y ′ =‖‖ ‖ ‖

Therefore,

1grad grad .
mg g op mA Id−

∞− −‖ ‖ ‖ ‖

Finally, notice that by Theorem 4.2, 1 0 as .mA Id m−
∞− → → ∞‖ ‖                                                                               □

□
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7. Linear connection with rough metric
Given a Riemannian manifold (M, g), we denote the corresponding Levi-Civita connection on TM by ∇g.
Theorem 7.1 Let (M 

n, g) be a compact Riemannian manifold. Let g ∈ W 
s,p(T 

2M) with sp > n and s ≥ 1. Suppose 
e ∈ R and q ∈ (1, ∞) are such that

1, 1, ,( ) ( )     ( ).s p n e q n e q nW W W− +×  ↪

Also, let , ( ) where  and s pX W TM s p∈  

   have the property that

, 1, 1, ,( ) ( ) ( )     ( ).s p n s p n e q n e q nW W W W− +× × 

   ↪

In particular, X can be any smooth vector field.
Suppose {gm} is a sequence of smooth (C∞) metrics on M such that gm → g in W s, p(T 2M). Then

1, ,( ) ( ) 0 in ( ( ),  ( )).
m

e q k e q k
g X g X l lL W T M W T M+∇ − ∇ →

Proof. In this proof we will not use the summation convention. Let Λ = {(Uα, φα, ρα)}N
α=1 be a standard total 

trivialization atlas for Tl
k(M) → M. Without loss of generality we may assume that Λ is super nice and GL compatible 

with itself. Let {ψα}N
α=1 be a partition of unity subordinate to the open cover {Uα}N

α=1. Let 
3

3
1

. α
α N

ββ

ψ
ψ

ψ=

=
∑

  Note that 

1
3

1

1 ( ( )).α α αN
ββ

φ BC φ U
ψ

− ∞

=

∈
∑

  Using techniques discussed in Appendix A, one can show that under the hypotheses of 

the theorem, (∇gm
)X and (∇g)X indeed belong to L(W 

e+1,q(Tl
kM), W 

e,q(Tl
kM)).

1, ,
,

( ( ), ( )) 1,0,

( ) ( )
( ) ( ) sup .m

e q k e q km l l

g X g X e q
g X g X L W T M W T M e qF F C

F F

F+
∞ +≠ ∈

∇ − ∇
∇ − ∇ =

‖ ‖
‖ ‖

‖ ‖

We have (in what follows 
1 1, 1 1 1 1

represents )
r r l k

n n n n

j i j j i i= = = =
∑ ∑ ∑ ∑ ∑
 

 

1 1
,1 1

1
, ( ( ))

1 ,
( ) ( ) [(( ) ) (( ) ) ] .l l

e qm m k k α α
r r

N
j j j j

g X g X e q α g X g X αi i i i W φ U
α j i

F F ψ F F φ−

=
∇ − ∇ ∇ − ∇∑ ∑

 

 

 


 ‖ ‖ ‖ ‖

Recall that on Uα,

1 1
( ) ( ) ,  ( ) ( ) ,

m m

n n
r r

g X g r g X g r
r r

F X F F X F
= =

∇ = ∇ ∇ = ∇∑ ∑

and
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1
1

1(( ) ) l
m k

j j
g r αi iF φ−∇ 





1 1 1ˆ
ˆ1 1 1

1 1 1 1 1

ˆ ˆ1 11 1
( ) [ ][(Γ ) ] [ ][(Γ ) ].l l ls

m mk k k s

n nl k
j j j p j j j pj

α α g rp α α g αi i i i i p i rir
s sp p

F φ F φ φ F φ φ
x

− − − − −

= == =

∂
= + −

∂
∑ ∑∑ ∑   

   

    

1
1

1(( ) ) l
k

j j
g r αi iF φ−∇ 





1 1 1ˆ
ˆ1 1 1

1 1 1 1 1

ˆ ˆ1 11 1
( ) [ ][(Γ ) ] [ ][(Γ ) ].l l ls

k k k s

n nl k
j j j p j j j pj

α α g rp α α g αi i i i i p i rir
s sp p

F φ F φ φ F φ φ
x

− − − − −

= == =

∂
= + −

∂
∑ ∑∑ ∑   

   

    

1 1 1 1
1 1 1 1ˆ ˆ(Here  represents  with   replaced by ;  similarly,  represents  with  replacedl l l l

k k k k
j p j j j j j j j

s si i i i i p i i iF F j p F F i    

       
by p.) Therefore,

1 1
1 1

1[(( ) ) (( ) ) ]l l
m k k

j j j j
g X g X αi i i iF F φ−∇ − ∇ 

 



1 ˆ ˆ
1

1 1 1 1

ˆ 1 1 1
( )( )[(Γ ) (Γ ) ]l s s

mk

l n n
j p j j jr

α α g rp α g rp αi i
s p r

X φ F φ φ φ− − − −

= = =
= −∑ ∑ ∑  



   

1
ˆ ˆ1

1 1 1 1

ˆ 1 1 1
( )( )[(Γ ) (Γ ) ].l

mk s s

k n n
j j p pr

α α g α g αi p i ri ri
s p r

X φ F φ φ φ− − − −

= = =
− −∑ ∑ ∑ 

 

   

Thus

,( ) ( )
mg X g X e qF F∇ − ∇‖ ‖

1 ˆ ˆ
1

1 1 1 1 1

ˆ1 , 1 1 1
( )( )[(Γ ) (Γ ) ][ l s s

mk
r r

N l n n
j p j j jr

α α α α g rp α g rp αi i
α j i s p r

ψ φ X φ F φ φ φ− − − − −

= = = =
−∑ ∑ ∑ ∑ ∑

 

 




     ‖

1
,ˆ ˆ1

1 1 1 1
( ( ))

ˆ 1 1 1
( )( )[(Γ ) (Γ ) ]]l

e qmk s s α α

k n n
j j p pr

α α g α g αi p i ri ri W φ U
s p r

X φ F φ φ φ− − − −

= = =
− −∑ ∑ ∑ 

 

    ‖

1
1

1 1 1 1
, 1,

ˆ1 , 1 1 1
( )( ) ( )( )[ l

k
r r

N l n n
j p jr

α α α s p α α α e qi i
α j i s p r

ψ φ X φ ψ φ F φ− − − −
+

= = = =
∑ ∑ ∑ ∑ ∑

 

 

 



   ‖ ‖ ‖ ‖

ˆ ˆ1 1 1
1,( )[(Γ ) (Γ ) ] ]s s

m
j j

α α g rp α g rp α s pψ φ φ φ− − −
−−  ‖ ‖
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1
1

1 1 1 1
, 1,

ˆ1 , 1 1 1
( )( ) ( )( )[ l

k
r r

N k n n
j jr

α α α s p α α α e qi p i
α j i s p r

ψ φ X φ ψ φ F φ− − − −
+

= = = =
+∑ ∑ ∑ ∑ ∑

 



 

 

   ‖ ‖ ‖ ‖

ˆ ˆ
1 1 1

1,( )[(Γ ) (Γ ) ] ]
m s s

p p
α α g α g α s pri riψ φ φ φ− − −

−−  ‖ ‖

ˆ ˆ
, 1, 1,

1 1 1
( ) ( ( )) ( ( ))

ˆ1 1 1 1
( )[(Γ ) (Γ ) ]s ss p e q k s pm α αl

N l n n
j j

α α g rp α g rp αW TM W T M W φ U
α s p r

X F ψ φ φ φ+ −
− − −

= = = =
−∑ ∑ ∑ ∑ 

  ‖ ‖ ‖ ‖ ‖ ‖

, 1, 1,ˆ ˆ
1 1 1

( ) ( ( )) ( ( ))
ˆ1 1 1 1

( )[(Γ ) (Γ ) ] .s p e q k s pm s s α αl

N k n n
p p

α α g α g αri riW TM W T M W φ U
α s p r

X F ψ φ φ φ+ −
− − −

= = = =
+ −∑ ∑ ∑ ∑ 

  ‖ ‖ ‖ ‖ ‖ ‖

Therefore,

ˆ ˆ
1,

, 1 1 1
( ( ))1, ˆ1 1 1 1

( ) ( )
( )[(Γ ) (Γ ) ]m s s s pm α α

N l n ng X g X e q j j
α α g rp α g rp α W φ Ue q α s p r

F F
ψ φ φ φ

F −
− − −

+ = = = =

∇ − ∇
−∑ ∑ ∑ ∑   

‖ ‖
‖ ‖

‖ ‖


1,ˆ ˆ
1 1 1

( ( ))
ˆ1 1 1 1

( )[(Γ ) (Γ ) ] .s pm s s α α

N k n n
p p

α α g α g αri ri W φ U
α s p r

ψ φ φ φ −
− − −

= = = =
+ −∑ ∑ ∑ ∑   ‖ ‖

Since gm → g in W s, p, it follows from Theorem 4.3 that the right hand side goes to zero as m → ∞.                         □

8. Covariant derivative with rough metric
Let F ∈ τl

k(Mn). The map

1 1: ( ) ( ) ( ) ( ) ( )F τ M τ M χ M χ M C M∞∇ ×…× × ×…× →

1 1
1 1( , , , , , , ) ( )( , , , , , ).l l

k X kω ω Y Y X F ω ω Y Y… … ∇ … …

is C∞(M)-multilinear and so it defines a (  l
k+1)-tensor field. The tensor field ∇F is called the (total) covariant derivative of F. 

