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Abstract: Given a category C and a directed partially ordered set J, a certain category proJ-C on inverse systems in C is 
constructed such that the ordinary pro-category pro-C is the most special case of a singleton J ≡ {1}. Further, the known 
pro*-category pro*-C becomes proN-C. Moreover, given a pro-reflective category pair (C, D), the J-shape category ShJ

(C, D)

and the corresponding J-shape functor SJ are constructed which, in mentioned special cases, become the well known 
ones. Among several important properties, the continuity theorem for a J-shape category is established. It implies the 
“J-shape theory” is a genuine one such that the shape and the coarse shape theory are its very special instances.
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1. Introduction
The shape theory, from the very beginning, has been an operable extension and generalization of the homotopy 

theory to the class of all (locally bad) topological spaces. Since Borsuk’s paper [1] and book [2], many articles ([3-10] 
are some of the most fundamental) and several books [11-14] concerning shape theory were written almost in the first 
decade already. By attempting to describe the shape theory (standard and abstract) as an axiomatic homotopy theory 
(founded by D. G. Quillen [15]), the strong shape theory has been obtained [16-18]. At the same time some shape 
theorists introduced and considered several classification of metrizable compacta coarser than the shape type. The most 
interesting of them are the Borsuk’s quasi-equivalence [19] and Mardešić S-equivalence [20]. They were further studied 
by the author and some others ([21-23]). On that line, the most important has become a certain uniformization of the 
S-equivalence, called the S*-equivalence, which admits a categorical characterization, [23]. Moreover, it admits (genuine 
and different; [24-25]) generalizations to all topological spaces as well as to any abstract categorical framework [29], 
and all the well known shape invariants remain as the invariants of the both generalizations (in addition, [27]).

In this paper we generalize the generalization introduced in [19], the coarse shape theory, so that it and the shape 
theory as well become the very special cases of the new, so called, J-shape theory.

A part of the idea came from the recently founded quotient shape theory for a concrete category [28]. 
Namely,  guratively speaking, the quotient shapes of an object are “its (changeable) pictures” depending on the distance 
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of the “view point” which is determined by a “reciprocal” infinite cardinality (larger cardinal-closer distance, i.e.,  finer 
picture, and comparing them to the objects of lower cardinalities). This role hereby overtakes a directed partially ordered 
set J (larger set J-larger distance, i.e., coarser picture, and the comparing objects are those of D). In order to realize this 
idea, we have followed the construction of the coarse shape category obtained in [26]. Given a category C and a directed 
partially ordered set J, in the First step (Section 3), each morphism set (inv-C)(X, Y ) is essentially enriched, according 
to J, to the set (invJ-C)(X, Y ) making a new category invJ-C (with the same object class-all inverse systems in C). In the 
second step, on each set (invJ-C)(X, Y ) an equivalence relation is defined, according to J, that is compatible with the 
composition so that there is the corresponding quotient category (invJ-C)/~, denoted by proJ-C. In the trivial case J = {1}, 
pro{1}-C = pro-C, while in the case of J = N, proN-C = pro*-C (of [26]). Then, for a suitable pair X, Y and an enough large 
J, in the set (proJ-C )(X, Y ) may exist an isomorphism, while there is no isomorphism in the set (pro-C )(X, Y ). Finally, 
in the third step (Section 4), given a pro-reflective subcategory pair D ⊆ C, the construction of the appropriate J-shape 
category ShJ

(C, D) and the J-shape functor SJ : C → ShJ
(C, D) follows by the usual standard pattern. Clearly, in the mentioned 

special case, Sh{1}
(C, D) = Sh(C, D) (the abstract shape category of [13]) and ShN(C, D) = Sh*

(C, D) (the abstract coarse shape 
category of [29]) having their realizing categories pro{1}-D = pro-D and proN-D = pro*-D.

In Section 5 we have proven the continuity theorem for every J-shape category. It strongly confirms that the 
J-shape theory is a genuine shape theory. At the end (Section 6) we have proven the full analogue of the well known 
Morita lemma of [9] that characterizes an isomorphism of proJ-C, which is then very useful for characterizing a J-shape 
isomorphism in the corresponding realizing category proJ-D.

Of course, the whole of this should be firstly applied to the pro-reflective category pair (HTop, HPol) and to its 
subpair (HcM, HcPol) (where only sequential expansions are needed).

2. Preliminaries 
We assume that the notion of a pro-category is well known as well as the basics of the (abstract) shape theory, 

especially, via the inverse systems approach due to Mardešić and Segal [13]. For the sake of completeness, we shall 
briefly recall the needed notions and main facts concerning a pro*-category and the coarse shape obtained in [26]. The 
category language follows [29].

Let C be a category, and let inv-C be the corresponding inv-category. Given a pair X, Y of inverse systems in C, a 
*-morphism (originally, an S*-morphism) of X to Y, denoted by

( , ) : ( , , Λ) ( , , ) ,n
μ λ μλλ μμ

f f X p Y q M′ ′= → =X Y

is an ordered pair consisting of a function  f  : M → Λ (the index function) and, for each μ ∈ M, of a sequence ( fμ
n) of 

C-morphisms  fμ
n : Xf (μ) → Yμ, n ∈ N, satisfying the following condition:

(  in ) ( Λ,  ( ),  ( )) ( ) ( )μ μ M λ λ f μ f μ n n n′ ′ ′∀ ≤ ∃ ∈ ∃ ∈ ∀ 

( ) ( )
.n n

μ f μ λ μμ f μ λμ
f p q f p

′ ′
′ ′′=

Clearly, the equality then holds for every λ' ≥ λ as well. If the index function  f  is increasing and, for every pair μ ≤ 
μ', one may put λ =  f (μ') then ( f ,  fμ

n) is said to be a simple *-morphism. If, in addition, M = Λ and  f  = 1Λ, then (1Λ,  fλ
n) 

is said to be a level *-morphism. Finally, a *-morphism ( f ,  fμ
n) : X → Y is said to be commutative whenever, for every 

pair μ ≤ μ', one may put n = 1.
If Y = X, the identity *-morphism (1Λ,  1λ

n) : X → X is defined by putting, for each λ ∈ Λ and every n ∈ N, 1λ
n ≡ 1λ 
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to be the identity C-morphism on Xλ. The composition of ( f ,  fμ
n) : X → Y with a *-morphism (g, gv

n) :Y → Z = (Zv, rvv', N) 
is defined by

( )( ,  ) : .n n n
ν ν g vh fg h g f= = →X Z

The category inv*-C is now defined by putting Ob(inv*-C) = Ob(inv-C) and inv*-C(X, Y ) to be the set of all 
*-morphisms of X to Y .

A *-morphism ( f ,  fμ
n) : X → Y is said to be equivalent to a *-morphism ( f ',  fμ'

n) : X → Y, denoted by ( f ,  fμ
n) ~ ( f ', 

fμ'
n), if

( ) ( Λ,  ( ),  ( )) ( ) ( )μ M λ λ f μ f μ n n n′ ′∀ ∈ ∃ ∈ ∃ ∈ ∀ 

( ) ( )
.n n

μ f μ λ μ f μ λ
f p f p

′ ′
′

′=

The equality holds for every λ' ≥ λ as well. The relation ~ is an equivalence relation on each set (inv*-C)(X, Y ), and 
the equivalence class [( f ,  fμ

n)] of ( f ,  fμ
n) : X → Y is briefly denoted by  f *. The equivalence relation ~ is compatible with 

the composition, i.e., if ( f ,  fμ
n) ~ ( f ',  fμ'

n) and (g, gv
n) ~ (g', g'v

n) : Y → Z, then

( , )( , ) ~ ( , )( , ) : .n n n n
ν μ ν μg g f f g g f f′ ′ ′ ′ →X Z

The pro*-category pro*-C is now defined to be the quotient category (inv*-C)/~, i.e.,

( - ) ( - )( ( - ) ( - )),Ob pro Ob inv Ob inv Ob pro∗ ∗= = =C C C C( - ) ( - )( ( - ) ( - )),Ob pro Ob inv Ob inv Ob pro∗ ∗= = =C C C C

( - )( , ) ( - )( , )/ ~ { [( , )] | ( , ) : }.n n
μ μpro inv f f f f∗ ∗ ∗= = = →X Y X Y f X YC C

Finally, there exists a faithful functor I_ : pro-C→ pro*-C, keeping the objects fixed, such that, for every f = [( f ,  fμ)] 
∈ (pro-C)(XY ),

( ) [( , )] ( )( ,- , )n
μI f f pro∗ ∗≡ = ∈f f X YC

where, for each μ ∈ M and every n ∈ N,  fμ
n = fμ.

Let D be a full (not essential, but a convenient condition) and pro-reflective subcategory of C. Let p : X → X and 
p' : X → X' be D-expansions of the same object X of C, and let q : Y → Y and q' : Y → Y' be D-expansions of the same 
object Y of C. Then there exist two canonical (unique) isomorphisms i : X → X' and j : Y → Y' of pro-D. Consequently, 
i* ≡  I_(i) : X → X' and j* ≡  I_( j) : Y → Y' are isomorphisms of pro*-D. A morphism  f * : X → Y is said to be pro*-D 

equivalent to a morphism  f '* : X' → Y', denoted by  f * ~  f '*, if the following diagram in pro*-D commutes:
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.

