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Abstract: The aim of this paper is to establish the existence of positive solutions by determining the eigenvalue
intervals of the parameters u,, u,, ..., 1,, for the iterative system of nonlinear differential equations of order p

w? (x)+ wa, (x) f,(w,,(x)) =0, 1<i<m, x€[0,1],
Wm+1 (x) = W] (x)! X e [031]5

satisfying non-homogeneous integral boundary conditions

w,(0)=0, w(0)=0, ..., w??(0)=0,
WO -1,[ g @ (@ dr =4, 1<i<m,

where r € {1, 2, ..., p — 2} but fixed, p > 3 and 7,, 4; € (0, ©) are parameters. The fundamental tool in this paper is an
application of the Guo-Krasnosel’skii fixed point theorem to establish the existence of positive solutions of the problem
for operators on a cone in a Banach space. Here the kernels play a fundamental role in defining an appropriate operator
on a suitable cone.

Keywords: differential equation, iterative system, integral boundary conditions, eigenvalues, kernel, positive solution

MSC: 334B18, 34A40, 34B15

1. Introduction

The theory of differential equations has been applied in the modeling of physical, biological and medical sciences
as well as economics to determine the best investment strategies. In analyzing real life problems, many mathematical
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models generate either initial value problems or boundary value problems with two-point/multi-point boundary
conditions. A particular class of problems involving integral boundary conditions arises in thermoelectricity, chemical
engineering, plasma physics, and other fields. In these applied settings, only the positive solutions are relevant. To
mention a few papers along these lines, see [1-5].

Many engineering applications involve complicated systems with several degrees of freedom that must be
addressed as a system of ordinary differential equations which satisfy certain assumptions. The first challenging step is
usually to develop a model for complicated systems and then investigate the existence of solutions for the model using
various methods. Due to its importance in theory and applications in recent years, significant emphasis has been made
in finding optimal eigenvalue intervals for the existence of positive solutions for the system of nonlinear boundary value
problems by an application of the Guo-Krasnosel’skii fixed point theorem.

In 2007, Henderson and Ntouyas [6] determined values of the parameter 4 for which there exist positive solutions
for the system of nonlinear differential equations

u™ + Aa(®) f(v)=0,0<t<1,
VO £ Ab(t)g(u) =0,0<1 <1,
satisfying
u(0)=0, u'(0)=0, ..., u"2(0)=0, u(l) = au(n),
v(0)=0, v'(0)=0, ..., v 2(0)= 0, v(1) = av(n),

by using Guo-Krasnosel’skii fixed point theorem. In 2008, Henderson, Ntouyas and Purnaras [7] studied the existence
of positive solutions by determining the values of parameter 4 for the system of three-point boundary value problems

u"+da@t)f(v)=0,0<t<1,
V' + Ab(t)g(u)=0,0<r<1,
u(0) = Bu(n), u(l) = au(n),

v(0) = pv(m), v(1) = av(n),

by using Guo-Krasnosel’skii fixed point theorem and in the same year, Henderson, Ntouyas and Purnaras [8] determined
values of the parameters A and u for which there exist positive solutions for the system of four-point nonlinear boundary
value problems

u"+2a(®)f(v)=0,0<t<1,
V'+ub(t)gu)=0,0<t <1,
u(0) = au($), u(l) = pu(n),

v(0) = av(&), v(D) = Bv(m).
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Later, in 2013, Prasad, Sreedhar and Kumar [9] dealt with the existence of positive solutions by determining the
eigenvalues 4;, 1 <i < n, for the iterative system of three-point nonlinear boundary value problems

YO+ 4p,(0)f;(y () =0, 1<i<n, y, ()= y, @), t €[4,1],
a.y,(t)=By(t)=0, yy(t)+6y/(t) = y/(t,), 1<i<n,

using Guo-Krasnosel’skii fixed point theorem. In 2020, Prasad, Rashmita and Sreedhar [10] determined intervals of
eigenvalues 4,, 4,, ..., 4,, for which the existence of positive solutions of the boundary value problems

3O+ 40,0 fi(ra @) =0, 1<i<m, y, () = »(1), t[0,1],

y,(0)=y/(0)=---=y"2(0)=0, a.y" P (W)= By" () = pt, 1<i<m.