Note that in any local coordinates (in this section we do not use the summation convention)

1 1
1 1

1 1( ) ( )l l
k k

j j j j
α r αi i r i iF φ F φ− −∇ = ∇ 

 

 

1 1 1ˆ
ˆ1 1 1

1 1 1 1 1

ˆ ˆ1 1 1 1
( ) Γ Γ .( )( ) ( )( )l l ls

k k k s

l n k n
j j j p j j j pj

α α rp α α αi i i i i p i rir
s p s p

F φ F φ φ F φ φ
x

− − − − −

= = = =

∂
= + −

∂
∑ ∑ ∑ ∑   

   

    

Theorem 8.1 Let (M 
n, g) be a compact Riemannian manifold. Assume g ∈ W 

s,p(T 
2M) with sp > n and s ≥ 1. 
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Suppose e ∈ R and q ∈ (1, ∞) are such that for balls Ω ⊆ Rn or for Ω = Rn

1, 1, ,(Ω) (Ω)     (Ω).s p e q e qW W W− +× ↪

In the case that the above multiplication property holds only for balls Ω ⊆ Rn and not Rn itself, further assume that 

e and q are such that 1, ,: (Ω) (Ω) (1 )e q e q
j W W j n

x
+∂

→ ≤ ≤
∂

 is continuous (see Theorem 3.9).

Suppose {gm} is a sequence of smooth (C∞) metrics on M such that gm → g in W s, p(T 2M). Then

1, , 1 in ( ( ),  ( )).
m

e q k e q k
g g l lL W T M W T M+ +∇ ∇→

Proof. Let Λ = {(Uα, φα, ρα)}N
α=1 and Λ̃ {(Uα, φα, ρ̃α)}N

α=1 be standard total trivialization atlases for Tl
k(M) → M and 

Tl
k+1(M) → M, respectively. Without loss of generality, we may assume that each of Λ and Λ̃  is nice (or super nice) and 

GL compatible with itself. Let {ψα}N
α=1 be a partition of unity subordinate to the open cover {Uα}N

α=1. Let 
2

1
2 2

1 1

1. Note that ( ( )).α
α α α αN N

β ββ β

ψ
ψ φ BC φ U

ψ ψ
− ∞

= =

= ∈
∑ ∑


 

Note that 
2

1
2 2

1 1

1. Note that ( ( )).α
α α α αN N

β ββ β

ψ
ψ φ BC φ U

ψ ψ
− ∞

= =

= ∈
∑ ∑


  Also under the hypotheses of the theorem, ∇gm

 and ∇g belong to L(W 
e+1,q(Tl

kM),

W 
e,q(Tl

k+1M)) (see Example 5 in Appendix A).

1, , 1
,

( ( ), ( )) 1,0,
sup .m

e q k e q km l l

g g e q
g g L W T M W T M e qF F C

F F

F+ +
∞ +≠ ∈

∇ − ∇
∇ − ∇ =

‖ ‖
‖ ‖

‖ ‖

1 1, , 1 1 1 1 1
We have (in what follows represents )

r r l k

n n n n n

j i r j j i i r= = = = =
∑ ∑ ∑ ∑ ∑ ∑
 

 

1 1
,1 1

1
, ( ( ))

1 , ,
[( ) ( ) ]l l

e qm m k k α α
r r

N
j j j j

g g e q α g g αi i r i i r W φ U
α j i r

F F ψ F F φ−

=
∇ − ∇ ∇ − ∇∑ ∑

 

 

 


 ‖ ‖ ‖ ‖

1 1
,1 1

1
( ( ))

1 , ,
[(( ) ) (( ) ) ] .l l

e qm k k α α
r r

N
j j j j

α g r g r αi i i i W φ U
α j i r

ψ F F φ−

=
= ∇ − ∇∑ ∑

 

 

 


‖ ‖

The exact same procedure as the one given in the proof of Theorem 7.1 shows that the above expression is bounded 
by a constant times

ˆ ˆ
1,

1 1 1
1, ( ( ))

ˆ1 1 1 1
( )[(Γ ) (Γ ) ][ s s s pm α α

N l n n
j j

e q α α g rp α g rp α W φ U
α s p r

F ψ φ φ φ −
− − −

+
= = = =

−∑ ∑ ∑ ∑   ‖ ‖ ‖ ‖

1,ˆ ˆ
1 1 1

( ( ))
ˆ1 1 1 1

( )[(Γ ) (Γ ) ] .]s pm s s α α

N k n n
p p

α α g α g αri ri W φ U
α s p r

ψ φ φ φ −
− − −

= = = =
+ −∑ ∑ ∑ ∑   ‖ ‖
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Since gm → g in W s, p, it follows from Theorem 4.3 that the right hand side divided by ||F||e+1,q goes to zero as m → 
∞.                                                                                                                                                                                          □

9. Continuity of trace
It is well known that we can associate with any (1

1) tensor field a corresponding field of endomorphisms of tangent 
spaces. If F is a (1

1) tensor field, then the trace of F at each point p ∈ M is defined as the trace of the corresponding 
endomorphism of TpM. So, tr F will be a scalar field on M. More generally, let F be a ( 

l
k )-tensor field where k, l ≥ 1. We 

can define the trace of F with respect to the pair (r, s) (1 ≤ r ≤ l, 1 ≤ s ≤ k) as follows: tr F is a ( l−1
k−1)-tensor field defined 

by

1 1 1
1 1 1(tr )( , , , , , , , , , , , ) : tr ,r r l

s s kF ω ω ω ω X X X X G− +
− +… … … … =

where G ∈ T1
1(V) is given by

1 1 1
1 1 1( , ) : ( , , , , , , , , , , , , , ).r r l

s s kG ω X F ω ω ω ω ω X X X X X− +
− += … … … …

In this section, in computing trace we assume (r, s) = (l, k). With respect to any local coordinate chart we have

1 1 1 1
1 1 1 1

(tr ) .l l
k k

j j j j m
i i i i mF F− −

− −

… …
… …=

Theorem 9.1 Let M 
n be a compact smooth manifold. Let e ∈ R and q ∈ (1, ∞). Suppose k, l ≥ 1. Then tr : 

(C∞(M, Tl
k(M)), ||.||e,q) → We,q(Tl−1

k−1(M)) is continuous and so it has a unique extension to a continuous operator tr : 

W 
e,q(Tl

k(M)) → We,q(Tl−1
k−1(M)).

Proof. Let {(Uα, φα, ρα)}N
α=1 be a standard total trivialization atlas for Tl

k(M) → M that is GL compatible with itself. 

Let {ψα}N
α=1 be a partition of unity subordinate to the open cover {Uα}N

α=1. Note that Tl
k(M) is a bundle of rank nk+l. So 

for each α, ρα has nk+l components which we denote by 1
1

( ) .l
k

j j
α i iρ 



 For all F ∈ Γ(M, Tl
k(M)), we have

1 1
1 1

( ) ( ) ( ) ,l l
k k

j j j j
α α α αi i i iρ ψ F ψ F= 

 

where 1 1
11

( ) on the coordinate chart ( , ).l k
lk

j j ii
α j j α αi iF F dx dx U φ= ∂ ⊗ ⊗ ∂ ⊗ ⊗ ⊗



   on the coordinate chart (Uα, φα). Therefore, (in what follows

1 1 1 1, 1 1 1 1
represents )

r r l k

n n n n

j i j j i i− −= = = =
∑ ∑ ∑ ∑ ∑ 

1 1
, 1 ,1 11

1
( ( )) ( ( ))1 ,

tr ( ) ( tr )l
e q k e qk α αl r r

N
j jq q

α α αi iW T M W φ Uα j i
F ρ ψ F φ−

− −−

−

=
∑ ∑ 



  ‖ ‖ ‖ ‖

1 1
,1 1

1
( ( ))1 ,

( )((tr ) ) l
e qk α α

r r

N
j j q

α α αi i W φ Uα j i
ψ F φ−

−

−

=
= ∑ ∑ 



‖ ‖
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1 1
,1 1

1
( ( ))1 ,

( )( ) l
e qk α α

r r

N
j j m q

α α αi i m W φ Uα j i
ψ F φ−

−

−

=
= ∑ ∑ 



‖ ‖

1 1
,1 1

1
( ( ))1 ,

( )( ) l l
e qk k α α

r r

N
j j j q

α α αi i i W φ Uα j i
ψ F φ−

−

−

=
≤ ∑ ∑ 



‖ ‖

1
,1

1
( ( ))1 ,

( ) ( )l
e qk α α

r r

N
j j q

α α αi i W φ Uα j i
ρ ψ F φ−

=
= ∑ ∑ 



 ‖ ‖

, ( ( ))
.e q k

l

q
W T M

F=‖ ‖

Note that in the above proof the trace was computed on the last pair of indices. Of course, clearly the same 
procedure shows that taking trace on any pair of indices is continuous.

10. Divergence with rough metric
We begin with studying the divergence of a vector field. Then we will consider the divergence of more general 

tensor fields.
Theorem 10.1 Let (M 

n, g) be a compact Riemannian manifold. Assume g ∈ W 
s,p(T 

2M) with sp > n and s ≥ 1. 
Suppose e ∈ R and q ∈ (1, ∞) are such that for balls Ω ⊆ Rn or for Ω = Rn

, 1, 1,(Ω) (Ω)     (Ω),s p e q e qW W W+ +× ↪

, , ,(Ω) (Ω)     (Ω),s p e q e qW W W× ↪

1, 1, ,(Ω) (Ω)     (Ω).s p e q e qW W W− +× ↪

In the case that the above multiplication property holds only for balls Ω ⊆ Rn and not Rn itself, further assume that 

e and q are such that 1, ,: (Ω) (Ω) (1 )j
e q e q

x
W W j n+∂

∂
→ ≤ ≤  is continuous.