∗

∗

′

∗ ′∗

′

→

↓ ↓

→

i

j

X X

f f

Y Y

According to the analogous facts in pro-D, and since  I_ is a functor, it defines an equivalence relation on the 
appropriate subclass of Mor(pro*-D), such that  f * ~  f '* and g* ~ g'* imply g*f * ~ g'*f '* whenever it is defined. The 
equivalence class of an  f * is denoted by 〈 f *〉. Further, given p, p', q, q' and  f * as above, there exists a unique  f '* (= j*f *(i*)-1

such that  f * ~  f '*. Then the (abstract) coarse shape category Sh*
(C, D) for (C, D) is defined as follows. The objects of Sh*

(C, D) 
are all the objects of C. A morphism F* ∈ Sh*

(C, D) (X, Y ) is the (pro*-D)-equivalence class 〈 f *〉 of a morphism  f * : X → Y, 
with respect to any choice of a pair of D-expansions p : X → X, q : Y → Y. In other words, a coarse shape morphism F* 
: X → Y is given by a diagram

.

X

F

Y

∗ ∗

→

↓ ↓

→

p

q

X

f

Y

The composition of an F* : X → Y, F* = 〈 f *〉 and a G* : Y → Z, G* = 〈 g*〉, is defined by any pair of their 
representatives, i.e. G*F* : X → Z, G*F* = 〈 g*f *〉. The identity coarse shape morphism on an object X, 1*

X : X → X, is the 
(pro*-D)-equivalence class 〈1*

X 〉 of the identity morphism 1*
X of pro*-D.

For every C-morphism  f  : X → Y and every pair of D-expansions p : X → X, q : Y → Y, there exists an f * : X → Y 
of pro*-D, such that the following diagram in pro*-C commutes:

.

X

f

Y

∗

→

↓ ↓

→

p

q

X

f

Y

(Hereby, C ⊆ pro-C are considered to be the subcategories of pro*-C!) The same  f  and another pair of D-expansions 
p' : X → X', q' : Y → Y' yield an  f '* : X' → Y' in pro*-D. Then, however,  f * ~  f '* in pro*-D must hold. Thus, every 
morphism  f  ∈ C(X, Y ) yields a (pro*-D)-equivalence class 〈 f *〉, i.e., a coarse shape morphism F* ∈ Sh*

(C, D)(X, Y). 
Therefore, by putting S*(X) = X, X ∈ ObC, and S*( f ) = F* = 〈 f *〉,  f  ∈ MorC, a unique functor

( , ) ( , ): ,S Sh∗ ∗→C D C DC

called the abstract coarse shape functor, is defined. Moreover, the functor S*
(C, D) factorizes as S*

(C, D) = I(C, D)S(C, D), where 
S(C, D) : C → Sh(C, D) is the abstract shape functor, while I(C, D) : Sh(C, D) → Sh*

(C, D) is induced by the “inclusion” functor I_ 
≡ I_D : pro-D → pro*-D.

As in the case of the abstract shape, the most interesting example of the above construction is C = HTop-the 
homotopy category of topological spaces and D = HPol-the homotopy category of polyhedra (or D = HANR-the 
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homotopy category of ANR’s for metric spaces). In this case, one speaks about the (ordinary or standard) coarse shape 
category

( , ) ( )HTop HPolSh Sh Top Sh∗ ∗ ∗≡ ≡

of topological spaces and of (ordinary or standard) coarse shape functor

: ,S HTop Sh∗ ∗→

which factorizes as S* = IS, where S : HTop → Sh is the shape functor, and I : Sh → Sh* is induced by the “inclusion”  
functor

: .HPolI I Ipro HPol pro HPol∗≡ - → -

The realizing category for Sh* is the category pro*-HPol (or pro*-HANR). The underlying theory might be called 
the (ordinary or standard) coarse shape theory (for topological spaces). Clearly, on locally nice spaces (polyhedra, 
CW-complexes, ANR’s, …) the coarse shape type classification coincides with the shape type classification and, 
consequently, with the homotopy type classification. However, in general (even for metrizable continua), the shape type 
classification is strictly coarser than the homotopy type classification, and the coarse shape type classification is strictly 
coarser than the shape type classification.

3. Enriched pro-categories
Given a category C, we are going to construct a class of categories having the same objects-all inverse systems in 

the category C-by enriching the morphism sets such that pro-C and pro*-C become the very special cases of these new 
categories, so called enriched pro-categories.

Definition 1. Let C be a category, let X = (Xλ, pλλ', Λ) and Y = (Yμ, qμμ', M) be inverse systems in C and let J = (J, ≤) 
be a directed partially ordered set. A J-morphism (of X to Y in C) is every triple (X, ( f , ( fμ

j)), Y ), denoted by ( f ,  fμ
j) : X 

→ Y, where ( f ,  fμ
j) is an ordered pair consisting of a function  f  : M → Λ, called the index function, and, for each μ ∈ M, 

of a family ( fμ
j) of C-morphisms fμ

j : Xf (μ) → Yμ, 
 j ∈ J, such that, for every related pair μ ≤ μ' in M, there exists a λ ∈ Λ,  

λ ≥  f (μ),  f (μ'), and there exists a  j ∈ J so that, for every  j' ≥  j,

( ) ( )
.jj

μ f μ λ μμ f μ λμ
f p q f p

′′
′ ′′=

If the index function  f  is increasing and, for every pair μ ≤ μ', one may put λ ≥  f (μ'), then ( f ,  fμ
j) is said to be a 

simple J-morphism. If, in addition, M = Λ and  f  = 1Λ, then (1Λ,  fλ
j) is said to be a level J-morphism. Further, if the 

equality holds for every  j ∈ J, then ( f ,  fμ
j) : X → Y is said to be a commutative J-morphism. (If there exists min  J ≡  j*, 

the commutativity means that one may put  j =  j*.)
Remark 1. The equality condition of Definition 1 obviously holds for every λ' ≥ λ as well. Every commutative 

J-morphism of inverse systems ( f ,  fμ
j) : X → Y yields a family of morphisms ( f  

j =  f ,  fμ
j) : X → Y,  j ∈ J, of inv-C. On 

the other side, every family of simple morphisms ( f  
j,  fμ

j) : X → Y,  j ∈ J, of inv-C, such that  f  
j =  f  for all  j, determines 

the unique commutative J-morphism of the inverse systems ( f ,  fμ
j) : X → Y. This indicates the significant difference 

between (a huge generalization of) the standard morphisms of inverse systems comparing to the new J-morphisms.
Lemma 1. Let ( f ,  fμ

j) : X → Y and (g, gv
j) : Y → Z = (Zv, rvv', N) be J-morphisms (of inverse systems in a category C). 
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Then (h, hv
j), where h =  fg and hv

j = gv
j f  

j
g(v), 

 j ∈ J, v ∈ N, is a J-morphism of X to Z.
Proof. Let v, v' ∈ N, v ≤ v', be given. Since (g, gv

j) is a J-morphism, there exists a μ ∈ M, μ ≥ g(v), g(v'), and there 
exists a  j0 ∈ J such that, for every  j' ≥  j0,

( ) ( )
.jj

ν g ν μ νν g ν μν
g q r g q

′′
′ ′′=

Since ( f ,  fμ
j) is a J-morphism, for the pair g(v) ≤ μ, there exist a λ1 ≥  fg(v),  f (μ) in Λ and a  j1 ∈ J such that, for every  j' 

≥  j1,

1 1( ) ( ) ( )( ) .j j
fg ν λ g ν μ μ f μ λg νf p q f p

′ ′
=

Further, for the pair g(v') ≤ μ, there exist a λ2 ≥  f g(v'),  f(μ) in Λ and a  j2 ∈ J such that, for every  j' ≥  j2,

22
( )( ) ( )( )

.j j
μ f μ λfg ν λ g ν μg ν

f p q f p
′ ′

′ ′′ =

Since Λ and J are directed, there exist λ ∈ Λ, λ ≥ λ1, λ2, and a  j ∈ J,  j ≥  j0, 
 j1, 

 j2, respectively. Then, for every  j' ≥  j, 
one straight for wardly establishes

( )( ) ( )( )
,j j jj

ν fg ν λg ν νν fg ν λν g ν
g f p r g f p

′ ′ ′′
′ ′′ ′=

which proves that (h =  fg, hv
j = gv

j f  
j

g(v)) : X → Z is a J-morphism.                                                                                       □
Lemma 1 enables us to define the composition of J-morphisms of inverse systems: If ( f ,  fμ

j) : X → Y and (g, gv
j) : 

Y → Z, then (g, gv
j)( f ,  fμ

j) = (h, hv
j) : X → Z, where h = fg i hv

j = gv
j f  

j
g(v). Clearly, this composition is associative.