Here the results are now extended to the iterative system of higher order differential equations with non-homogeneous
integral boundary conditions.

In this paper, we determine eigenvalue intervals of the parameter u,, i, ..., u,, for which the existence of positive
solutions of the iterative system of nonlinear differential equations of order p

Wi (X)+ p4,0,(x) f; (W, (x)) =0, 1< i <m, x €[0,1], )
W, (%) = w (x), x €[0,1],
satisfying non-homogeneous integral boundary conditions
w,(0)=0, w/(0)=0, ..., w»>(0)=0,
)

1
wf”(l)—f]i.[o g (W (t)dr =2, 1<i<m,

where r € {1, 2, ..., p — 2} but fixed, p > 3 and 5, 4, € (0, ) are parameters for 1 <i < m, by an application of Guo-
Krasnosel’skii fixed point theorem on a cone in a Banach space. Eloe and Henderson [11] studied the existence of
positive solutions for higher order two-point boundary value problem for 7, = 0 and 4, = 0. Sun and Li [12] addressed
the third order problem with integral boundary conditions and established the existence of positive solutions for p = 3,
n, =1 and A, = 0. The results in the paper [10] are the particular case of this paper by taking » = p — 2. The following
conditions are true throughout the paper:

(C1) f; e C(R", R, w, € C([0, 1], R") and g; € C([0, 1], R") for 1 <i<m,

(C2) a(x) € C([0, 1], R") and a,(x) do not vanish identically on any closed subinterval of [0, 1] for 1 <i < m,

(C3) 1= nf,> 0, where 6, = [ g,(x)r""dr for1<i<m,
(C4) each of

Jfio = lim RAC) and f,, = lim&
w—0" w Ww—>0 w

exists as positive real number for 1 <i<m.

The remaining part of the article is arranged as follows. The solution to the problem (1) and (2) is written as an
analogous integral equation in terms of kernels, and bounds for kernels are determined in Section 2. In Section 3, we use
the Guo-Krasnosel’skii fixed point theorem to establish the existence of at least one positive solution of the problem (1)
and (2) by determining the eigenvalues u,, u,, ..., u,,. At the end, we provide examples to demonstrate our results.
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2. Kernels and its bounds

The solution of the problem (1) and (2) is expressed as an analogous integral equation involving kernels and

several inequalities are established for kernels in this section.
Lemma 2.1 Assume that the condition (C3) is fulfilled. If ¢(x) € C([0, 1], R") then the problem

w?(x)+(x)=0, 1<i<m, x[0,1], 3)
with (2) has a unique solution and is
(p-r—-DIx"" X!
P D S [R(x, H+—I__['s(z, 9, (r)dr} P(9)d, @
(p=-D!1=n6) (p-D!A=n0)°°
1 A= = (x=PH"'], 0 9<x <1
R(x.8) = — [xil( )7‘71 (x=89"], x<1, )
(p-D!' [ x"(1-H", 0<x<9<],
and
A= (=P, 0<9< <],
seoy={" U =D : ©)
(1=, 0<r<9<1.
Proof. Let w,(x), 1 <i<m, be the solution of the problem (3) and (2). Then an equivalent integral equation of (3) is
_ 1 x _
w(X) = dy +dx+dyx +o+d, x0T - T —1)!I° (x— 9" p(9)d .
By applying conditions (2), one can get
dj =0, for j=0,1,....,p—2,
and

A(p=r=1) | 1
1= 1- $p(Hd
iy AU

1 T
0], e )| [[ (=87 o(9)as a.
Then, the unique solution of (3) and (2) is

A(p—-r=Dlx" X! 1 -
()= 1-9)" " p(9)d
%) (p—l)!(l—m@)+(p—1>!<1—n,-9,~)I°( e

_#:—lnﬂ)ﬁ 8 (T)Uor (7‘9)““‘40(9)619}011
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T 1)' j (x=9)" "' p(Hd 9

_/11,(p—r—1)!x”‘]Jr ”‘](1—7719 +n.6,
(p-D!A-n6) (p-DI1-n6)

D -9y o)

(pil), J -8 0@

:ﬂ,i(p—r—l)!x’rl+ 1
(p-DWA=-n6) (p-D!