Suppose {gm} is a sequence of smooth (C∞) metrics on M such that gm → g in W s, p(T 2M). Then

1, ,div div  in ( ( ), ( )).
m

e q e q
g g L W TM W M+→

Proof. Let Λ = {(Uα, φα, ρα)}N
α=1 be a standard total trivialization atlas for TM. Without loss of generality we may 

assume that Λ is nice (or super nice) and GL compatible with itself. Let {ψα}N
α=1 be a partition of unity subordinate to 

the open cover {Uα}N
α=1. Let 

2
1

2 2
1 1

1. Note that ( ( )).α
α α α αN N

β ββ β

ψ
ψ φ BC φ U

ψ ψ
− ∞

= =

= ∈
∑ ∑


  Also, divgm

 and divg belong to 

L(W 
e+1,q(TM), W 

e,q(M)) (see Example 3 in Appendix A). We have 

□
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,

1,
( )

1,
div div sup (div div ) .e qm m

e q
g g op g g W M

X X C
X

∞
+ = ∈

− = −
‖‖

‖ ‖ ‖ ‖

Note that

, ,
1

( ) ( ( ))
1

(div div ) (div div )( )e q e qm m α α

N

g g α g g αW M W φ U
α

X ψ X φ−

=
− −∑ 

 ‖ ‖ ‖ ‖

,
1 1 1

( ( ))
1

( ) (div ) (div ) .( ) e qm α α

N

α α g α g α W φ U
α

ψ φ X φ X φ− − −

=
= −∑ 

  ‖ ‖

Recall that (in what follows we will not use the summation convention)

1 1 1 1
1

1

1div ( det ) ( ) ( ),
det

( )
n

j j
g α α α αj j

j α
X φ g φ X φ X φ

g φ x x
− − − −

−
=

∂ ∂
= +

° ∂ ∂
∑   

1 1 1 1
1

1

1 ( det ) ( ) ( ).
det

( )
m

n
j j

g α m α α αj j
j m α

div X φ g φ X φ X φ
g φ x x

− − − −
−

=

∂ ∂
= +

∂ ∂
∑   



Therefore,

1 1div div
mg α g αX φ X φ− −− 

1 1 1
1 1

1

1 1( ( det )) ( ( det )) ( ).
det det

= [ ]
n

j
m α α αj j

j m α α
g φ g φ X φ

g φ x g φ x
− − −

− −
=

∂ ∂
−

∂ ° ∂
∑   



Let

1
1

1 ( ( det )),
det

m m αj
m α

B g φ
g φ x

−
−

∂
=

∂




1
1

1 ( ( det )).
det

αj
α

B g φ
g φ x

−
−

∂
=

∂




Since n
ps > , W s, p × W s−1, p ↪ W s−1, p. Considering this, it follows from Theorem 3.14, Theorem 3.11, and 

Theorem 3.24 that Bm − B ∈ Wloc
s−1, p. Also, note that X ∈ W 

e+1,q. So,

1,1( )( ) ( ( )),s p
α α m α αlocψ φ B B W φ U−− − ∈

1,1 1( )( ) ( ( )).e qj
α α α α αlocψ φ X φ W φ U+− − ∈ 
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By assumption W s−1, p × W e+1, q ↪ W 
 
e,q. Consequently, we can write

, ,
1 1 1

( ) ( ( ))
1 1

(div div ) ( )( )( )( )e q e qm α α

N n
j

g g α α m α α αW M W φ U
α j

X ψ φ B B ψ φ X φ− − −

= =
− −∑ ∑   ‖ ‖ ‖ ‖

1, 1,
1 1 1

( ( )) ( ( ))
1 1

( )( ) ( )( )s p e q
α α α α

N n
j

α α m α α αW φ U W φ U
α j

ψ φ B B ψ φ X φ− +
− − −

= =
−∑ ∑   ‖ ‖ ‖ ‖

1, 1,
1

( ( )) ( )
( )( ) .s p e q

α α
α α m W φ U W TM

ψ φ B B X− +
− − ‖ ‖ ‖ ‖

By assumption gm → g in W s, p. Therefore, (gm)α → gα in Wloc
s, p. Consequently, Bm → B in Wloc

s−1, p. Thus (ψα ° φα
−1)

Bm → (ψα ° φα
−1)B in W s−1, p.

Theorem 10.2 Let (M 
n, g) be a compact Riemannian manifold. Assume g ∈ W 

s,p(T 
2M) with sp > n and s ≥ 1. 

Suppose e ∈ R and q ∈ (1, ∞) are such that for balls Ω ⊆ Rn or for Ω = Rn

1, 1, ,(Ω) (Ω)     (Ω).s p e q e qW W W− +× ↪

In the case that the above multiplication property holds only for balls Ω ⊆ Rn and not Rn itself, further assume that 

e and q are such that 1, ,: (Ω) (Ω) (1 )j
e q e q

x
W W j n+∂

∂
→ ≤ ≤  is continuous.

Suppose {gm} is a sequence of smooth (C∞) metrics on M such that gm → g in W s, p(T 2M). Assume k ≥ 0 and l ≥ 1. 
Then

1, ,
-1div div  in ( ( ),  ( )).

m
e q k e q k

g g l lL W T M W T M+→

Proof. The divergence of a tensor field F is defined as the trace of the total covariant derivative of F:

div tr( ).F F= ∇

By Theorem 8.1,

1, , 1 in ( ( ),  ( )).
m

e q k e q k
g g l lL W T M W T M+ +∇ ∇→

Also, by Theorem 9.1, tr : W 
e,q(Tl

k+1M) → W 
e,q(T 

k
l−1M) is a linear continuous operator. Therefore, by Theorem 3.4,

1, ,
1tr tr  in ( ( ),  ( )).

m
e q k e q k

g g l lL W T M W T M+
−∇ → ∇ 

For a general ( 
0
k )-tensor field F (k ≥ 1), ∇F is a (  0

k+1)-tensor field and sharp(∇F) is ( 
1
k )-tensor field. Divergence of F 

is the (  0
k−1)-tensor field defined by

□

□
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div : tr(sharp( )).F F= ∇

Theorem 10.3 Let (M 
n, g) be a compact Riemannian manifold. Assume g ∈ W 

s,p(T 
2M) with sp > n and s ≥ 1. 

Suppose {gm} is a sequence of smooth (C∞) metrics on M such that gm → g in W s, p(T 2M). Suppose e ∈ R and q ∈ (1, ∞) 
are such that either

1, 1, ,( ) ( )     ( ),s p n e q n e q nW W W− +×  ↪

, , ,( ) ( )     ( ),s p n e q n e q nW W W×  ↪

or for balls 1, ,Ω ,  : (Ω) (Ω) (1 )j
n e q e q

x
W W j n+∂

∂
⊆ → ≤ ≤  is continuous and

, , ,(Ω) (Ω)     (Ω),s p e q e qW W W× ↪

1, 1, ,(Ω) (Ω)     (Ω).s p e q e qW W W− +× ↪

Assume k ≥ 1. Then

1, , 1div div  in ( ( ),  ( )).
m

e q k e q k
g g L W T M W T M+ −→

Proof. By Theorem 8.1,

1, , 1 in ( ( ),  ( )).
m

e q k e q k
g g L W T M W T M+ +∇ ∇→

By Theorem 5.4,

, 1 ,
1sharp sharp  in ( ( ),  ( )).

m
e q k e q k

g g L W T M W T M+→

Also, by Theorem 9.1, tr :W 
e,q(T 

1
kM) → W 

e,q(T 
k−1M) is a linear continuous operator (tr ∈ L(W 

e,q(T 
1
kM), W 

e,q(T 
k−1M)).

It follows from Theorem 3.4 that

1, , 1tr sharp tr sharp  in ( ( ),  ( )).
m m

e q k e q k
g g g g L W T M W T M+ −∇ → ∇   

11. Laplacian with rough metric
Theorem 11.1 Let (M 

n, g) be a compact Riemannian manifold. Assume g ∈ W 
s,p(T 

2M) with sp > n and s ≥ 1. 
Suppose {gm} is a sequence of smooth (C∞) metrics on M such that gm → g in W s, p(T 2M). Suppose e ∈ R and q ∈ (1, ∞) 
are such that either

□
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, , ,( ) ( )     ( ),s p n e q n e q nW W W×  ↪

, 1, 1,( ) ( )     ( ),s p n e q n e q nW W W− −×  ↪

1, , 1,( ) ( )     ( ),s p n e q n e q nW W W− −×  ↪

or for balls , 1,Ω ,  : (Ω) (Ω) (1 )j
n e q e q

x
W W j n−∂

∂
⊆ → ≤ ≤  is continuous and

, , ,(Ω) (Ω)     (Ω),s p e q e qW W W× ↪

, 1, 1,(Ω) (Ω)     (Ω),s p e q e qW W W− −× ↪

1, , 1,(Ω) (Ω)     (Ω).s p e q e qW W W− −× ↪

Then

1, 1,Δ Δ  in ( ( ),  ( )).
m

e q e q
g g L W M W M+ −→

Proof. Note that ∆ = div ° grad. By Theorem 6.1,

1, ,grad grad  in ( ( ) ( )).
m

e q e q
g g L W M W TM+→ →

Also, by Theorem 10.1,

, 1,div div  in ( ( ) ( )).
m

e q e q
g g L W TM W M−→ →

Therefore, it follows from Theorem 3.4 that

1, 1,div grad div grad  in ( ( ) ( )).
m m

e q e q
g g g g L W M W M+ −→ → 

As an alternative, for a certain range of Sobolev spaces, we may use the technique employed in [17] to prove the 
following result.