Lemma 2. The composition of commutative J-morphisms of inverse systems in C is a commutative J-morphism.
Proof. It is a straightforward consequence of the defining coordinatewise (by j ∈ J) composition.
Given an inverse system X = (Xλ, pλλ', Λ) in C, let (1Λ,  1j

Xλ
), consists of the identity function 1Λ and, for each λ ∈ 

Λ, of the family induced by the same identity morphism 1j
Xλ

 = 1Xλ
, j ∈ J, of C. Then (1Λ,  1j

Xλ
) : X → X is a J-morphism 

(commutative and leveled). One readily sees that, for every ( f ,  fμ
j) : X → Y and every (g, gλ

j) : Z → X, ( f ,  fμ
j)(1Λ,  1j

Xλ
) = ( 

f ,  fμ
j) and (1Λ,  1j

Xλ
)(g, gλ

j) = (g, gλ
j) hold. Thus, (1Λ,  1j

Xλ
) may be called the identity J-morphism on X.

By summarizing, for every category C and every directed partially ordered set J, there exists a category, denoted by 
invJ-C, consisting of the object class Ob(invJ-C) = Ob(inv-C) and of the morphism class Mor(invJ-C) of all the sets (invJ-C)
(X, Y) of all J-morphisms ( f ,  fμ

j) of X to Y, endowed with the composition and identities described above. By Lemma 
2., there exists a subcategory (invJ-C)c of invJ-C with the same object class and with the morphism class Mor(invJ-C)c 
consisting of all commutative J-morphisms of inverse systems in C.

Let us now define an appropriate equivalence relation on each set (invJ-C)(X, Y).
Definition 2. A J-morphism ( f ,  fμ

j) : X → Y of inverse systems in C is said to be equivalent to a J-morphism ( f ',  f 'μ
j) :

X → Y, denoted by ( f ,  fμ
j) ~ ( f ',  f 'μ

j), if every μ ∈ M admits a λ ∈ Λ, λ ≥  f (μ),  f ' (μ), and a j ∈ J such that, for every  j' ≥  j, 

( ) ( )
.j j

μ f μ λ μ f μ λ
f p f p

′ ′
′

′=
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Lemma 3. The defining equality holds for every λ' ≥ λ as well, and the relation ~ is an equivalence relation on each 

set (invJ-C)(X, Y). The equivalence class [( f ,  fμ
j)] of a J-morphism ( f ,  fμ

j) : X → Y is briefly denoted by  f 
J ≡  f.

Proof. The first claim is trivial. The relation ~ is obviously reflexive and symmetric. To prove transitivity, let, for a 
given μ ∈ M, the indices λ1 and  j1 realize the first relation, ( f ,  fμ

j) ~ ( f ',  f 'μ
j), and the indices λ2 and  j2-the second one-( f ',

 f 'μ
j) ~ ( f '',  f ''μ

j). Since Λ and J are directed, there exist a λ ≥ λ1, λ2 and a  j ≥  j1, 
 j2 respectively, that realize transitivity, ( f ,

 fμ
j) ~ ( f '',  f ''μ

j).
Lemma 4. Let ( f ,  fμ

j), ( f ',  f 'μ
j) : X → Y and (g, gv

j), (g', g'v
j) : Y → Z be J-morphisms of inverse systems in C. If ( f ,  

fμ
j) ~ ( f ',  f 'μ

j) and (g, gv
j)(g', g'v

j), then (g, gv
j)( f ,  fμ

j) ~ (g', g'v
j)( f ',  f 'μ

j).
Proof. According to Lemma 3. (transitivity), it suffices to prove that (g, gv

j)( f ,  fμ
j) ~ (g, gv

j)( f ',  f 'μ
j) and (g, gv

j)( f ,
 fμ

j) ~ (g', g'v
j)( f ,  f 

μ
j). Given a v ∈ N, choose a λ ∈ Λ, λ ≥  fg(v),  f 'g(v), and a  j ∈ J, by ( f ,  fμ

j) ~ ( f ',  f 'μ
j) for μ = g(v). 

Then, for every  j' ≥  j,

( )( ) ( ) ( )
.j jj j

ν fg ν λ νg ν g ν f g ν λ
g f p g f p

′ ′′ ′
′

′=

Thus, (g, gv
j)( f ,  fμ

j) ~ (g, gv
j)( f ',  f 'μ

j). Further, if (g, gv
j) ~ (g', g'v

j), then for a given v ∈ N there exist a μ ≥ g(v), g'(v) 
and a  j1 such that

( ) ( )
,j j

ν g ν μ ν g ν μ
g q g q

′ ′
′

′=

whenever  j' ≥  j1. Since ( f ,  fμ
j) is a J-morphism, there exist a λ1 ≥  fg(v),  f (μ) and a  j2 such that, for every  j' ≥  j2,

1 1( ) ( ) ( )( ) .j j
fg ν λ g ν μ μ f μ λg νf p q f p

′ ′
=

In the same way, there exist a λ2 ≥  fg'(v),  f (μ) and a  j3 such that, for every  j' ≥  j3,

22
( )( ) ( )( )

.j j
μ f μ λfg ν λ g ν μg ν

f p q f p
′ ′

′ ′′ =

Since Λ and J are directed, there exist a λ ≥ λ1, λ2, and  j ≥  j1, 
 j2, 

 j3 respectively. Then, for every  j' ≥  j, 

( )( ) ( )( )
.j jj j

ν fg ν λ νg ν fg ν λg ν
g f p g f p

′ ′′ ′
′′

′=

Therefore, (g, gv
j)( f ,  fμ

j) ~ (g', g'v
j)( f ,  fμ

j).                                                                                                                    □
By Lemmata 3 and 4 one may compose the equivalence classes of J-morphisms of inverse systems in C by means 

of any pair of their representatives, i.e., gf = h ≡ [(h, hv
j)], where (h, hv

j) = (g, gv
j)( f ,  fμ

j) = ( fg, gv
j f  

j
g(v)). The corresponding 

quotient category (invJ-C)/~ is denoted by proJ-C. There exists a subcategory (proJ-C)c ⊆ proJ-C determined by all 
equivalence classes having commutative representatives. Clearly, (proJ-C)c is isomorphic to the quotient category (invJ-C)c /~.
Further, one may consider pro-C = (inv-C)/~ as a subcategory of (proJ-C)c and, consequently, as a subcategory of proJ-C 
(see also Theorem 1 below). First, recall the well known lemma (see [13], Lemma I. 1.1):

Lemma 5. Let (Λ, ≤) be a directed set and let (M, ≤) be a cofinite directed set. Then every function  f  : M → Λ 
admits an increasing function  f ' : M → Λ such that  f  ≤  f '. 
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Lemma 6. Let X = (Xλ, pλλ', Λ) and Y = (Yμ, qμμ', M) be inverse systems in C with M cofinite. Then every morphism 
f = [( f ,  fμ

j)] : X → Y of proJ-C admits a simple representative ( f ',  f 'μ
j) : X → Y.

Proof. Let μ ∈ M. If μ has no predecessors, choose any λ ∈ Λ, λ ≥  f (μ), and put φ(μ) = λ. If μ is not an initial 
element of M, let μ1 …, μm ∈ M, m ∈ N, be all the predecessors of μ (M is cofinite). Since ( f ,  fμ

j) is a J-morphism, for 
every i ∈ {1, …, m} and every pair μi ≤ μ, there exists a λi ∈ Λ, λi ≥  f (μi), 

 f (μ), and there exists a  ji ∈ J, such that, for 
every  j' ≥  ji, the appropriate condition holds. Choose any λ ∈ Λ, λ ≥ λi for all i ∈ {1, …, m} (Λ is directed), and put φ(μ) 
= λ. This defines a function φ : M → Λ. Notice that  f  ≤ φ. By Lemma 5., there exists an increasing function  f ' : M → Λ 

such that φ ≤  f '. Hence,  f  ≤  f '. Now, for every μ ∈ M, put  f 'μ
j = fμ

jpf (μ) f '(μ). One readily verifies that ( f ',  f 'μ
j) : X → Y is 

a simple J-morphism and that ( f ',  f 'μ
j) ~ ( f ,  fμ

j).
Let us define a certain functor I_ ≡ I_C

J : pro-C → proJ-C. Put I_ (X) = X, for every inverse system X in C. If  f ∈ pro-
C(X, Y ) and if ( f ,  fμ) is a representative of  f, put

( ) [( , )] ( )( , ),J j J
μI f f pro= = ∈ -f f X YC

where ( f ,  fμ
j) is induced by ( f ,  fμ), i.e., for each μ ∈ M,  fμ

j =  fμ for all  j ∈ J. One straightforwardly verifies that I_( f ) is 
well defined. Notice that every induced J-morphism is commutative. Therefore, I_ is a functor of pro-C to the subcategory  

(proJ-C)c ⊆ proJ-C.
Theorem 1. The functor I_ : pro-C → (proJ-C)c ⊆ proJ-C is faithful.
Proof. The functoriality follows straightforwardly. Let  f 

J = I_( f ) = I_( f ') =  f ' 
J. Let ( f ,  fμ) and ( f ',  f 'μ) be any 

representatives of  f and  f ' respectively. By definition of the functor I_,  f 
J = [( f ,  fμ

j =  
 fμ)] and  f ' 

J = [( f ',  f 'μ
j =  f 'μ)]. Since 

( f ,  fμ
j) ~ ( f ',  f 'μ

j), for every μ ∈ M , there exist a λ ≥  f (μ),  f '(μ) and a  j such that, for every  j' ≥  j,