U("l(l 9" = (x= 9" Yp(9)d 9

p-1

+j'x”-‘(l—g)}"-*-lgow)dg}r X

(p-D!1-1n06)
p—r—1 p-r—1 nxp_]
j j g (D) (1-9) ¢(9)drd9—m

Ji&@| [ -9 p(9)ds |ar

p-1

_ A(p-r=Dlx”" :

19 n.x
p— — w 19 d19

(p=D!1-7n6)

[ g(r)[j (2" =7 = =9 ) p(Hd I

[l erra-gr go(s)dg}dr

_ A(p—r=Dx""
(p=D!1~-1,6)

! 7"
+Io{m""g“(p—l)!(l n@)j

S(r,9g, (z')dr:| o(Pd 9. O

Lemma 2.2 If the condition (C3) is fulfilled, then the kernels R(x, $) and S(x, 9) satisfy the following inequalities:
(1) R(x,$)=0and S(x, §) >0 forallx, 3 € [0, 1],

. [1 é}

44

(i) R(x, $) <R(1, 3) for all x, 3 € [0, 1],
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Proof. The above inequalities are obtained by algebraic computations as shown in [13]. i
We note that an m-tuple (w,(x), wy(x), ..., w,(x)) is a solution of the boundary value problem (1) and (2) if, and only
if w(x) satisfies the following equations

: A(p—r—Dlx""

= =00

+u J.Ol {R(x, P+ m_ﬁ S(z,9)g; (T)df}

a,(9)f,(w,, (Id, 1<i<m, x[01],
and
Wm+1 (x) = Wl (x)7 X e [07 1]5

so that, in particular,

CA(p-r-Dix g
= =gy T II{R(X"%(p—l)!(l—nﬂl)joS(T"gl)gl(T)dT}

8"

ﬂ,z(p—r—l)!zglFl
(p-D!d-n,0,)

al(n91)f1( (p-D!1-1,6,)

1
, L{Rwl,gm

1 p [Alpmr=DUE
[,5@.9)e, (r)dr}az (8) S ( D) e jo[me“&m)

N 1,50 J‘
(p-D'1-n,6,)

0

'S(r,8)g, (T)dr} a,(9,)f,(w(3,)d3, J - dgzjdgl.

The Guo-Krasnosel’skii fixed point theorem described below will serve as the foundation for presenting our main
findings.

Theorem 2.3 [14, 15] Let B be a Banach Space and p be a cone in 28. Suppose Q, and Q, are any two open
subsets of 9B such that 0 € Q, and Q, = Q,. Suppose further the completely continuous operator ® : p N (Q,\Q,) — p
satisfy the following conditions either

@) [|Dw]| < ||w]|, forw € p N 0Q, and || Dw|| = ||w]|, for w € p N 0Q,, or

@) [|Dw]| = ||w||, for w € p N 0Q, and || Dw]| < ||w]||, for w € p N OL,.

Then the operator ® has a fixed point in p N (Q)\Q)).

3. Positive solutions in a cone

In this section, we develop criteria to determine the eigenvalues for which the iterative system (1) and (2) have at
least one positive solution in a cone.
For this, let B = {w: w € C([0, 1], R)} be the Banach space with the norm

=ma .
I wll max [ w(x)|
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Define a cone p in ®B as
. 1
p= {we B:w(x) 20 onxe[0,1] and minw(x) > F” w||}.

Let us define an operator ® : p — B for w, € p as

p-1

fDWl(x):M+MI;{ (x,8)+ mx

(p-D!(1-7n,6) WI S(z, S)gl(r)dr}

al(‘gl)f( (p—l)!(l—nzﬁz) +ﬂ2j0|:R(‘91,L92)+(p_l)!(l—ﬂzez)

(7

1 A, (p—r-119"]
jOS(r,Sz)gz(r)dr}az(sz) fml[(p_l)!(l_wm) mj{ (8,19,

p-1
+ T]m Lgm
(p-D!A-

)I S(z,9, )gm(r)dr}a S, (3,))d8, J '-dSZJdSI.