Theorem 11.2 Let (M 
n, g) be a compact Riemannian manifold. Assume g ∈ W 

s,p(T 
2M) with sp > n, s ≥ 1. Further 

assume that

, 1, 1,( ) ( )     ( ).s p n p n p nW W W− −×  ↪

Suppose {gm} is a sequence of smooth (C∞) metrics on M such that gm → g in W s, p(T 2M). Let Am denote the metric 
distortion tensor associated with gm and further assume det Am → 1 uniformly. Then

□
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1, 1,Δ Δ  in ( ( ),  ( )).
m

p p
g g L W M W M−→

Proof. First note that since sp > n, we have W s, p(Rn) × W 0, p(Rn) ↪ W 0, p(Rn). This together with the assumption 
that W s, p(Rn) × W −1, p(Rn) ↪ W −1, p(Rn) ensures that ∆g = divg ° gradg is a well-defined continuous operator from 
W 1, p(M) to W −1, p(M) (see Appendix A). 

By Theorem 4.2 we have

1 1det 0,  grad grad ,  det .
m mm m m g g g m gA A Id A dV A dV− −

∞− → = =‖ ‖

So, it is enough to show that

1, 1,
1

( ( ), ( ))
det 0 Δ Δ 0.p pmm m g g L W M W M

A A Id −
−

∞− → ⇒ − →‖ ‖ ‖ ‖

For all u and v in C∞(M),

1, 1,,Δ (Δ ) (see Theorem 3.2 6)p pm m mg g gW W M
v u u vdV′ −×

〈 〉 = ∫

(grad ,grad ) (integration by  parts)
m m mm g g gM

g u v dV= −∫

( grad ,grad ) det
m mm g g m gM

g A u v A dV= −∫

1 1( grad , grad ) detm m g m g m gM
g A A u A v A dV− −= −∫

1( grad ,grad ) det .m g g m gM
g A u v A dV−= −∫

In the last equality we used the fact that Am and Am
−1 are symmetric. Also,

1, 1,,Δ (Δ ) (grad ,grad ) .p pg g g g g gW W M M
v u u vdV g u v dV′ −×

〈 〉 = = −∫ ∫

Therefore,

Theorem 3.5
1, 1,Δ Δ sup{| , (Δ Δ ) |: , ( ), 1}

m mg g op g g p pv u u v C M u v∞
′− = 〈 − 〉 ∈ = =‖ ‖ ‖‖ ‖‖

1
1, 1,sup{| (( det )grad ,grad ) |: , ( ), 1}m m g g g p pM

g A A Id u v dV u v C M u v− ∞
′= − − ∈ = =∫ ‖‖ ‖‖

1
1, 1,sup{ det grad grad : , ( ), 1}.m m g g g g g p pM

A A Id u v dV u v C M u v− ∞
′∞≤ − ∈ = =∫‖ ‖ ‖ ‖‖ ‖ ‖‖ ‖‖

Now note that,
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grad grad grad grad( )( )g g g g g g g p g g pM
u v dV u v ′≤∫ ‖ ‖‖ ‖ ‖ ‖ ‖ ‖‖ ‖ ‖ ‖

grad gradg p g pu v ′=‖ ‖‖ ‖

1, 1, 1.p pu v ′ =‖‖ ‖‖

Hence

1Δ Δ det .
mg g op m mA A Id−

∞− −‖ ‖ ‖ ‖

12. Conformal killing operator with rough metric
Suppose (M, g) is a Riemannian manifold and ∇ is the corresponding Levi-Civita connection. For all vector fields X, 

Y, Z ∈ C∞(TM) we have

( )( ) ( )( ) [ ]( ) [ ]( ), , , , , ,XL g Y Z X g Y Z g X Y Z g Y X Z= − −

( ) ( ) [ ]( ) [ ]( ), , , , , ,X Xg Y Z g Y Z g X Y Z g Y X Z= ∇ + ∇ − −

[ ]( ) [ ]( ), , , ,X Xg Y X Y Z g Y Z X Z= ∇ − + ∇ −

( ) ( ), , .Y Zg X Z g Y X= ∇ + ∇

Here LX denotes the Lie derivative with respect to the vector field X. Therefore, with respect to any local coordinate 
chart we have

.X ij i j j iL g X X= ∇ + ∇

It follows that tr(LX g) = 2divX. Therefore we can decompose LX g into the pure trace part and the trace-free part as 
follows:

pure trace trace-free

1 1(2div ) (2div ) .[ ] [ ]X XL g X g L g X g
n n

= + −
 

The conformal Killing operator, L, is defined as follows:

: the trace-free part of .XX L g=L

That is, with respect to any local chart (U, φ)

□
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2( ) (div ) .ij i j j i ijX X X X g
n

= ∇ + ∇ −L

Note that

( Γ ) .l k l
i i ik lX X X∇ = ∂ + ∂

Therefore,

[ ] [ ] [ ] [ ]l l
i j j i jl i il jX X g X g X∇ + ∇ = ∇ + ∇

[ Γ ] .[ Γ ]l k l l k l
jl i ik il j jkg X X g X X= ∂ + + ∂ +

Thus

(12.1)2( ) [ Γ ] [ Γ ] (div ) .l k l l k l
ij jl i ik il j jk ijX g X X g X X X g

n
= ∂ + + ∂ + −L

Theorem 12.1 Let (M 
n, g) be a compact Riemannian manifold. Assume g ∈ W 

s,p(T 
2M) with sp > n and s ≥ 1. 

Suppose e ∈ R and q ∈ (1, ∞) are such that for balls Ω ⊆ Rn or for Ω = Rn

1, 1, ,(Ω) (Ω)     (Ω),s p e q e qW W W− +× ↪

, , ,(Ω) (Ω)     (Ω),s p e q e qW W W× ↪

, 1, 1,(Ω) (Ω)     (Ω).s p e q e qW W W+ +× ↪

In the case that the above multiplication properties hold only for balls Ω ⊆ Rn and not Rn itself, further assume that 

e and q are such that 1, ,: (Ω) (Ω) (1 )j
e q e q

x
W W j n+∂

∂
→ ≤ ≤  is continuous. Suppose {gm} is a sequence of smooth (C∞) 

metrics on M such that gm → g in W s, p(T 2M). Then

1, , 2 in ( ( ),  ( )).
m

e q e q
g g L W TM W T M+→L L

Proof. In this proof we do not use the summation convention. Let Λ = {(Uα, φα, ρα)}N
α=1 and Λ̃ {(Uα, φα, ρ̃α)}

N
α=1 be standard total trivialization atlases for TM and T 

2M, respectively. Without loss of generality we may assume 
that each of Λ and Λ̃ is super nice (or nice) and GL compatible with itself. Using Equation 12.1 and techniques 
discussed in Appendix A, one can show that under the hypotheses of the theorem, Lgm

 and Lg indeed belong to 
L(W 

e+1,q(TM), W 
e,q(T 

2M)).

Let {ψα}N
α=1 be a partition of unity subordinate to the open cover {Uα}N

α=1. Let 
2

1
2 2

1 1

1. Note that ( ( )).α
α α α αN N

β ββ β

ψ
ψ φ BC φ U

ψ ψ
− ∞

= =

= ∈
∑ ∑
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2
1

2 2
1 1

1. Note that ( ( )).α
α α α αN N

β ββ β

ψ
ψ φ BC φ U

ψ ψ
− ∞

= =

= ∈
∑ ∑




1 ( ( )). We haveα α αφ BC φ U− ∞∈

1,

,

1,0,

( )
sup .m

m
e q

g g e q
g g op

e qX X C

X

X∞
+ +≠ ∈

−
− =

‖‖

‖ ‖
‖ ‖

‖ ‖
L L

L L

Note that

, 2 ,
1

( ) ( ( ))
1 , 1

( ) (( ) ) .e q e qm m α α

N n

g g α g g ij αW T M W φ U
α i j

X ψ X φ−

= =
− −∑ ∑ 

 ‖ ‖ ‖ ‖L L L L

By equation 12.1 we have

1 , 1
(( ) ( ) [( ) ] [ Γ ) (( Γ ) ])

m m
l

n n
k

g ij g ij m jl jl i m
l l
ik g ikjl g jl

l k l
XX X g g g g X

= =
− = − ∂ −+∑ ∑L L

1 , 1
[( ) ] (Γ )[( ) ]) (Γ

m

n n
k

m il il i m il g il
l k l

l l l
jk g jkg g g gX X

= =
+ −+− ∂∑ ∑

2 div )[( )( div .( ) ]
mg m ij g ijX g X g

n
− −

Therefore,

, 2
1

,( )
1 , , , 1

( ) [( ) ]e qm

N n
l

g g α m jl jl i α e qW T M
α i j k l

X ψ g g X φ−

= =
− − ∂∑ ∑ 

‖ ‖ ‖ ‖L L 

1
,[( ) (Γ ) (Γ ) ]

m
l l k

α m jl g ik jl g ik α e qψ g g X φ−+ −
‖ ‖

1 1
, ,[( ) ] [( ) (Γ ) (Γ ) ]

m
l l l k

α m il il j α e q α m il g jk il g jk α e qψ g g X φ ψ g g X φ− −+ − ∂ + − 
 ‖ ‖ ‖ ‖