( ) ( )
.j j

μ f μ λ μ f μ λ
f p f p

′ ′
′

′=

This means that

( ) ( )μ f μ λ μ f μ λ
f p f p ′

′=

holds. Therefore, ( f ,  fμ) ~ ( f ',  f 'μ), i.e.,  f  =  f '.                                                                                                                    □
Remark 2. The functor I_ is not full. For instance, let us consider the restriction (pro-C)(X, T) → (proJ-C)c(X, T), 

where T = (T0 ≡ T) is a rudimentary inverse system. Let  f  ∈ (pro-C)(X, T). Then every representative ( f ,  f0) of  f  is 
uniquely determined by a λ0 ∈ Λ ( f (0) = λ0) and by a morphism  f0 ≡  fλ0

 ∈ C(Xλ0
, T). However, it is not the case for an  

f J ∈ (proJ-C)c (X, T). Indeed, if ( f ,  f0
j) is a representative of  f J, then  f (0) = λ0 ∈ Λ, while ( f0

j ≡  fλ0

j ) j∈J is a family of 
morphisms  fλ0

j  ∈ C(Xλ0
, T). Notice that ( f ,  f0

j) ~ ( f ',  f '0
j) if and only if

0 0
0 0 0 0( , ) ( ) ( )    .j j

λ λ λ λ
λ λ λ j j j f p f p

′ ′
′

′′ ′∃ ∃ ∀ = 

By the well known “Mardešić trick”, every inverse system X in C is isomorphic (in pro-C) to a cofinite inverse 
system X'. If  f  : X → X' is an isomorphism of pro-C, then I_( f ) : X → X' is an isomorphism of proJ-C. Therefore, the 
next corollary holds.
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Corollary 1. Every inverse system X in C is isomorphic in proJ-C to a cofinite inverse system X'.
A morphism  f  : X → Y of proJ-C does not admit, in general, a level representative. However, the following 

“reindexing theorem” will help to overcome some technical difficulties concerning this fact. 
Theorem 2. Let  f  ∈ (proJ-C)(X, Y ). Then there exist inverse systems X' and Y' in C having the same cofinite index 

set (N, ≤), there exists a morphism  f ' : X' → Y' having a level representative (1N,  f 'v
j) and there exist isomorphisms i : 

X → X' and j : Y → Y' of proJ-C, such that the following diagram in proJ-C commutes

.
′

′ ′

→
↓ ↓

→

f

f

X Y
i j

X Y

Proof. Let  f  ∈ (proJ-C)(X, Y ). By Corollary 1, there exist cofinite inverse systems X~ = (X~α, p~αα', A) and Y~ = (Y~β, 
q~ββ', B), and there exist isomorphisms u : X → X~ and v : Y → Y~ of proJ-C. Let  f ~ = vfu-1 : X~ → Y~. By Lemma 6, there 
exists a simple representative (w, wβ

J) of  f ~. Let 

{ ( , ) | , , ( ) } ,N ν α β α A β B w β α A B= ≡ ∈ ∈ ≤ ⊆ ×

and define (N, ≤) coordinatewise, i.e., v = (α, β) ≤ (α', β') = v' if and only if α ≤ α' in A and β ≤ β' in B. Clearly, N is 
preordered. Let any v = (α, β), v' = (α', β') ∈ N be given. Since B is directed, there exists a β0 ≥ β, β'. Since A is directed, 
there exists an α0 ≥ α, α', w(β0). Then (α0, β0) ≡ v0 ∈ N and v0 ≥ v, v'. Thus, N is directed. Further, since A and B are 
cofinite and since N ⊆ A × B is (pre)ordered coordinatewise, the set N is cofinite too. Let us now construct desired 
inverse systems X' = (X'v, p'vv', N) and Y' = (Y'v, q'vv', N). Given a v = (α, β) ∈ N, put X'v = X~α and Y'v = Y~β. For every 
related pair v = (α, β) ≤ (α', β') = v' in N, put p'vv' = p~αα' and q'vv' = q~ββ'. Now, for each v = (α, β) ∈ N and every j ∈ J, put     

f '  
j

v   = wβ
jp~w(β)α : X'v → Y'v. Then (1N,  f 'v

j) : X' → Y' is a simple J-morphism. Indeed, if v ≤ v', then β ≤ β'. Since (w, wβ
J) 

is simple, there exists a j ∈ J such that, for every  j' ≥  j,

( ) ( )
.j j

β w β w β ββ β
w p q w

′ ′
′ ′ ′= 

Since α ≥ w(β), α' ≥ w(β'), w(β') ≥ w(β) and α' ≥ α, it implies that

( ) ( ) ( ) ( ) ( )
.j j j jj

ν w β αβ βνν αα w β w β w β α ββ w β α ννβ ν
f p w p p w p p q w p q f

′ ′ ′ ′′
′ ′ ′ ′ ′ ′ ′ ′ ′′ ′

′′ ′ ′= = = =     

Let s : N → Λ be defined by putting s(v) = α, where v = (α, β), and let, for each v ∈ N and every j ∈ J, sv
j : X~α → X'v 

= X~α be the identity 1X~α
 of C. In the same way, let t : N → M be defined by putting t(v) = β, and let, for each v ∈ N and 

every j ∈ J, tv
j : Y~β → Y'v = Y~β be the identity 1Y~β

 of C. It is readily seen that s = [(s, sv
j)] : X~ → X' and t = [(t, tv

j)] : Y~ → Y' 

are simple commutative morphisms of proJ-C. Even more, they are induced by morphisms (s, sv = 1X~α
) and (t, tv = 1Y~β

) 

of inv-C respectively. Notice that, in pro-C, [(s, sv)] : X
~ → X' and [(t, tv)] : Y

~ → Y' are isomorphisms. Since s = I_ [(s, sv)]
and t = I_ [(t, tv)], we infer that s and t are isomorphisms of proJ-C. Moreover, for every v = (α, β) ∈ N and every j ∈ J, 
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( ) ( ) ( ) ,j jj j j j
ν ν ν νwt ν α w β αβt νt w p w p f f s′ ′= = = 

which implies that

( , )( , ) ~ (1 , )( , ).jj j j
ν N ν νβt t w w f s s′

Therefore, t f ~ = f 's. Finally, put i ≡ su : X → X' and j ≡ tv : Y → Y', which are isomorphisms of proJ-C . Then 

,′ ′= = = =jf tvf tfu f su f i

that completes the proof of the theorem.                                                                                                                              □
Theorem 3. Let C be a category. Then
(i) pro-C = pro(1)-C;
(ii) pro*-C = proN-C;
(iii) If J is a directed partially ordered set having max J, then proJ-C ≌ pro-C.
Especially, the “inclusion” functor I : pro-C → proJ-C is a category isomorphism;
(iv) If J and K are finite directed partially ordered sets, then one may identify proJ-C ≌ proK-C ≌ pro-C.
(v) If there exists max J, then, for every L, there exists the canonical inclusion functor I_ : proJ-C → proL-C keeping 

the objects fixed. 
Proof. Statements (i) and (ii) are obviously true by the definition of proJ-C. In order to prove (iii), it suffices to 

show that the functor I : pro-C → proJ-C is fully faithful, i.e., that every 

( ) ( )[( , )] : , ,Λ , ,j
μ λ μλλ μμ

f f X p Y q M′ ′= = → =f X Y

of proJ-C is uniquely determined by

( , ) : ,  max ,j
μf f j J

∗ ∗→ ≡X Y

which belongs to (inv-C)(X, Y). Indeed, since max J ≡  j
* exists, Definition 1 implies that 

( ) ( ( ),  ( ))μ μ λ f μ f μ′ ′∀ ≤ ∃ ≥

( ) ( )
.jj

μ f μ λ μμ f μ λμ
f p q f p

∗∗
′ ′′=

This means that

( , ) :j
μf f

∗
→X Y

is a morphism of inv-C. Further, if
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( , ) :j
μf f′ ′ →X Y

is an arbitrary representative of  f , then

( , ) :j
μf f

∗′ ′ →X Y

belongs to (inv-C)(X, Y) as well and, moreover, ( f ',  f 'μ
j*) ~ ( f ,  fμ

j*) in inv-C is equivalent to ( f ',  f 'μ
j) ~ ( f ,  fμ

j) in invJ-C. 
The conclusion follows. Statement (iv) is an immediate consequence of (iii) because every such finite set must have a 
unique maximal element. Statement (v) follows by (iv) because every  f  = [( f ,  fμ

j)] ∈ (proJ-C)(X, Y ) is determined by 
( f ,  fμ

maxJ) ∈ (inv-C)(X, Y ), which induces a unique  f ' = [( f ' =  f ,  f 'μ
l =  fμ

maxJ)] ∈ (proL-C)c (X, Y ) ⊆ proL-C)(X, Y ).         □
According to Theorem 3, only a (J, ≤) having no maximal element is interesting because the existence of max 

J turns us back to the “trivial” case of pro-C. In order to relate proJ-C to a proK-C in a “nontrivial” case, we have 
established the following fact only.