Lemma 3.1 The operator ® : p — B defined in the equation (7) is a self map on the cone p.
Proof. From the positivity of kernels R(x, $), S(x, §) and for w, € p, Dw,(x) >0 onx e [0, 1]. Now, for w, € p and
by Lemma 2.2, one can obtain

_ﬁ,,(p—r—l)!x”1 nxp’l
= =) ral, { A P v nﬂ)I S(T‘g)gl(r)df}

a'(gl)f'[ (p—-D(1-7,0,) +HZI°{R(9“32)+ (p=D(1-7,0,)

1 [ Fulpmr-nr8
jOS(r,n%)gz(r)dr}azwz) fm_(( ) mj[ (8,1:9,)

p-1
n,9",

m f 8.4 )gm(r)dr}a &)1, (3,)d3, J ..d,_92JdL91

A(p—r-1! ! n
g—(p—l)!(l—m@l)+ﬂlj°|:R(1’12) —(p D 7719)‘[ S(z, S)gl(r)dr}

Ap=r-nigr 9

al(gl)fl[ (p-D!(1-1,6,) ﬂzIO{R(gl’%Hm
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/Ln(p—r—l)!él”’1

m—1

(p-D!1-n,06,)

JL5.0)8.0ar a8, (

! M
i, L |:R('9m—l =) +m_[0 S(z.8,)g, (r)dr

am(t9m)fm(wl(l9m))dt9mj"'dtngdL%,
so that

IDw@ < (p—l)!(l—?]ﬂl)+ﬂlj°|:R(1’81)+(P_l)!(l_ﬁlel)

/?,Z(p—r—l)!élf"1

J, @9z (’)d’}“‘ (‘W‘( (p=D!(1-1,6,)

1 977!
+,L12.[0{R(191,192)+772—1J‘

(p-D(1-1n,6,) S(T’%)gz(r)dr}

(8)
A (p—r-197,
(p-D!d~-n,0,)

az(lgz)"'fml[

! w9 !
4, |, |:R('9ml ; 9m)+mjo 8(z,9,)8,(7)dz

a,(8,).1,w(8,))d38, J d Sz]d &

Next, if w, e p, from Lemma 2.2 and (8), we have that

. =i APl e
‘EEPQWI(“‘“}!P{ (p—-DI1-7,8) +”‘IO{R(X"9])+(p—l)!(l—m@l)

/12(p—r—1)!31”’1

Jy S(T’gl)gl(”df}“‘(gl)ﬁ[ (p-D-m,0,)

0

1 97!
+u2fO{R(l9l,l92>+’72—lj

(p—D(1-7,0,) S(z.8)8, (T)dr}
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PRTRSO N A Gl SPR BTN W . =
()| ooy Ao RS T

.[01 S(z,8,)g, (r)dr}am S, (3,)dS, j ~~dl92Jd191}

| { Ap-r=Dt

1 m,
47 (p-DIA-1,6) ”IIO{R(I"Q‘”

(p=D!1-n06)

A(p-r-D!g""

jo S(z,9)g, (T)‘”}“‘(‘gl)f‘( (p=D!d-1n,6,)

1 el 1
|, [Rwlﬂz) ] IGEES (r)dr}

1,90
(p-D!1~-1,06,)

A, (p-r=11gr} !
a,(%,) fml((p_l)!(l_nman) +umj{R(9ml,z9m)+

[, S(r,a,z)gm(r)dr}am(smm (m(&»d&j---d&jd&}

1

Therefore, ® : p — p and the proof is complete. i
Furthermore, ® is completely continuous operator based on Arzela-Ascoli theorem [16]. Let us define the positive
numbers F, and F), by

_ f;w 771' )
F, = max {( pir= LE{R(LSH—@_D! e S (r)dr}a,w)ds] } ©)
and
. 1 n, 1 .
F, =min {(2 fo j{R(l,S)er jo S(z,9)g, (T)df:| a, (9)ng } (10)

Theorem 3.2 Suppose the conditions mentioned in (C1), (C2), (C3) and (C4) are fulfilled. Then, for each u,, w,, ...,
u,, satisfying

F<u <F,F<u<F, .. F<u <F, (11

there exists an m-tuple (w,, w,, ..., w,,) satisfying (1) and (2) such that w,(x) > 0 on (0, 1] and 4; e (0, «) is sufficiently
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small for 1 <i<m.
Proof. Let u;, 1 <i<m,be given as in (11). Now, let € > 0 be chosen such that