1
,

2 [(div )( ) (div ) ] .
mα g m ij g ij α e qψ X g X g φ

n
−+ −

‖ ‖

Now, we consider each summand separately:
(1)

1 1 1
, , ,[( ) ] [( ) ] .l l

α m jl jl i α e q α m jl jl α s p α i α e qψ g g X φ ψ g g φ ψ X φ− − −− ∂ − ∂
  ‖ ‖ ‖ ‖ ‖ ‖

Note that,
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1 1
, ,( )l l

α i α e q α α e qiψ X φ ψ X φ
x

− −∂
∂ =

∂
 ‖ ‖ ‖ ‖

1 1 1 1
, ,( )( ) [ ( )]( )[ ]l l

α α α e q α α α e qi iψ φ X φ ψ φ X φ
x x

− − − −∂ ∂
≤ +

∂ ∂
   ‖ ‖ ‖ ‖

1
1, , see Theorem 3.21 ( )l

α α e q e qψ X φ X−
+ +‖ ‖ ‖ ‖

1, .e qX +‖ ‖

Also,

1
, ,[( ) ] .α m jl jl α s p m s pψ g g φ g g−− −‖ ‖ ‖ ‖

(2)

1
,[( ) (Γ ) (Γ ) ]

m
l l k

α m jl g ik jl g ik α e qψ g g X φ−−
‖ ‖

1 1
1, 1,[( ) (Γ ) (Γ ) ]

m
l l k

α m jl g ik jl g ik α s p α α e qψ g g φ ψ X φ− −
− +−  ‖ ‖ ‖ ‖

1
1, 1,[( ) (Γ ) (Γ ) ] .

m
l l

α m jl g ik jl g ik α s p e qψ g g φ X−
− +− ‖ ‖ ‖ ‖

(3)

1 1 1
, , ,[( ) ] [( ) ]l l

α m il il j α e q α m il il α s p α j α e qψ g g X φ ψ g g φ ψ X φ− − −− ∂ − ∂
  ‖ ‖ ‖ ‖ ‖ ‖

, 1, (see the procedure in item (1)).m s p e qg g X +−‖ ‖ ‖ ‖

(4)

1
,[( ) (Γ ) (Γ ) ]

m
l l k

α m il g jk il g jk α e qψ g g X φ−−
‖ ‖

1 1
1, 1,[( ) (Γ ) (Γ ) ]

m
l l k

α m il g jk il g jk α s p α α e qψ g g φ ψ X φ− −
− +−  ‖ ‖ ‖ ‖

1
1, 1,[( ) (Γ ) (Γ ) ] .

m
l l

α m il g jk il g jk α s p e qψ g g φ X−
− +− ‖ ‖ ‖ ‖
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(5)

1
,[(div )( ) (div ) ]

mα g m ij g ij α e qψ X g X g φ−−
‖ ‖

1
,[(div )( ) (div )( ) (div= )( ) (div ) ]

mα g m ij g m ij g m ij g ij α e qψ X g X g X g X g φ−− + −
‖ ‖

1 1
, , , ,(div ) (div ) ( ) div (( ) )

mg g e q α m ij α s p g e q α m ij ij α s pX X ψ g φ X ψ g g φ− −− + − 
 ‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

1, , 1, ,(div ) (div ) div .
mg g op e q m s p g op e q m s pX g X g g+ +− + −‖ ‖‖ ‖ ‖ ‖ ‖ ‖‖ ‖ ‖ ‖

Consequently, we have

1
1, ,[( ) (Γ ) (Γ ) ] (div ) (div ) .

m m
l l

α m il g jk il g jk α s p g g op m s pψ g g φ g−
−+ − + −‖ ‖ ‖ ‖‖ ‖

1,

,

1,0,

( )
sup m

m
e q

g g e q
g g op

e qX X C

X

X∞
+ +≠ ∈

−
− =

‖‖

‖ ‖
‖ ‖

‖ ‖
L L

L L

1
, 1,

1 , , , 1
(2 div ) [( ) (Γ ) (Γ ) ]

m

nN
l l

g op m s p α m jl g ik jl g ik α s p
α i j k l

g g ψ g g φ−
−

= =
+ − + −∑ ∑ ‖ ‖ ‖ ‖ ‖ ‖

Now, note that
• Under the hypotheses of this theorem, divg : W 

e+1,q(TM) → W 
e,q(M) is a continuous linear operator (see Example 

3 in Appendix A). Therefore, ||divg||op is a finite number.
• By assumption ||gm − g||s, p → 0.
• As a consequence of Theorem 4.3 we have

,1 1( )  in ( ( )),s p
m jl α jl α α αlocg φ g φ W φ U− −→ 

1,1 1(Γ ) (Γ )  in ( ( )).
m

s pl l
g ik α g ik α α αlocφ φ W φ U−− −→ 

, 1, 1,Since , we get     s p s p s p
loc loc locW W W− −× ↪

1,1 1( ) (Γ ) (Γ )  in ( ( )),
m

s pl l
m jl g ik α jl g ik α α αlocg φ g φ W φ U−− −→ 

which implies that

1
1,[( ) (Γ ) (Γ ) ] 0.

m
l l

α m jl g ik jl g ik α s pψ g g φ−
−− →‖ ‖

Similarly,
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1
1,[( ) (Γ ) (Γ ) ] 0.

m
l l

α m il g jk il g jk α s pψ g g φ−
−− →‖ ‖

• It follows from Example 3 in Appendix A and Theorem 10.1 that

1, ,div div  in ( ( ),  ( )).
m

e q e q
g g L W TM W M+→

Also, since gm → g in W s, p(T 2M), ||gm||s, p is bounded.
Thus ||Lgm

 − Lg||op → 0 as m → ∞.                                                                                                                               □

13. Vector Laplacian with rough metric
divL is sometimes called vector Laplacian and is denoted by ∆L.
Theorem 13.1 Let (M 

n, g) be a compact Riemannian manifold. Assume g ∈ W 
s, p(T 

2M) with sp > n and s ≥ 1. 
Suppose e ∈ R and q ∈ (1, ∞) are such that for balls Ω ⊆ Rn or for Ω = Rn

1, 1, ,(Ω) (Ω)     (Ω),s p e q e qW W W− +× ↪

, , ,(Ω) (Ω)     (Ω),s p e q e qW W W× ↪

, 1, 1,(Ω) (Ω)     (Ω),s p e q e qW W W+ +× ↪

1, , 1,(Ω) (Ω)     (Ω),s p e q e qW W W− −× ↪

, 1, 1,(Ω) (Ω)     (Ω).s p e q e qW W W− −× ↪

In the case that the above multiplication properties hold only for balls Ω ⊆ Rn and not Rn itself, further assume that 

e and q are such that 1, , , 1,: (Ω) (Ω) and : (Ω) (Ω) (1 )j j
e q e q e q e q

x x
W W W W j n+ −∂ ∂

∂ ∂
→ → ≤ ≤  are continuous.

Suppose {gm} is a sequence of smooth (C∞) metrics on M such that gm → g in W 
s, p(T 

2M). Then

1, 1, 1(Δ ) (Δ )  in ( ( ),  ( )).
m

e q e q
L g L g L W TM W T M+ −→

Proof. By Theorem 12.1,

1, , 2 in ( ( ) ( )).
m

e q e q
g g L W TM W T M+→ →L L

Also, by Theorem 10.3,

, 2 1, 1div div  in ( ( ) ( )).
m

e q e q
g g L W T M W T M−→ →
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Therefore, it follows from Theorem 3.4 that

1, 1, 1div div  in ( ( ) ( )).
m m

e q e q
g g g g L W TM W T M+ −→ → L L

14. Curvature with rough metric
Let (M 

n, g) be a Riemannian manifold. The Riemannian curvature tensor is the covariant 4-tensor field defined by

[ , ]Rm( , , , ) ( , ).X Y Y X X YX Y Z W g Z Z Z W= ∇ ∇ − ∇ ∇ − ∇

With respect to any local chart (U, φ) we have [∂i , ∂j] = 0 and

(Γ ) (Γ ) Γ Γr r r l
i j k i jk r i jk r jk ir l∇ ∇ ∇∂ = ∂ = ∂ ∂ + ∂

Γ Γ Γ .[ ]p pr
i jk pirjk= ∂ + ∂

Therefore, by subtracting the same expression with i and j interchanged we get

Γ Γ Γ Γ Γ Γ .[ ]p p p pr r
i j k j i k i j jk ik pir jrjk ik∂ − ∂ =∇ ∇ ∇ ∂∇ ∂ − + − ∂

Subsequently,

Rm( , , , ) ( , )ijkl i j k l i j k j i k lR g= ∂ ∂ ∂ ∂ = ∇ ∇ ∂ − ∇ ∇ ∂ ∂

Γ Γ Γ Γ Γ Γ .[ ]p p p pr r
pl i j jk ikir jrjk ikg= ∂ − ∂ + −

The Ricci tensor is the covariant 2-tensor field defined by

Ric tr(sharp Rm).g=

where the trace is on the leftmost covariant component and the only contravariant component of sharpgRm. With respect 
to any local coordinate chart

Ric : .km
ij kijmg R=

The scalar curvature Scal is the function defined as the trace of the Ricci tensor

Scal : tr(sharp Ric).g=

Theorem 14.1 Let (Mn, g) be a compact Riemannian manifold. Assume g ∈ W 
s, p(T2M) with sp > n, s ≥ 2, and n ≥ 2. 