Theorem 4. Let C be a category, let J be a well ordered set and let K be a directed partially ordered set, both 
without maximal elements. If there exists an increasing function φ  : J → K such that φ [J] is cofinal in K, then there 
exists a functor

: - -J KT pro pro→C C

keeping the objects fixed, and T does not depend on φ . Furthermore, for every pair X, Y of inverse systems in C, the 
equivalence

(  in - ) (  in - )J Kpro pro≅ ⇔ ≅X Y X YC C

holds true.
Proof. Since φ  : J → K is cofinal, for each k ∈ K, the subset

{ | ( )}kJ j k j J= ≤ ⊆φ

is not empty. Since J is well ordered, there exists min Jk. Furthermore,

min mink k k k
k k j J J j′ ′

′≤ ⇒ ≡ ≤ ≡

because φ  is increasing. Given an

( )[( , )] : , , Λ ( , , )j
μ λ μλλ μμ

f f X p Y q M′ ′= = → =f X Y

of proJ-C, put

: Λf f M′ = →

and
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( )
( )( )  : .kjk

μ μ μf μ
μ M k K f f X Y′

′∀ ∈ ∀ ∈ = →

Then

( , ) :k
μf f′ ′ →X Y

is a morphism of invK-C. Indeed, since ( f ,  fμ
j) is a morphism of invJ-C, given a related pair μ ≤ μ', there exist a λ ≥  f (μ),  

f (μ') and a j such that, for every j' ≥ j,

( ) ( )
.jj

μ f μ λ μμ f μ λμ
f p q f p

′′
′ ′′=

Choose k = φ ( j), and let k' ≥ k. Then jk' ≥ jk and

( )( ) ( ) ( )
.kk

jjk k
μ μ f μ λf μ λ μμ f μ λ μμ f μ λμ μ

f p f p q f p q f p
′ ′′′

′ ′ ′ ′ ′′ ′
′ ′= = =

that proves the claim. Denote

[( , )] :k
μf f′ ′ ′= →f X Y

which is a morphism of proK-C. Now a straightforward verification shows that the assignments

( ) ,  ( )T T ′= =X X X f f f 

define a functor

: - -J KT pro pro→C C

Finally, if ψ : J → K has the same properties as φ , then one readily sees that ( f '', 
 f ''μ

k) : X → Y, constructed by 
means of ψ, is equivalent to ( f ', 

 f 'μ
k) in invK-C. Thus, T_  does not depend on any such particular function. In order to 

prove the last statement, firstly notice that the implication 

(  in - ) (  in - )J Kpro pro≅ ⇒ ≅X Y X YC C

holds because there exists the functor T_  : proJ-C → proK-C. Conversely, let X ≌ Y of proK-C, Choose any isomorphism g 
: X → Y of proK-C, and let (g, gμ

k) : X → Y of invK-C be any representative of g. Let us define 

: Λf g M= →

and
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( )
( )( )( )  : .j j

μ μ f μ μμ M j J f g X Y∀ ∈ ∀ ∈ = →φ

Since φ  is cofinal (i.e., for every k ∈ K there exists a j ∈ J such that φ ( j) ≥ k) and increasing (especially, for every j' 
≥ j, φ ( j') ≡ k' ≥ φ ( j) ≥ k) one can easy verify that 

( , ) :j
μf f →X Y

is a morphism of invJ-C, and thus, the equivalence class 

[( , )] :j
μf f= →f X Y

is a morphism of proJ-C. Let v ≡ g-1 : Y → X of proK-C be the inverse of g, and let (v, vλ
k) : Y → X of invK-C be any 

representative of v. Let us define

: Λu v M= →

and

( )
( )( Λ)( )  : .j j

u λ λλ λλ j J u v Y X∀ ∈ ∀ ∈ = →φ

Now, as for ( f ,  fμ
j) before, one readily verifies that

( , ) :j
λu u →Y X

is a morphism of invJ-C, and thus, the equivalence class

[( , )] :j
λu u= →u Y X

is a morphism of proJ-C. Since vg = 1X and gv = 1Y in proK-C, the relations

( ) Λ( , ) ~ (1 ,1 ) :k k k
λ v λ λgv v g →X X

and

( )( , ) ~ (1 ,1 ) :k k k
μ g μ M μvg g v →Y Y

hold in invK-C. Then, by our construction, one straightforwardly verifies that

Λ( )( , ) ~ (1 ,1 ) :j j j
λ u λ λfu u f →X X

and
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( )( , ) ~ (1 ,1 ) :jj j
μ M μf μuf f u →Y Y

hold in invJ-C. Therefore, u ≡  f -
1 is the inverse of  f  in proJ-C, implying that X ≌ Y in proJ-C.                                         □

4. The J-shape category of a category 
An enriched pro-category proJ-C is interesting and useful by itself because, in general, it divides (classifies) the 

objects into larger classes (isomorphisms types) than the underlying pro-category pro-C (see Examples 7.1 and 7.2 of 
[26]). Moreover, in many important cases one can go on much further, i.e., to develop the corresponding J-shape theory.

Let D be a full (not essential, but a convenient condition) and pro-reflective subcategory of C. Let p : X → X and 
p' : X → X' be D-expansions of the same object X of C, and let q : Y → Y and q' : X → X' be D-expansions of the same 
object Y of C. Then there exist two canonical isomorphisms i : X → X' and j : Y → Y' of pro-D. Consequently, for every 
directed partially ordered set J, the (induced) morphisms i ≡ I_(i) : X → X' and j ≡ I_( j) : Y → Y' are isomorphisms of 
proJ-D. A J-morphism  f  : X → Y is said to be proJ-D equivalent to a morphism  f ' : X' → Y', denoted by  f  ~  f ', if the 
following diagram in proJ-D commutes:

.

′

′

′

→

↓ ↓

→

i

j

X X

f f

Y Y

According to the analogous facts in pro-D, and since I_ is a functor, the diagram defines an equivalence relation on 
the appropriate subclass of Mor(proJ-D), such that  f  ~  f ' and g ~ g' imply g f  ~ g'f ' whenever these compositions exist. 
The equivalence class of such an  f  is denoted by 〈 f 〉. Further, given p, p', q, q' and  f , there exists a unique  f ' (= jfi-1) 
such that  f  ~  f '.

We are now to define the (abstract) J-shape category ShJ
(C, D) for (C, D) as follows. The objects of ShJ

(C, D) are all the 
objects of C. A morphism F ∈ ShJ

(C, D)(X, Y ) is the (proJ-D)-equivalence class 〈 f 〉 of a J-morphism  f  : X → Y of proJ-D, 
with respect to any choice of a pair of D-expansions p : X → X, q : Y → Y. In other words, a J-shape morphism F : X → 
Y is given by a diagram

X
F

Y

←
↓ ↓

←

p

q

X
f

Y

in proJ-C. The composition of such an F : X → Y, F = 〈 f 〉 and a G : Y → Z, G = 〈g〉, is defined by the representatives, i.e., 
GF : X → Z, GF = 〈g f 〉. The identity J-shape morphism on an object X, 1X : X → X, is the (proJ-D)-equivalence class 〈1X 

〉

of the identity morphism 1X of proJ-D. Since

( , ) ( , ) - ( , )J JSh X Y pro≈ X YC D D

is a set, the J-shape category ShJ
(C, D) is well defined. One may say that proJ-D is the realizing category for the J-shape 
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category ShJ
(C, D).

For every  f  : X → Y of C and every pair of D-expansions p : X → X, q : Y → Y, there exists an  f  : X → Y of 
proJ-D, such that the following diagram in proJ-C commutes: 

.
X

f

Y

←
↓ ↓

←

p

q

X
f

Y

(Hereby, we consider C ⊆ pro-C to be subcategories of proJ-C!) The same  f  and another pair of D-expansions p' : X 
→ X', q' : Y → Y' yield an  f ' : X' → Y' of proJ-D. Then, however,  f  ~  f ' in proJ-D must hold. Thus, every morphism  f  
∈ C(X, Y ) yields a (proJ-D)-equivalence class 〈 f 〉, i.e. a J-shape morphism F ∈ ShJ

(C, D)(X, Y ). If one defines SJ(X) = X, X 
∈ ObC, and SJ( f ) = F = 〈 f 〉,  f  ∈ MorC, then 

( , ) ( , ):J J JS S Sh≡ →C D C DC

becomes a functor, called the (abstract) J-shape functor. Comparing to the (abstract) shape functor, we know that the 
restriction of SJ to D into the full subcategory of ShJ

(C, D), determined by ObD, is not a category isomorphism (Example 
3 of [26]). Nevertheless, we shall prove that P and Q are isomorphic objects of D if and only if they are isomorphic in 
ShJ

(C, D), i.e. they are of the same J-shape (Theorem 5 below). Thus, clearly, the J-shape type classification on D coincides 
with the shape type classification. Further, recall that for every X ∈ ObC and every Q ∈ ObD the shape functor induces 
a bijection 

( , )| : ( , ) ( , ).S X Q Sh X Q⋅ → C DC

However, in the same circumstances, the J-shape functor induces an injection

( , )| : ( , ) ( , ),J JS X Q Sh X Q⋅ → C DC

which, in general, is not a surjection (Example 3 of [26]). Finally, the functor ShJ
(C, D) factorizes as ShJ

(C, D) = I(C, D)S(C, D), 

where S(C, D) : C → Sh(C, D) is the (abstract) shape functor, while I(C, D) : Sh(C, D) → ShJ
(C, D) is induced by the “inclusion” 

functor I_ ≡ I_D : pro-D→ proJ-D. (This implies that the induced function C(X, Q) → ShJ
(C, D)(X, Q) is an injection.) 