(fi =) n !
11223{[ 4%r2 J‘BEI|:R(1,19)+mjrelS(T,3)gi(T)dr:| af(lg)d'gJ }

Smin{gy, .5 (4, }

and

max{, ty,-.., M, }

< min {(2( fo+ e)jol{R(l, 9) +mﬂ S(z,9) gi(r)dr} a, (y)ng }

Now, we seek fixed point of the completely continuous operator © : p — p defined by (7).
From the definition of f;,, 1 <i<m, there exists an H, > 0 such that, for each 1 <i <m,

Jw)<(f,,+ew, 0<w< H,.
Let 4, 1 <i<m, be such that

(p-DI1-n6)H,
(p-r-n12

0<4 <

Let w, € p with || w,|| = H,. By an application of Lemma 2.2 and the choice of ¢, for 0 < 4, _, < 1, we have

f;fi;;f_ 137"99) ‘o, j;{R(gml,am)Jr(p_%% [,5(.9,)e, (r)dr}

a,(8,) 1, (w(3,)d3,

< %+ ) {R(I, ey S s, (7)4

a, (8,)( [0 +OW (8,)d 3,

< %Jr i jo[R(l,gm) +(_1’7—m_ [[5¢.9,)s, (r)dr}
r-bd-n,06,)

a,(8,)d8, (f,, +ell w ll S%+%= H,.
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It follows in a similar manner from Lemma 2.2 and the choice of ¢ that, for 0 < &, , <1,

A, (p—r—1)19”"] ! 97!
m—1 (p' ) m=2 + ,um,l J.O |:R(‘9m2; ‘9,,171)"_ 77'm—l m-2
(p-D'1-n,.,6,) (p-D'1-7,.6,.)

Ay (p—r=D187
(p-D!1-7,6,)

[[5.8, )2, (r)dr}am_l %) o (

l 9 !
+4, J.O {R(Bml s+ mjo S(z,9,)g, (r)dr

a,(3,).1, (W (4,))d8, jd o

< A, (p—r=1!
(p-D!1-n,.6,))

ta, [ RALG, )+ JE!
o T (p-DI(1-7,,,0,.)

1
J‘O S(T’ lgmfl )gmfl (T)dfi| am—l (lgmfl )d"gmfl (fmfl,O + 6)I—[l

Continuing with this bootstrapping argument, we have, for 0 <x <1,

Alp—r=ix""

! nx"" !
(p-DII-7,6) WIL{R(MH S(r,sl)gl(r)dr}

(p-D'(1-n06) IO

A(p—r=119"

(p=D!1=n,0,)

1 97! 1
+ I{Rw] "92”#11—%) [ s@.9)e, (r)dr}

al(lﬂ)ﬁ(

Ao (p—r=D1307
(p-D!1-n,6,)

az(lgz)"'fml[

1 977! 1
i, L{R(‘gmv‘gm”m ['s¢.9,)s, (r)dr}

a,(3)f, w (Bm))dSmJ---dSZJdS] <H,
so that for 0 <x <1,
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Dw(x)<H,.
Hence, ||Dw,|| < H, = ||w,]|. If we set
Q ={weB:llwl<H},
then
I Dw Il <l wll, forw, € pn Q.
Next, from the definition of f,,, 1 <i<m, there exists H, > 0, such that, for each 1 <i <m,
f W)= (f, —ew, w>H,.
Let
H, =max{2H1,4"’ll-_12}.

Choose w, € p and ||w,|| = H,. Then

. 1 —
minw, (x) > —Ilw 1> H,.
xel 4.1771

From Lemma 2.2 and choice of ¢, for %S 9, < % , we have
1\ p-1 p-1
A, (p—r-1197, +ﬂmf[R(9mw9m) +’7m"#j‘5(r, 3., (r)dr}
1 n 19":11 1
> R, .9 )+———"——| S(,9,)g,(r)dr
#r}1J0|: ( m—1 m) (p—l)'(l—?]mem)‘[o ( )g ( )
a, (8,1, (W (3,))d3,
/’lm nm
> sme{R(l"g’"H TR ETR R (T)dr}

a, (3, [, =W (8,)d 3,

lle 77"1
e Lmef{R(l"gm) oy e S m‘”}

a,(9,)d8,(f. —Ol w | =1 w |l = H,.

(12)
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<

m—1

It follows in a similar manner from Lemma 2.2 and the choice of ¢, for % <4 % R

ﬂm,l(p—r—l)s,:;w I[R(lg 9 Yo M
(p-D!1-7,.0, ) " (p-DI-7,.6,.)