Then Rm belongs to W 
s−2, p(T 4M), Ric belongs to W 

s−2, p(T 2M), and Scal belongs to W 
s−2, p(M).

□
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Proof. Let {(Uα, φα)}1 ≤ α ≤ N be an atlas for M. By Theorem 3.20 it is enough to show that for each 1 ≤ α ≤ N and 
1 ≤ i, j, k, l ≤ n

2,1Rm ( ( )).s p
ijkl α α αlocφ W φ U−− ∈

Recall that,

1 1Rm Γ Γ Γ Γ Γ Γ .[ ]p p p pr r
ijkl α pl i j jk ik αir jrjk ikφ g φ− −= ∂ − ∂ + − 

By Corollary 3.23, Theorem 3.25, and Theorem 3.11 we have

, 2,1 1 1( ( )),  Γ , Γ ( ( )).s p p p s p
pl α α α i α j α α αloc jk ik locg φ W φ U φ φ W φ U−− − −∈ ∂ ∂ ∈  

Also, considering Theorem 3.14, since W s−1, p × W s−1, p ↪ W s−2, p, we have

2, 2,1 1Γ Γ ( ( )),  Γ Γ ( ( )).p s p p s pr r
jk α α α ik α α αir jrloc locφ W φ U φ W φ U− −− −∈ ∈ 

Finally, since W s, p × W s−2, p ↪ W s−2, p, 

2,1Γ Γ Γ Γ Γ Γ ( ( )).[ ]p p p p s pr r
pl i j jk ik α α αir jrjk ik locg φ W φ U−−∂ − ∂ + − ∈

So, Rm ∈ W s−2, p(T 4M).
Since W s, p × W s−2, p ↪ W s−2, p, it follows from Theorem 5.3 that sharpg : W

 s−2, p(T 4M) → W s−2, p(T1
3M) is well-

defined and continuous. Also, by Theorem 9.1, tr : W s−2, p(T1
3M) → W s−2, p(T 2M) is well-defined and continuous. 

Therefore, Ric = tr(sharpgRm) belongs to W s−2, p(T 2M)
The same argument shows that Scal := tr(sharpg Ric) must belong to W s−2, p(M).
Theorem 14.2 Let (Mn, g) be a compact Riemannian manifold. Assume g ∈ W 

s, p(T2M) with sp > n, s ≥ 2, and n ≥ 2. 
Suppose {gm} is a sequence of smooth (C∞) metrics on M such that gm → g in W 

s,p(T 
2M). Then

2, 4Rm Rm  in ( ).
m

s p
g g W T M−→

Proof. In this proof we will not use the summation convention. Let {(Uα, φα)}1 ≤ α ≤ N be a super nice atlas for M 

that is GL compatible with itself and {ψα} be a subordinate partition of unity. We have

2,
1

2, ( ( ))
1 , , , 1

Rm Rm (Rm Rm ) s pm m α α

N n

g g s p α g g ijkl α W φ U
α i j k l

ψ φ −
−

−
= =

− −∑ ∑ ‖ ‖ ‖ ‖

2,
1

( ( ))
1 , , , , , 1

(( ) (Γ ) (Γ ) ) s pm α α

N n
p p

α m pl i g pl i g αjk jk W φ U
α i j k l p r

ψ g g φ −
−

= =
∂ − ∂∑ ∑ ‖ ‖

□
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2,
1

( ( ))
(( ) (Γ ) (Γ ) ) s pm α α

p p
α m pl j g pl j g αik ik W φ U

ψ g g φ −
−+ ∂ − ∂ ‖ ‖

2,
1

( ( ))
((Γ ) (Γ ) Γ Γ ) s pm m α α

p pr r
α g jk g jk αir ir W φ U

ψ φ −
−+ − ‖ ‖

2,
1

( ( ))
((Γ ) (Γ ) Γ Γ ) .s pm m α α

p pr r
α g ik g ik αjr jr W φ U

ψ φ −
−+ − ‖ ‖

We consider each term separately:

(1) By Theorem 4.3 1, ,1 1 1 1(Γ ) (Γ )  in  and ( )  in .
m

p p s p s p
g α g α m pl α pl αjk jk loc locφ φ W g φ g φ W−− − − −→ →     It follows 

from Theorem 3.11 that 2,1 1(Γ ) (Γ )  in 
m

p p s p
i g α i g αjk jk locφ φ W −− −∂ → ∂   and subsequently, since W s, p × W s−2, p ↪ W s−2, p, 

we get

2,1 1( ) (Γ ) (Γ )  in ( ( )).
m

p p s p
m pl i g α pl i g α α αjk jk locg φ g φ W φ U−− −∂ → ∂ 

Therefore,

2,
1

( ( ))
(( ) (Γ ) (Γ ) ) 0 as .s pm α α

p p
α m pl i g pl i g αjk jk W φ U

ψ g g φ m−
−∂ − ∂ → → ∞‖ ‖

(2) Interchanging the roles of i and j in the above argument shows that

2,
1

( ( ))
(( ) (Γ ) (Γ ) ) 0 as .s pm α α

p p
α m pl j g pl j g αik ik W φ U

ψ g g φ m−
−∂ − ∂ → → ∞‖ ‖

(3) By Theorem 4.3,

1,1 1 1 1(Γ ) (Γ ) ,  (Γ ) (Γ )  in .
m m

p p s pr r
g jk α g jk α g α g αir ir locφ φ φ φ W −− − − −→ →   

Since W s−1, p × W s−1, p ↪ W s−2, p, we obtain

2,1 1(Γ ) (Γ ) (Γ ) (Γ )  in .
m m

p p s pr r
g jk g α g jk g αir ir locφ φ W −− −→ 

Therefore,

2,
1

( ( ))
((Γ ) (Γ ) Γ Γ ) 0 as .s pm m α α

p pr r
α g jk g jk αir ir W φ U

ψ φ m−
−− → → ∞‖ ‖

(4) Interchanging the roles of i and j in the above argument shows that

2,
1

( ( ))
((Γ ) (Γ ) Γ Γ ) 0 as .s pm m α α

p pr r
α g ik g ik αjr jr W φ U

ψ φ m−
−− → → ∞‖ ‖

Hence
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2,Rm Rm 0.
mg g s p−− →‖ ‖

Theorem 14.3 Let (Mn, g) be a compact Riemannian manifold. Assume g ∈ W 
s, p(T2M) with sp > n, s ≥ 2, and n ≥ 2. 

Suppose {gm} is a sequence of smooth (C∞) metrics on M such that gm → g in W 
s,p(T 

2M). Then

2, 2Ric Ric  in ( ).
m

s p
g g W T M−→

Proof. By Theorem 14.2, Rmgm
 → Rmg in W s−2, p(T 

4M). Also it follows from the hypotheses of the theorem that 

W s, p × W s−2, p ↪ W s−2, p. Thus by Theorem 5.4,

2, 4 2, 3
1sharp sharp  in ( ( ),  ( )).

m
s p s p

g g L W T M W T M− −→

Consequently,

2, 3
1sharp (Rm ) sharp (Rm ) in ( ).

m m
s p

g g g g W T M−→

Now, it follows from Theorem 9.1 that

2, 2trsharp (Rm ) trsharp (Rm ) in ( ).
m m

s p
g g g g W T M−→

That is,

2, 2Ric Ric in ( ).
m

s p
g g W T M−→

Theorem 14.4 Let (Mn, g) be a compact Riemannian manifold. Assume g ∈ W 
s, p(T2M) with sp > n, s ≥ 2, and n ≥ 2. 

Suppose {gm} is a sequence of smooth (C∞) metrics on M such that gm → g in W 
s,p(T 

2M). Then

2,Scal Scal  in ( ).
m

s p
g g W M−→

Proof. By Theorem 14.3, Ricgm
 → Ricg in W s−2, p(T 

2M). Also it follows from the hypotheses of the theorem that 

W s, p × W s−2, p → W s−2, p. Thus by Theorem 5.4,

2, 2 2, 1
1sharp sharp  in ( ( ),  ( )).

m
s p s p

g g L W T M W T M− −→

Consequently,

2, 1
1sharp (Ric ) sharp (Ric ) in ( ).

m m
s p

g g g g W T M−→

Now, it follows from Theorem 9.1 that

□

□
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2, 2tr sharp (Rm ) tr sharp (Rm ) in ( ).
m m

s p
g g g g W T M−→

That is,

2,Scal Scal  in ( ).
m

s p
g g W M−→
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APPENDIX A. Differential operators on compact manifolds
First we recite several definitions and facts from [9]. Let M 

n be a compact smooth manifold. Let E and  Ẽ be two 
vector bundles over M of ranks r and r̃, respectively. A linear operator P : C∞(M, E) → Γ(M,  Ẽ) is called local if

( , ) supp supp .u C M E Pu u∞∀ ∈ ⊆            ( , ) supp supp .u C M E Pu u∞∀ ∈ ⊆

As it is discussed in [9], if P is a local operator, then it is possible to have a well-defined notion of restriction of P 
to open sets U ⊆ M, that is, if P : C∞(M, E) → Γ(M,  Ẽ) is local and U ⊆ M is open, then we can define a map

| : ( , ) Γ( , )U U UP C U E U E∞ → 

with the property that

( , ) ( ) | | ( | ).U U Uu C M E Pu P u∞∀ ∈ =( , ) ( ) | | ( | ).U U Uu C M E Pu P u∞∀ ∈ =

For any nonempty set V in Rr, let Func(V, Rt) denote the vector space of all functions from V to Rt. By the local 
representation of P with respect to the total trivialization triples (U, φ, ρ) of E and (U, φ, ρ̃) of  Ẽ we mean the linear 

transformation Q : C∞(φ(U), Rr) → Func(φ(U), Rr̃) defined by

1 1( ) ( ) .Q f ρ P ρ f φ φ− −=     

If we denote the components of  f  ∈ C∞(φ(U), Rr) by ( f 
1, … ,  f 

r), then we can write Q( f 
1, … ,  f 

r) = (h1, … , hr̃) 
where for all 1 ≤ k ≤ r̃

 is linear
1 1( , , ) ( ,0, ,0) (0, ,0, ).