As in the case of the abstract shape, the most interesting example of the above construction is C = HTop-the 
homotopy category of topological spaces and D = HPol-the homotopy category of polyhedra (or D = HANR-the 
homotopy category of ANR’s for metric spaces). In this case, one speaks about the (ordinary or standard) J-shape 
category 

( , ) ( )J J J
HTop HPolSh Sh Top Sh≡ ≡

of topological spaces and of (ordinary or standard) J-shape functor

: ,J JS HTop Sh→
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which factorizes as SJ = IS, where S : HTop → Sh is the shape functor, and I : Sh → ShJ is induced by the “inclusion” 
functor I_ 

HPol ≡ pro-HPol → proJ-HPol. The realizing category for ShJ is the category proJ-HPol (or proJ-HANR). 
The underlying theory might be called the (ordinary or standard) J-shape theory (for topological spaces). Clearly, on 
locally nice spaces (polyhedra, CW-complexes, ANR’s, …) the J-shape type classification coincides with the shape type 
classification and, consequently, with the homotopy type classification. 

Similarly to the case of the shape of compacta, let us consider the homotopy (sub)category of compact metric 
spaces, HcM ⊆ HTop. Since HcPol ⊆ HcM and HcANR ⊆ HcM are “sequentially” pro-reflective (and homotopically 
equivalent) subcategories, there exist the J-shape category of compacta, 

( , ) ( , )( ) ,J J J
HcM HcPol HcM HcANRSh cM Sh Sh≡ ≅

and the corresponding (restriction of the) J-shape functor

: ( ),J JS HcM Sh cM→

such that SJ = IS, where S : HcM → Sh(cM) is the shape functor on compacta, and I : Sh(cM) → ShJ(cM) is induced by 
the “inclusion” functor  I_ : tow-HcPol → towJ-HcPol (or  I_ : tow-HcANR → towJ-HcANR). The category ShJ(cM) is a 
full subcategory of ShJ. Notice that the realizing category for ShJ(cM) is the category towJ-HcPol as well as the category 
towJ-HcANR.

The following facts are immediate consequences of Theorems 3 and 4 of the previous section.
Corollary 2. Let C be a category and let D ⊆ C be a pro-reflective subcategory. Then
(i) Sh(C, D) = Sh{1}

(C, D);

(ii) Sh*
(C, D) = ShN(C, D);

(iii) If J is a directed partially ordered set having max J, then ShJ
(C, D) ≌ Sh(C, D).

Corollary 3. Let C be a category, let D ⊆ C be a pro-reflective subcategory, let J be a well ordered set and let K be 
a directed partially ordered set, both without maximal elements. If there exists an increasing function φ  : J → K such 
that φ [J] is cofinal in K, then there exists a functor

( , ) ( , ): J KT Sh Sh→C D C D

keeping the objects fixed, and T does not depend on φ . Furthermore, for every pair X, Y of objects of C, the equivalence

( , ) ( , )(  in ) (  in )J KX Y Sh X Y Sh≅ ⇔ ≅C D C D

holds true.
An important property of a shape theory is that the shape type of a “nice” object of C and its isomorphism class (in C) 

coincide. We are to show this property holds for a J-shape theory as well. Let D be a full and pro-reflective subcategory 
of C, let X ∈ ObC and let p = (pλ) : X → X = (Xλ, pλλ', Λ) be a D-expansion of X. Further, let J be a directed partially 
ordered set, let Q ∈ ObD and let a family (φ j) of C-morphisms φ 

j : X → Q, j ∈ J, be given. We say that (φ 
j) uniformly 

factorizes through p if there exists a (fixed) λ ∈ Λ such that, for every j, φ 
j factorizes through pλ. Such a family (φ 

j) determines a J-shape morphism F : X → Q. Indeed, then there is a λ ∈ Λ such that, for every j ∈ J, there exists a 
morphism  f 

j : Xλ → Q of D (D ⊆ C is full) satisfying φ 
j =  f 

jpλ. Hence, the family ( f 
j) (with the index function {1} → Λ, 

1 


 λ determines a unique morphism  f  = [( f 
j)] : X → Q = (Q) of proJ-D. Since 1 : Q → Q is a D-expansion of Q, the 

morphism  f  determines a unique J-shape morphism F = 〈 f 〉 : X → Q of ShJ
(C, D). We say that such an F is induced by (φ 

j). 
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Notice that the above construction depends on the index λ. The converse reads as follows. 
Lemma 7. Let X ∈ ObC, let p = (pλ) : X → X = (Xλ, pλλ', Λ) be a D-expansion of X and let Q ∈ ObD. Then, for 

every directed partially ordered set J, every J-shape morphism F : X → Q of ShJ
(C, D) is induced by a family of morphisms 

φ 
j : X → Q of C, j ∈ J, such that (φ 

j) uniformly factorizes through p.
Proof. Let F : X → Q be a J-shape morphism of ShJ

(C, D). For D-expansions p = (pλ) : X → X and 1 : Q → Q = 
(Q), there exists a representative f  : X → (Q) of proJ-D of F. Consequently, there exist a λ ∈ Λ and a family ( f 

j) of 
D-morphisms  f 

j : Xλ → Q, j ∈ J, which determines  f . Then, by putting φ 
j =  f 

jpλ, j ∈ J, one obtains the desired inducing 
family (φ 

j) for F.                                                                                                                                                                  □
Let (φ 

j) and (φ' j) uniformly factorize through the same D-expansion p : X → X (via a λ and a λ' respectively). Then (φ 
j)

is said to be almost equal to (φ' j), if there exist a λ0 ≥ λ, λ' and a j0 ∈ J such that 

0 0
0( )  .j j

λλ λ λ
j j f p f p ′

′∀ ≥ =

Clearly, it is an equivalence relation. Further, since p is a D-expansion, (φ 
j) and (φ' j) are almost equal, if and only 

if there exists a j0 ∈ J such that φ 
j = φ' j : X → Q, for all j ≥ j0.

Lemma 8. Let (φ 
j) and (φ' j) (of X ∈ ObC to Q ∈ ObD) uniformly factorize through the same D-expansion p : X → X, 

and let F : X → Q and F' : X → Q of ShJ
(C, D) be induced by (φ 

j) and (φ' j) respectively. Then F = F' if and only if (φ 
j) and (φ' j)

are almost equal. 
Proof. Let (φ 

j) and (φ' j) uniformly factorize through the same p : X → X, i.e., let there exist λ, λ' ∈ Λ such that, for 
every j ∈ J, φ 

j =  f 
jpλ and φ' 

j =  f ' 
jpλ', where  f 

j : Xλ → Q and  f ' 
j : Xλ'  → Q are morphisms of D. Let F : X → Q and F' 

: X → Q be the J-shape morphisms of ShJ
(C, D) induced by (φ 

j) and (φ' j) respectively. Let  f ,  f ' : X → Q = (Q) of proJ-D 
be representatives of F, F' respectively. Now, if F = F' then  f  =  f ', and  f ,  f ' are determined by the families ( f 

j), ( f ' 
j) 

respectively. Therefore, there exist a λ0 ≥ λ, λ' and a j0 ∈ J such that 

0 0
0( )  .j j

λλ λ λ
j j f p f p ′

′∀ ≥ =

This means that (φ 
j) and (φ' j) are almost equal. Conversely, if (φ 

j) and (φ' j) are almost equal, then the 
corresponding families ( f 

j) and ( f ' 
j) induce the same morphism  f  : X → (Q) of proJ-D. Consequently, the families (φ 

j) 
and (φ' j) induce the same J-shape morphism F = 〈 f 〉 = F' : X → Q of ShJ

(C, D).                                                                   □
Consider now the more special case where X ≡ P ∈ ObD too. Then 1 : P → P = (P) and 1 : Q → Q = (Q) are (the 

rudimentary) D-expansions. Thus, every J-shape morphism F : P → Q of ShJ
(C, D) is induced by a family of D-morphisms   

f j : P → Q, j ∈ J. Furthermore, any two such families ( f 
j) and ( f ' 

j) induce the same J-shape morphism, if and only if  f 
j 

=  f ' 
j for almost all j (all j ≥ j0, where j0 is a fixed index). This implies that there is a surjection

( , )( ( , )) ( , )J JP Q Sh P Q→ C DD

of the set of all J-families Φ = ( f 
j)j ∈ J of D-morphisms  f 

j : P → Q onto the set of all J-shape morphisms F : P → Q of 
ShJ

(C, D). Finally, one can readily see that if an F : P → Q is induced by an ( f 
j) and a G : Q → R is induced by a (g j), then 

the composition GF : P → R is induced by (g j f 
j). The following theorem generalizes Claim 3 of [26]. 