A, (p—r—1)19"]
IS(r )& 1(7)6”}% 1 F1) S 1((17_1)1(1—77”,6;)

nmlglfx 1

4, [, {R(@ R iy [ (rﬂ)gm(r)dr}
am(sm>fm(wl<9m>)dl9m]dl9

Hyo /B
= I{ 8 )+ o, 5w, l)gmmr)dr}
m1( 11)d 1(fmloo_

Hyo [/
= J{ 8 )+ o L, 5w, 1>g,,”<r>dr}

a, (3,48, (f, 1,00 -eH,>2H,.

Again, using a bootstrapping argument, we have

Ap-r=Diet o e
(p—l)!(l—mel)MJ{R(’C"Q‘) PR 7719)[ (T&)gl(r)dr}

01(191)f1[ (p—l)!(l—7726’2) +ﬂ2jo|:R(31392)+(p—l)!(l_nzez)
A,(p—r-119""}
(p-D(1-7,0)

Ji5(5.808. )7 |an(8) -+ £, (

1,9 !
+,UmJ‘|:R(l9 s m) mIOS(T,Sm)gm(T)dZ}

am(l9m)fm(wl(19m))dl9J dl9] 9 =2H,,
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so that, for0 <x <1,
Dw (x)=H, =l w Il
Hence, || Dw,|| = [|w,||. If we set
Q, ={we%:|| w||<H2},
then
I Dw, 1>l w ll, for w, € pMOQ,. (13)

Applying Theorem 2.3 to (12) and (13), we obtain that D has a fixed point w, € p N (Q,\Q,). As such setting w,, . |
= w,, we obtain a positive solution (w,, w,, ..., w,,) of (1) and (2), given iteratively by

Wi(x):M ’j{ (x,9) + nx"”

(p-D(1-7,0) mj 5@ 9)&(”‘”}

a,(Dfw, (9)dS, i=mm-1,...,1. o

For the next result, we define the positive numbers F, and F, by

_ Jio 7; )
fo=ie {(4 IQE{RMH—@_1)!(1_,7[6,1_ )I,E,S<r,9)g[(r>dr}a,-<l9)d9J } (14)
and
n, )
F,= E}lﬁ{sz [, [R( P+ mj S(z, S)g,(r)dr}a(él)dé}] } (15)

Theorem 3.3 Suppose the conditions mentioned in (C1), (C2), (C3) and (C4) are fulfilled. Then, for each u,, ,, ...,
u,, satisfying

Fy <y <Fy, Fy<p, <F,....F,<u, <F, (16)

there exists an m-tuple (w;, w,, ..., w,,) satisfying (1) and (2) such that w/(x) > 0 on (0, 1] and 4, € (0, «) is sufficiently
small for 1 <i<m.
Proof. Let y;, 1 <i<m,be given as in (16). Now, let € > 0 be chosen such that

(foo~ 0 i
1<L<m {( 42r2 .[9 1{ 9 -D(1-7,6) Lez S(T,S)gi(r)dr:| 4 (19)d,9J }

< min{ﬂl,ﬂz,...,ﬂm}
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and

max{, fhy,..., i, }

< min {[2( £, +e) J'OI{R(I, 9) +(p—1)!72+77[6’,-) ['s¢.9) gi(r)dr} a, (,9)d9J }

Now, we seek fixed point of the completely continuous operator ® : p — p defined in (7).
From the definition of f;,, 1 <i < m, there exists an H , >0 such that, foreach 1 <i<m,

W)= (fy—w, 0<w< H,.

Also, from the definition of £, it follows that f;, = 0, 1 <i < m, and so there exists 0 </, <[, , < --- <, < H, such

that
lLli-f; (W) < l’;l » WE [0’ lj]!
1 771_ 1
2]0 {R(l,g) e TN E) 08) jo S(z,9g, (z’)dr} a,(9)d 9
0<A < (p ;1)!(1 _717;'9"2)1“1 , for3<i<m,
p—r—=1D!
and
[, (w) < , , wel0,1,],
1 772 1
2 jo R(,9)+ Py jo S(z,9)g, (T)df:| a,(9)d 9