Q
k r r

k k kh π Q f f π Q f π Q f= = + +      

So, if for each 1 ≤ k ≤ r̃ and 1 ≤ i ≤ r we define Qki : C
∞(φ(U), R) → Func(φ(U), R) by



 position

( ) (0, ,0, ,0, ,0),
th

ki k

i

Q g π Q g=   

then we have

1
1

1 1
( , , ) ( ( ), , ( )).

r r
r i i

i ri
i i

Q f f Q f Q f
= =

= ∑ ∑ 

 

Results of the following type are discussed in [9].
Theorem A.1 ([9], Page 100) Let M 

n be a compact smooth manifold. Let P : C∞(M, E) → Γ(M,  Ẽ) be a local 
operator. Let Λ = {(Uα, φα, ρα, ψα)}1 ≤ α ≤ N and Λ̃  = {(Uα, φα, ρ̃α, ψα)}1 ≤ α ≤ N be two augmented total trivialization atlases 

for E and  Ẽ, respectively. Suppose the atlas {(Uα, φα)}1 ≤ α ≤ N is GL compatible with itself. For each 1 ≤ α ≤ N, let Qα 

denote the local representation of P with respect to the total trivialization triples (Uα, φα, ρα) and (Uα, φα, ρ̃α) of E and  Ẽ, 
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respectively. Suppose e, ẽ ∈ R, 1 < q, q̃ < ∞, and for each 1 ≤ α ≤ N, 1 ≤ i ≤ r̃, and 1 ≤ j ≤ r,

,
,: ( ( ( )), . ) ( ( ))e qα

ij c α α e q α αlocQ C φ U W φ U∞ →  ‖‖

is well-defined and continuous and does not increase support. Then
, ( ( , )) ( , ;Λ),e qP C M E W M E∞ ⊆  





,
, : ( ( , ), . ) ( , ;Λ)e q

e qP C M E W M E∞ →  



 ‖‖  is continuous and so it can be extended to a continuous linear map P : W 
e,q

,( , ;Λ) ( , ;Λ).e qM E W M E→  



In the following examples we assume (Mn, g) is a compact Riemannian manifold with g ∈ W 
s, p(T2M), sp > n, s ≥ 

1. The local representations are all assumed to be with respect to charts in a super nice total trivialization atlas that is GL 
compatible with itself. The first example is taken from [9].

•Example 1: Differential Consider d : C∞(M) → C∞(T 
*M). The local representation of d is Q : C∞(φ(U)) → 

C∞(φ(U), Rn) which is defined by

1 1( )( ) ( ) ( )Q f a ρ d ρ f φ φ a− −=     

1 1( ( )) ( )
( | | )i

i φ φ a φ a
fρ dx
x

− −
∂

=
∂




1( | , , | ).a an
f f
x x

∂ ∂
=

∂ ∂


Here we used ρ = Id and the fact that if g : M → R is smooth, then

1

( )
( )( )( ) | | .i

φ p pi
g φdg p dx

x

−∂
=

∂



Clearly, each component of Q is a continuous operator from (Cc
∞(φ(U)), ||.||e,q) to W e−1, q(φ(U)) ↪ Wloc

e−1, q(φ(U)) (see 

Theorem 3.9; note that φ(U) = Rn). Hence d can be viewed as a continuous operator from W 
e,q(M) to W e−1, q(T 

*M).

• Example 2: Gradient Suppose e and q are such that for balls Ω ⊆ Rn or for Ω = Rn

, , ,(Ω) (Ω)     (Ω).s p e q e qW W W× ↪

In section 5 we proved that sharpg : W 
e,q(T 

*M) → W 
e,q(TM) is well-defined and continuous. Also in the previous 

example we showed that for all e and q, d : W e+1, q(M) → W e, q(T 
*M) is well-defined and continuous. Consequently, 

gradg : W
 e+1, q(M) → W e, q(TM) defined by

grad sharpg g d= 

is also continuous.
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• Example 3: Divergence Consider div : C∞(TM) → Func(M, R). Here we will show that if e and q are such that

(1), , ,( ) ( )     ( ),s p n e q n e q nW W W×  ↪

(2), 1, 1,( ) ( )     ( ),s p n e q n e q nW W W− −×  ↪

then div can be considered as a continuous operator from W 
e,q(TM) to W e−1, q(M). The local representation of divergence 

with respect to the coordinate chart (U, φ) is Q : C∞(φ(U), Rn) → Func(φ(U), R) defined by

1 1 1 ( ) div( ) ( : ( ) , ( , , ))n nQ Y ρ ρ Y φ φ Y φ U Y Y Y− −= → =
     

1 1
1div(( ) ( ) )n

nY φ Y φ φ−= ∂ + + ∂   

1
1

1

1 ( det )( ) .
det

[ ]
n

j
j

j
g φ Y

g φ x
−

−
=

∂
=

∂
∑ 



Note that in the above, ρ̃ = Id and

1 1 1 1
1( ) ( , , ) ( ) ( ) .n n

nρ Y φ ρ Y φ Y φ Y φ Y φ− −= = ∂ + + ∂      

Moreover, we used the fact that for any vector field X defined on U

1 1 1
1

1

1(div ) ( det )( ) .
det

[ ]
n

j
j

j
X φ g φ X φ

g φ x
− − −

−
=

∂
=

∂
∑  



Also, note that 1 1 11( ) ( ) where : ( ( ), ) Func( ( ), ) and for all ( ( ), ),  ( )n j
j j jjQ Y Q Y Q C φ U φ U f C φ U Q f∞ ∞

== → ∈∑    and for all 1 1 11( ) ( ) where : ( ( ), ) Func( ( ), ) and for all ( ( ), ),  ( )n j
j j jjQ Y Q Y Q C φ U φ U f C φ U Q f∞ ∞

== → ∈∑     

Q1j( f ) is the first (the only) component of



posi tion

(0, ,0, ,0, ,0).
thj

Q f 

That is,

1
1 1

11 ,  ( ) ( det )( ) .
det

[ ]j jj n Q f g φ f
g φ x

−
−

∂
∀ ≤ ≤ =

∂




Now, suppose f ∈ Cc
∞(φ(U)). So, clearly, f ∈ Wloc

e, q(φ(U)). It follows from the hypotheses on e and q that (see 
Theorem 3.14)
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, 1, 1,( ( )) ( ( ))     ( ( )).s p e q e q
loc loc locW φ U W φ U W φ U− −× ↪

, , ,( ( )) ( ( ))     ( ( )),s p e q e q
loc loc locW φ U W φ U W φ U× ↪

Also, by Theorem 3.24 we know that ,1
1

1det  and  are in ( ( )).
det

s p
locg φ W φ U

g φ
−

−




 Hence we have the 

following chain of continuous maps

, , 1, 1,e q e q e q e q
loc loc loc locW W W W− −→ → →

1 1 1
1

1( det ) (( det ) ) (( det ) )
detj jf g φ f g φ f g φ f

x g φ x
− − −

−
∂ ∂

∂ ∂
     



which proves the continuity of 1,
1 ,: ( ( ( )), . ) ( ( )).e q

j c e q locQ C φ U W φ U−∞ →‖‖

Remark A.2 Instead of (1) and (2), we may alternatively assume that for all balls Ω = Rn

, , ,(Ω) (Ω)     (Ω),s p e q e qW W W× ↪

, 1, 1,(Ω) (Ω)     (Ω),s p e q e qW W W− −× ↪

and work with nice charts instead of super nice charts. However, if we do so, then we need to additionally assume that e 

and q are such that , 1,: (Ω) (Ω) (1 )j
e q e q

x
W W j n−∂

∂
→ ≤ ≤  is continuous (see Theorem 3.9).