Theorem 5. Let D be a pro-reflective subcategory of C and let J be a directed partially ordered set. Then, for every 
pair P, Q ∈ ObD, the following statements are equivalent:
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(i) P and Q are isomorphic objects of D, P ≌ Q in D ⊆ C;
(ii) P and Q have the same shape, Sh(P) = Sh(Q), i.e., P ≌ Q in Sh(C, D);
(iii) P and Q have the same J-shape, ShJ(P) = ShJ(Q), i.e., P ≌ Q in ShJ

(C, D).
Proof. The equivalence (i) ⇔ (ii) is the well known fact. The implication (ii) ⇒ (iii) follows by the functor I(C, D) : 

Sh(C, D) → ShJ
(C, D). Let P, Q ∈ ObD have the same J-shape. Then there exists a pair of J-shape isomorphisms F : P → Q, 

G : Q → P such that GF = 1P and FG = 1Q in ShJ
(C, D). By the above consideration, there exist families ( f 

j) and (g j) of 
D-morphisms  f 

j : P → Q and g j : Q → P, j ∈ J, which induce F and G respectively. Furthermore, the families (g j f 
j) and 

( f 
jg j) induce 1P and 1Q (of ShJ

(C, D)). Since the constant family (1j
P = 1P) and (1j

Q = 1Q) also induce 1P and 1Q (of ShJ
(C, D))

respectively, Lemma 8 implies that g 
j
 f 

j = 1P and f jg 
j = 1Q hold for almost all j ∈ J. Consequently, P and Q are 

isomorphic objects of D, and thus, (iii) ⇒ (i).                                                                                                                      □

5. The continuity theorem for J-shape 
A very important benefit of the standard shape theory comparing to the homotopy theory is the continuity property, 

i.e., the category Sh admits the limit functor, while it fails for HTop. Moreover, in general, every (abstract) shape theory 
has the continuity property (Theorem I.2.6. of [13]). Further, the continuity property holds for every coarse and every 
weak shape theory (Theorems 1 and 2 of [24]). We shall prove hereby that every J-shape theory has the continuity 
property as well.

Theorem 6. Let D be a pro-reflective subcategory of C and let J be a directed partially ordered set. Let X, Y ∈ ObC, 
let q = (qμ) : Y → Y = (Yμ, qμμ', M) be a C-expansion of Y and let H = (Hμ) : X → SJ(Y) be a morphism of pro-ShJ

(C, D). 
Then there exists a unique J-shape morphism F : X → Y such that H = QF, where Q = (Qμ) = SJ(q) : Y → SJ(Y) is the 
morphism of pro-ShJ

(C, D) induced by q, i.e., for every μ ∈ M, Hμ = Qμ F, and Qμ is induced by qμ, Qμ = SJ(qμ). In other 
words, if q : Y → Y is a C-expansion, then Q = SJ(q) : Y → SJ(Y) is an inverse limit in ShJ

(C, D), i.e., every C-expansion q : 
Y → Y induces, for each X, a bijection

( , ) ( , )- ( ,  ( )) ( , ),J J Jpro Sh X S Sh X Y≈   YC D C D

defined by the following diagram

( )

.

( )
J

J

S

X
F

S Y

↓

←
q

H

Y



The proof consists of two steps. In the first one we consider the special case of a D-expansion q : Y → Y.
Lemma 9. Let D be a pro-reflective subcategory of C and let J be a directed partially ordered set. Let X, Y ∈ ObC, 

let q = (qμ) : Y → Y = (Yμ, qμμ', M) be a D-expansion of Y and let H = (Hμ) : X → SJ(Y) be a morphism of pro-ShJ
(C, D).  

Then there exists a unique morphism F : X → Y of ShJ
(C, D) for every μ ∈ M, Hμ = SJ(qμ)F.

Proof. Let X, Y ∈ ObC, let q = (qμ) : Y → Y = (Yμ, qμμ', M) be a D-expansion of Y. Let H = (Hμ) : X → SJ(Y) be a 
morphism of pro-ShJ

(C, D) such that, for every related pair μ ≤ μ', Hμ = SJ(qμμ')Hμ'. Let p = (pλ) : X → X = (Xλ, pλλ', Λ) be a 
D-expansion of X. Since every Yμ ∈ ObD, every J-shape morphism Hμ is represented by a unique morphism  fμ = [( fμ

j)] : 
X → 「Yμ」 of proJ-D (X, 「Yμ」) (

「Yμ」 is the rudimentary system associated with Yμ), via the following diagram 
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,

Yμ

μ μ

μ μ

X
H

Y Y

←
↓ ↓

  ← 

p
X

f

1

where  fμ
j : Xλ(μ) → Yμ, j ∈ J, are morphisms of D. Further, since Hμ = S 

J(qμμ')Hμ', μ ≤ μ', and S 
J(qμμ') is represented by 

qμμ' = [(q jμμ' = qμμ')], i.e., 

( ) ,

Yμ

Y
μ

μ μ

J
μμ μμ

μ μ

Y Y

S q

Y Y

′ ′

′ ′
′

  ← 

↑ ↑

  ←  

q

1

1

it follows that  fμ = qμμ' fμ' in proJ-D, μ ≤ μ'. Thus, the following diagram in proJ-D commutes

  

  
μμ

μ μ

μ μ
Y Y

′

′
′

  ← ← ←    q

X
f f   

 

This means that, for every pair μ ≤ μ', there exist a λ ≥ λ(μ), λ(μ') and a j ∈ J such that, for every j' ≥ j, the following 
diagram in D commutes:

( ) ( )

( ) ( )
.

μμ

λ

λ μ λ λ μ λ

λ μ λ μ

jj
μ μ

μ μq

X
p p

X X

f f

Y Y

′

′

′′

′

′
′

↓ ↓

←

 

Let us define a function  f  : M → Λ by putting  f (μ) = λ(μ). Then the ordered pair ( f , ( fμ
j)μ∈M, j∈J) determines a 

J-morphism ( f ,  fμ
j) of X to Y of invJ-D. Thus, the class  f  = [( f ,  fμ

j)] : X → Y is a morphism of proJ-D. Since p : X → X 
and q : Y → Y are D-expansions, the diagram 

X
F

Y

←
↓ ↓

←

p

q

X
f
Y
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represents a J-shape morphism F : X → Y. Notice that, by construction,

( )J
μ μS q F H=

holds for every μ ∈ M. Moreover, such an F is unique because q : Y → Y is a D-expansion, and thus, (pro-SJ)(Y) and 
SJ(qμ) may be considered to be Y and qμ, μ ∈ M, respectively. Therefore, for every X, the correspondence H = (Hμ)  F, 
induced by q, defines a bijection of pro-ShJ

(C, D)(
「X」, Y) onto ShJ

(C, D)(X, Y).                                                                         □
Proof. (of Theorem 6) Let q = (qμ) : Y → Y = (Yμ, qμμ', M) be a C-expansion of Y. Firstly, if F : X → Y is a 

morphism of ShJ
(C, D), then all Fμ = SJ(qμ)F, μ ∈ M, define a morphism of H = (Fμ) : 

「X」 → SJ(Y) of pro-ShJ
(C, D), because 

Fμ = SJ(qμμ')Fμ', μ ≤ μ'. Conversely, let an H = (Hμ) ∈ pro-ShJ
(C, D)(

「X」, S 
J(Y)) be given. Choose any D-expansion 

( ) : ( , , )ν ν νν
q Y Y q N′

′ ′ ′ ′ ′= → =q Y

of Y (D is a pro-reflective subcategory of C!). Since q is a C-expansion (with respect to D), there exists a unique g : Y → 
Y' of pro-C such that gq = q'. Let (g, gv) be a representative of g in inv-C. For every v ∈ N, denote by Gv : Yg(v) → Y'v the 
morphism of ShJ

(C, D) induced by gv, i.e., Gv = S 
J(gv). Similarly, denote Q'v = S 

J(q'v) : Y → Y'v and Q'vv' = S 
J(q'vv') : Y'v'' 

→ Y'v, v ≤ v'. Then, since (g, gv) is a morphism of inv-C, one readily sees that (g, Gv) : S 
J(Y) → S 

J(Y') is a morphism of  
inv-ShJ

(C, D). Thus, the equivalence class G = [(g, Gv)] : S 
J(Y) → S 

J(Y') is a morphism of pro-ShJ
(C, D). Let F = (Fv) : 

「X」  
→ S 

J(Y') of pro-ShJ
(C, D) be the composition of H and G. Then Fv = Gv Hg(v), v ∈ N, and Fv = Q'vv' Fv' , v ≤ v'. By Lemma 9, 

there exists a unique F : X → Y of ShJ
(C, D), such that, for every v ∈ N, Q'v F = Fv. This means that, for every v ∈ N,

( ) , . .,ν ν g νQ F G H i e′ =

( )( ) ( ) .J J
ν ν g νS q F S g H′ =

We have to prove that, for every μ ∈ M, SJ(qμ)F = Hμ holds. Firstly, we will prove the following statement:

( )( )( ( , )μμ M P Ob u Y P∀ ∈ ∀ ∈ ∀ ∈D C

( ) ( ) ( ) .J J J
μ μS u S q F S u H=

Notice that a u : Yμ → P of C yields a unique u = [(u)] : Y → 「P」 of pro-C. Observe that uq is a (rudimentary) 
morphism uqμ = Y → P belonging to C. Since q' is a D-expansion and P ∈ ObD, there exists a unique v : Y' → 「P」 of 
pro-D (represented by a vv : Y'v → P of D) such that vq' = uq. Then, uq = vgq, which implies that u = vg. This means 
that there exists a μ' ≥ μ, g(v) such that 