(p—-D!(1-1,0,)H,
(p-r-n12 =

0<4, <

Choose w, € p with ||w,|| =1,. Then, we have

— =11y p-l
fulp 72 D25 +umj[k(l9ml,9m)+’7'""# | IS(r,sm)gm(r)dr}
(p-DI-7,0,) “h (p-DI-17,0,)%

a,(9,)/,(%(3,))d8,
A, (p—1—1)! ! M, 1
-D-no) "~ '”JO{R(I’ ot =m0, J S(”‘g’")g’”(”dr}

a,(3,).1,(w(8,))d8,
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[[5¢.9,)g, (r)dr} 14, (9,)d9,

7 J.OS(T,Sm)gm(r)dr} a,(8,)d9,

I‘;{R(l"gmh 1 'nlm 0
e, (p=D!1-7,6,)
! 1
2 [RA,G )+
L’{ (p=D!1~-n,06,
= lm_l +lm__l:lmfl
2 2

Continuing with this bootstrapping argument, it follows that

A(p=r=D1g"
(p-DII-7,6,)

|

a3(193)-~fm(wl(l9m))d9m"'dt93jdl92

uzj;{Ro%,Sm

A(p-r-n1g-
(p—-D1-n,6;)

<

Then

D (x) = 2L DI
(p-D'(1-n6)
/12(‘1)—}’—1)!191’"1

al(u‘%)fl( (p-D'(1-1,6,)

a,(%)- f, w3 )Nd3, ~~~d192Jd191

H U

.

a,(3)d3 (fy —e)l w |
> w Il

So, [|[Dw,]| > [|w,]]. If we put

(p-D!d~

1
+ﬂ3j0 |:R('92333) +

+y1j0[R(x,31)+

1
+IU2J'0|:R(‘91:‘92)+

| {R(1,31)+—
et (p=D!1-n,6)

8" !
) [ 5.8, (r)dr} a,(9,)

nm%

i ST (1)4

3.

-1

mx"

mﬂ S(T"gl)gl(f)df:|

m '91]7_1

(p-DHI(1- S(7,9,)g, (7)dr

1,0,) '[0

[ 59 (r)dr}

rel

O, ={weB:lwl<l,},

then

Contemporary Mathematics

156 | Sreedhar Namburi, ef al.

|



I Dw, Il = I w,ll, for w, € pM Q. (17)

Since each f;, is assumed to be a positive real number, it follows that f;, 1 <i < m, is unbounded at «. For each
1 <i<m,set

(W) = sup fi(s).

0<s<w

Then, it is straightforward that, for each 1 <i <m, f;(w) is a non-decreasing real-valued function, f; < f; and

i

fim 09 _

i = = S
Next, by definition of ,,,, 1 <i<m, there exists H, such that, for each 1 <i <m,
o <(f, +ow, w>H,.
It follows that there exists H, > max {2H,, H,} such that, for each 1 <i <m,
ffwy< f1(H,), 0<w<H,.

Let 4,, 1 <i < m, satisfy

(p=D'A-n0)H,

0<A <
(p—-r-n'12

Choose w, e p with ||w,|| = H,. Then, using the usual bootstrapping argument, we have

0

Dw, (x) = -DI-1.8) +MJ‘O{R(X,19|)+(p_l)!(l_mgl).[

S@.9)g, (r)dr}

a](lgl)f;[ﬂ’z(p_r—l)!lglp] +,UZJ.01|:R(1919192)+ 772L91p7] J.

'S(r,9,)g,(2)d
(p-D!1-n,0,) (p-D!1-n,6,) (7,%)8,() T}

a,($) - f, w3 )d3, --~d,92jd.91

. Ap-r-n!

1 771 1
= (p—l)!(l—m@l)+MJ‘°{R(L3')+ S(T,Sl)gl(r)dr}

(p—l)!(l—m@l)j"

a1(91)f1 ((p_l)'(l_nzaz) +ﬂ2j0|:R(L91’L92)+(p—l)!(l_ﬂzez).l.