• Example 4: Lie Derivative Let , ( ). Consider : ( ) Γ( ).s p k k
XX W TM L C T M T M∞∈ →   Here we will show that if 

e and q are such that

, 1, 1,( ) ( )     ( )s p n e q n e q nW W W− −× 

  ↪ (3)

1, , 1,( ) ( )     ( ),s p n e q n e q nW W W− −× 

  ↪ (4)

then LX can be considered as a continuous operator from W 
e,q(T 

kM) to W e−1, q(T 
kM). The local representation of LX with 

respect to the coordinate chart (U, φ) is Q : C∞(φ(U), R(nk )) → Func(φ(U), R(nk )) defined by

1
1 1 ( )( ) ( ) ( : ( ) . ) , ( )

k

k
n

X i iQ F ρ L ρ F φ φ F φ U F F− −= → =


    

In components

1 1 1
1 1 1 1( ( )) ( ) ( ( )) .

k k ki i i i X X i iQ F ρ L ρ F φ φ L ρ F φ φ− − − −= =
  

      

Recall that if T is any k-covariant tensor field on U then
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1
1

1
1 1

1

( )
( ) ( ) k

k

n i ip
X i i p

p

T φ
L T φ X φ

x

−
− −

=

∂
=

∂
∑ 





 

2 1 11

1 1
1 1( ) ( )( ) ( ).

k kk

p p

pi i i i pi i
X φ X φT φ T φ

x x −

− −
− −∂ ∂

+ + +
∂ ∂

 

 

  

Therefore,

1
1 2 1 11

1 1
1

1

( ) ( )( ( )) ( ) .k
k k kk

p pn i ip
i i pi i i i pp i i

p

F X φ X φQ F X φ F F
x x x −

− −
−

=

∂ ∂ ∂
= + + +

∂ ∂ ∂
∑ 

  

 

 

Now, note that

1 1 1 1
1

( )( )
1

( ( )) ( ),
k k k k

k

n

i i i i j j j j
j j

Q F Q F
=

= ∑
   



where

1 1( )( ) : ( ( ), ) Func( ( ), ),
k ki i j jQ C φ U φ U∞ →

 

 

1 1( )( ) 1and for all ( ( ), ),  ( ) is the ( )-component of ( ) with
k ki i j j kf C φ U Q f i i Q F∞∈

 

 

1
1 1if , ,

.
0 otherwisek

k k
i i

f i j i j
F

= =
= 






Hence

1
1 1 1

1
( )( )

1
( ) ( )k

k k k

n
ii p

i i j j j j p
p

fQ f δ δ X φ
x

−

=

∂
= +

∂
∑

 

 

1 1
12 1

2 1 11

1 1( ) ( ) .k k
k k k

j j
i ii i

j j j ji i
X φ X φδ δ f δ δ f

x x
−
−

− −∂ ∂
+ +

∂ ∂

 

  

Now, suppose  f  ∈ Cc
∞(φ(U)). So, clearly,  f  ∈ Wloc

e, q(φ(U)). It follows from the hypotheses on e and q that (see 
Theorem 3.14)

, 1, 1,( ( )) ( ( ))     ( ( )),s p e q e q
loc loc locW φ U W φ U W φ U− −×  ↪

1, , 1,( ( )) ( ( ))     ( ( )).s p e q e q
loc loc locW φ U W φ U W φ U− −×  ↪

+ 



Contemporary Mathematics 138 | Ali Behzadan, et al.

Also, by Corollary 3.21 and Theorem 3.11, we know that for all p and q, X 
p ◦ φ−1 is in 

1( ),  and 
p

q
X φs p

loc x
W

−∂

∂

   is in 
1, . Hences p

locW − 

1 1
1,

( )( ) ,: ( ( ( )), . ) ( ( ))
k k

e q
i i j j c e q locQ C φ U W φ U−∞ →
 

‖‖

is continuous.
Remark A.3 Instead of (3) and (4), we may alternatively assume that for all balls Ω ⊆ Rn

, 1, 1,(Ω) (Ω)     (Ω),s p e q e qW W W− −×  ↪

1, , 1,(Ω) (Ω)     (Ω),s p e q e qW W W− −×  ↪

and work with nice charts instead of super nice charts. However, if we do so, then we need to additionally assume that (see 
Theorem 3.9)

, 1,  and  are such that : (Ω) (Ω) (1 ) is continuous.j
s p s p

x
s p W W j n−∂

∂
→ ≤ ≤   

 


, 1,  and  are such that : (Ω) (Ω) (1 ) is continuous.j
e q e q

x
e q W W j n−∂

∂
→ ≤ ≤

• Example 5: Covariant Derivative Consider 1: ( ) Γ( ).k k
l lC T M T M∞ +∇ →  Here we will show that if e and q are 

such that

(5)1, , 1,( ) ( )     ( ),s p n e q n e q nW W W− −×  ↪

then ∇ can be considered as a continuous operator from W 
e,q(Tl

kM) to W 
e−1,q(Tl

k+1M). The local representation of 

covariant derivative with respect to the coordinate chart 
1

( , ) is : ( ( ), ) Func( ( ), )
k l k ln nU φ Q C φ U φ U

+ + +∞ →   defined 

by

1
1

1 1 ( )( ) ( ) ( : ( ) , ( ) ) .
k l

l
k

j jn
i iQ F ρ ρ F φ φ F φ U F F

+− −= ∇ → = 




    

In components

1 1 1
1 1 1

1 1 1 1( ( )) ( ) ( ( )) .l l l
k k k

j j j j j j
i i r i i r i i rQ F ρ ρ F φ φ ρ F φ φ− − − −= ∇ = ∇  

  


      

Recall that if T is any ( 
l
k )-covariant tensor field on U then

1 1
1 1

1 1( ) ( )l l
k k

j j j j
ri i r i iT φ T φ− −∇ = ∇ 

 

 

1 2 1 11
1 1 1

1 1 1 1 1

1
( ) ( )(Γ ) ( )(Γ )l l l l

k k k

n
j j pj j j j p jj

rp rpi i i i i ir
p

T φ T φ φ T φ φ
x

−− − − − −

=

∂
= + + +

∂
∑  
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1 1
2 1 1 1

1 1 1 1

1
( )(Γ ) ( )(Γ ).l l

k k k

n
j j j jp p

pi i ri i i p ri
p

T φ φ T φ φ
−

− − − −

=
− + +∑  

 

    

Therefore,

1 1 2 1 11
1 1 1 1

1 1

1
( ( )) ( )(Γ ) ( )(Γ )l l l l l

k k k k

n
j j j j pj j j j p jj

rp rpi i r i i i i i ir
p

Q F F F φ F φ
x

−− −

=

∂
= + + +

∂
∑   

   

  

1 1
2 1 1 1

1 1

1
( )(Γ ) ( )(Γ ).l l

k k k

n
j j j jp p

pi i ri i i p ri
p

F φ F φ
−

− −

=
− + +∑  

 

  

Now, note that

1 1 1 1
1 1 1 1

1 1

ˆ ˆ ˆ ˆ( )( )
ˆ ˆ ˆ ˆ( )( )ˆ ˆ ˆ ˆ, , , , , 1

( ( )) ( ),l l l l
k k k k

l k

n
j j j j j j j j
i i r i i r i i i i

j j i i
Q F Q F

=
= ∑   



  

 

where

1 1
1 1

ˆ ˆ( )( )
ˆ ˆ( )( )

: ( ( ), ) Func( ( ), ),l l
k k

j j j j
i i r i i

Q C φ U φ U∞ → 

 

 

1 1 1
1 1

ˆ ˆ( )( ) ( )
1ˆ ˆ( )( )

and for all ( ( ), ),  ( ) is the ( ) -component of ( ) withl l l
k k

j j j j j j
ki i r i i

f C φ U Q f i i r Q F∞∈  


 

 

1
1

1 1 1 1ˆ ˆ ˆ ˆif , , , , , .
0 otherwise 

l
k

j j k k l l
i i

f i i i i j j j jF
 = = = == 






 

Hence

12 1 1 1 1
12 1 1 1 1

ˆˆ 1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )(Γ ) ( )(Γ ).k l k l k

kk l k l

i j i j ii j i i j
ri rii i j j i i j j

δ δ δ δ f φ δ δ δ δ f φ−
−

− −− + +      

1 1 1 1
1 1 1 1

ˆ ˆ( )( )
ˆ ˆ ˆ ˆ ˆ ˆ( )( )

( )l l k l
k k k l

j j j j i ji j
ri i r i i i i j j

Q f δ δ δ δ f
x
∂

=
∂

 

 

 

11 2 1 1 1
1 2 1 1 1 1

1 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( )(Γ ) ( )(Γ )k l k l l

k l k l l

i j i j ji j j i j
i i j j rj i i j j rj

δ δ δ δ f φ δ δ δ δ f φ−
−

− −+ + +      

Now, suppose ,( ( )). So, clearly, ( ( )).e q
c locf C φ U f W φ U∞∈ ∈  It follows from the hypotheses on e and q that (see 

Theorem 3.14)

1, , 1,( ( )) ( ( ))     ( ( )).s p e q e q
loc loc locW φ U W φ U W φ U− −× ↪
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1,1Also, we know that for all ,  ,  and ,  Γ  is in . Hences pa
bc loca b c φ W −−


1 1
1 1

ˆ ˆ( )( ) 1,
,ˆ ˆ( )( )

: ( ( ( )), . ) ( ( ))l l
k k

j j j j e q
c e q loci i r i i

Q C φ U W φ U−∞ → 

 

‖‖

is continuous.
Remark A.4 Instead of (5), we may alternatively assume that for all balls Ω ⊆ Rn

1, , 1,(Ω) (Ω)     (Ω),s p e q e qW W W− −× ↪

and work with nice charts instead of super nice charts. However, if we do so, then we need to additionally assume that e 

and q are such that , 1,: (Ω) (Ω) (1 )j
e q e q

x
W W j n−∂

∂
→ ≤ ≤  is continuous (see Theorem 3.9).