'5(z.9,)g, (r)dr}
a,(%) - f,wm(3,))d3, ---d&zjdg,
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<o ]| RO +—['S(r.9)e (x| /(8)f; (H )

2 (p=DUI=n0)"
LT P P — ey
25| (p=DII=n0)"

Hence, || Dw, || < ||w,]|. So, if we set
Q,={weB:llwl<H,},
then
I 7w I <l w Il, for w, € pM Q. (18)

Applying Theorem 2.3 to (17) and (18), we obtain that © has a fixed point w, € p N (Q,\Q;,), which is turn with
W, = wy, yields an m-tuple (w,, w,, ..., w,,) satisfying the boundary value problem (1) and (2). o

4. Examples

Here we consider the examples to illustrate our results.
Example 4.1 Let p = 3 and » = 1. Consider the problem

w(xX) + a, (x) fi(w,(x)) =0, x €[0,1],
Wy (X) + 0, (x) f5 (w3 (x)) = 0, x €[0,1], (19)
Wy (X) + s, (x) f;(w (x)) =0, x[0,1],

w(0)=0, wi(0)=0, w-7,[ & @W(D)dr =4,
w,(0)=0, w(0)=0, wi(h)-1,[, & (Owi(0)dr = 4, (20)

w(0)=0, w(0)=0, W)=, [, & (@)w(0)dz =4,
where
£.(w,) = (480.6 —472.8¢7 )(200—194.5¢>" )w, ,
fo(w,) = (862.5-856.4¢ " )(168—152.6¢ " )w,,

£.(w) = (376.8—368.6¢ " )(260 — 248 2¢ " )w,,
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a,(x) = a,(x) = ay(x) =1,
g () =1,g,0@)=1,g(()="7°,
and

1
m=Lm==, 1 =3
The kernels R(x, 9) and S(z, ) are given by

R(x,9) = 1

{[xz(l—g)—(x—sﬂ, 0<9<x<l,
2!

¥’ (1-9), 0<x<9<1,

and

I1-7), 0<9<r<l,

S(r,9) =
9 {7(1—3), 0<r<9<l.

By direct calculation, we found that

0 = ;

1 1 1
RE} 0 = 9 =
2777 377 4

fio =42.8, fu =93.94, f,, =96.76,
£., =96120, f,, =144900, £, =97968,

F, = max {0.030080047, 0.02271517303,0.031286073 14} =0.03128607314

and

F, =min {0.07009345794,0.05553961363, 0.00588017277} = 0.05553961363.

Applying Theorem 3.2, we get an eigenvalue interval 0.03128607314 < u, < 0.05553961363, i = 1, 2, 3 for which
the boundary value problem (19) and (20) have at least one positive solution by choosing 4, 1, and 4, are sufficiently

small.
Example 4.2 Let p = 3 and » = 1. Consider the problem

w'(x)+ pa, (x) f(w,(x)) =0, xe[0,1],
wy () + 1,4, (x) f,(w;(x)) =0, x €[0,1], (21)
Wy (xX) + pa,(x) f,(w, (x)) =0, x€[0,1],
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w(0)=0, wi(0)=0, w)-7[ g @W()dr =4,
w,(0)=0, w(0)=0, wi()-7,], & @)W (0)dr =4, (22)

w(0)=0, w(0)=0, W)=, [, & (@)w()dz =4,

where
. 5w, *ﬁ
J1(w,) =150000|sin 5 +35.4w,e ™,
[ Sw, *W%
> (w;) = 560000 |sin B +582we ™,
. Sw ’f
f;(w,) =100000 |sin EN +652we ™,
a, (x)= a, (x)= a, (x)=1,
&) =1 g, @)=1, &)= z?,
and
I R
=51, > Ui 3
By direct calculation, we found that
1 1 1
=—,0,=—,0,=—,
1 2 2 3 3 4

f,o =375000, £,, = 560000, f,, =650000,
£, =354, f,, =582, f,, =652,

F, = max {0.0077101 17,0.007836734, 0.006287249} =0.007836734

and

F, = min {0.084745762,0.089645898, 0.087264649} = 0.084745762.

Applying Theorem 3.3, we get an eigenvalue interval 0.007836734 < u, < 0.084745762, i = 1, 2, 3 for which the
boundary value problem (21) and (22) have at least one positive solution by choosing 4,, 4, and 4, are sufficiently small.
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5. Conclusion

We obtained the eigenvalue intervals of the parameters that provide the existence of positive solutions to
the boundary value problem with non-homogenecous integral boundary conditions by an application of the Guo-
Krasnosel’skii fixed point theorem for operators on a cone in a Banach space.
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