( )
.νμμ g ν μ

uq vg q′ ′=

Now one calculates in a straightforward way that
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( ) ( )J J
μS u S q F

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )J J J J J J J

νμμ μ μμ μ g ν μ μ
S u S q S q F S uq S q F S vg q S q F′ ′ ′ ′ ′ ′= = =

( )( )
( ) ( ) ( ) ( ) ( ) ( )J J J J J J

ν ν g ν νg ν μ μ
S v S g q q F S v S g q F S v S q F′ ′

′= = =

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )J J J J J J

ν g ν ν νg ν μ μ g ν μ μ
S v S g H S v S g S q H S vg q H′ ′ ′ ′= = =

( ) ( ) ( ) ( ) ,J J J J
μμμ μ μμ μ

S uq H S u S q H S u H′ ′ ′ ′= = =

which proves the statement. Given a μ ∈ M, let

( ) : ( , , )μμ μ μ μ μ
α μ α αα

q Y Y q A′= → =q Y

be a D-expansion of Yμ. Then, by the above statement, for every α ∈ Aμ,

( ) ( ) .( )J μ J J μ
α μ α μS q S q F S q H=

According to the definition of the J-shape category ShJ
(C, D), this means that the J-shape morphisms

( ) , :J
μ μ μS q F H X Y→

admit the same representing morphism  f  : X → Y μ of proJ-D. Thus,  

( ) .J
μ μS q F H=

Finally, such an F is unique because

( ) ( ) ,  ,J J
μ μS q F S q F μ M′= ∈

immediately implies

( ) ( ) ,  ,J J
ν νS q F S q F ν N′ ′ ′= ∈

which means that F = F'.                                                                                                                                                      □

6. A J-shape isomorphism
In this section, we are going to establish an analogue of the well known Morita lemma of [9], which should 
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characterize a J-shape isomorphism in an elegant and rather operative manner. According to the “reindexing theorem” 
(Theorem 2.) and definition of the abstract J-shape category ShJ

(C, D), it suffices to characterize an isomorphism  f  ∈ 
proJ-D(X, Y ) which admits a level representative (1Λ,  f λ

j) : X → Y of invJ-D. In the case of inverse sequences, a strictly 
increasing simple representative will do. Since the characterization does not depend on the objects of D, we shall 
consider such an  f  of proJ-C as well as the special case of towN-C. 

Theorem 7. Let C be a category and let J be a directed partially ordered set. Let X = (Xλ, pλλ', Λ) and Y = (Yλ, qλλ', Λ) 
be inverse systems in C over the same index set Λ and let a morphism  f  : X → Y of proJ-C admit a level representative 
(1Λ,  f λ

j). Then  f  is an isomorphism if and only if, for every λ ∈ Λ, there exist λ' ≥ λ and a jλ ∈ J such that, for every j ≥ 
jλ, there exists a C-morphism hλ

j : Yλ' → Xλ so that the following diagram in C commutes:

.

λ λ
j j j

λ λ λ

λ λ

X X

f h f

Y Y

′

′

′

←

↓ ↓

←



Proof. Let  f  : X → Y be an isomorphism of proJ-C which admits a level representative (1Λ,  f λ
j). Let  f -1 ≡ g =[(g, 

gλ
j)] : Y → X be the inverse of  f , i.e. 

Λ Λ Λ Λ( , )(1 , ) ~ (1 ,1 ) (1 , )( , ) ~ (1 ,1 ).
λ λ

j j j j
X Yλ λ λ λg g f f g g∧

Given any λ ∈ Λ, choose λ'1, λ'2 ∈ Λ according to the above equivalence relations. Then there exists a λ' ≥ λ'1, λ'2. 
Thus λ' ≥ λ, g(λ). Further, choose j1, j2 ∈ J according to the above equivalence relations and the given λ. Since (1Λ,  f λ

j) is 
an J-morphism, for the pair g(λ) ≤ λ', there exists a j3 ∈ J such that the appropriate commutativity condition holds. Since 
J is directed, there exists a jλ ≥ j1, j2, j3. Let us define, for every j ≥ jλ, a morphism hλ

j : Yλ' → Xλ of C by putting 

( )
.j j

λ λ g λ λ
h g q ′=

We are to prove that the needed diagram commutes. Firstly, according to the second equivalence relation,

( )
.j j j j

λ λ λ λ g λ λ λλ
f h f g q q′ ′= =

Thus, the left (lower) triangle in the diagram commutes. Further, since j ≥ j3,

( )( ) ( )
,j j j j j j

λ λ λ g λg λ λ g λ λλ λ
h f g q f g f p′ ′′ ′= =

while, according to the first equivalence relation,

( ) ( )
.j j

λ g λ g λ λ λλ
g f p p′ ′=

Therefore,
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,j j
λ λλλ

h f p ′′ =

which proves commutativity of the right (upper) triangle in the diagram.
Conversely, suppose that a morphism  f  = [(1Λ,  f λ

j)] : X → Y of proJ-C fulfils the condition of the theorem. Let g : 
Λ → Λ be defined by that condition, i.e., for each λ, choose and fix a g(λ) = λ' ≥ λ by the condition. Further, for each λ ∈ 

Λ and every j ∈ J, a morphism gλ
j : Yg(λ) → Xλ of C by putting 

;  
,

;  %

λj
λj λ

λ j
λλ

h j j
g

h j j

= 






where hλ
j comes from the condition. We have to prove that (g, gλ

j) : Y → X is a J-morphism. Let a pair λ ≤ λ' be given. 
Choose a λ0 ≥ g(λ), g(λ') and put λ1 ≥ g(λ0) Since (1Λ,  f λ

j) is a J-morphism, for the pairs g(λ) ≤ λ0 and g(λ') ≤ λ0, there 
exist j1, j2 ∈ J such that the appropriate commutativity conditions hold respectively. Since J is directed, there exists a 

0 1 2, , , , .λ λλ
j j j j j j′≥

Now, for every j' ≥ j, consider the following corresponding diagram:

0

0 1

( )

( )

( )

( )

.

λ λ g λ

g λ λ

g λ

g λ λ λ

X X X

X X

Y

Y Y Y

′ ′

′

↓

↓

← ←

←

↓

←←

 

  



(1)

We shall prove, by chasing diagram (1), that

1 1
( ) ( )

.j j
g λ λλ λλ g λ λλ

g q p g q
′ ′

′ ′′= (2)

Since j' ≥ jλ0
, the condition of the theorem implies

(3)
1 0 0 0( ) ( ) .j j j j

g λ λ g λ λλ λ λ λg q h q f h
′ ′ ′ ′

=

Since j' ≥ j1,

(4)
0 00 0 0( ) ( )( ) .j j j j j j

g λ λ g λ λλ λ g λλ λ λh q f h h f p h
′ ′ ′ ′ ′ ′

=
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Since j' ≥ jλ, jλ', the condition of the theorem implies 

(5)
0 00 0 00

( )( ) ( )( )
.j j j j j j j

g λ λ λλλ g λ λ λ λλλ g λ λλ g λ
h f p h p h p h f p h

′ ′ ′ ′ ′ ′ ′
′ ′′ ′= =

Since j' ≥ j2,

(6)
0 0 00 0( ) ( )( )

.j j j j j j
λ λ λλλ g λ λ λλ g λ λλ g λ λ

p h f p h p h q f h
′ ′ ′ ′ ′ ′

′ ′ ′ ′′ ′ ′=

Finally, since j' ≥ jλ0
, the condition of the theorem implies

(7)
0 00 0 1( ) ( ) ( ) ( )

.j j j j j
λ λλλ g λ λ λλ g λ g λ λλ g λ λλ λ λ

p h q f h p h q p g q
′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′′ ′ ′= =

Now, by combining (3), (4), (5), (6) and (7), one establishes (2), which proves that (g, gλ
j) is a J-morphism. 

Moreover, by the condition of the theorem, it is readily seen that, for each λ ∈ Λ and every j' ∈ J, j' ≥ jλ,

( ) ( )( ) ( ) .j j j j j j j j
λg λ λg λλ g λ λ g λ λ λ λ λg f h f p f g f h q

′ ′ ′ ′ ′ ′ ′ ′
= = ∧ = =

This shows that

Λ Λ Λ Λ( , )(1 , ) ~ (1 ,1 ) (1 , )( , ) ~ (1 ,1 ),
λ λ

j j j j
X Yλ λ λ λg g f f g g∧

which means that g = [(g, gλ
j)] : Y → X be the inverse of  f . Therefore,  f  is an isomorphism of proJ-C.                            □

Remark 3. Since pro-C = pro{1}-C, the original Morita lemma is the simplest case of Theorem 7. Further, since the 
coarse shape category Sh*

(C, D) is the N-shape category ShN(C, D), Theorem 7 is a generalization of [26], Theorem 6.1. 
One can easily verify that the condition (of Theorem 7) characterizing an isomorphism may be reduced to a cofinal 

subset Λ' ⊆ Λ. Thus, the following corollary holds. 
Corollary 4. If an  f  = [(1Λ,  f λ

j)] : X → Y of proJ-C admits a cofinal subset Λ' ⊆ Λ such that, for every λ' ∈ Λ', there 
exists a j ∈ J, so that, for every j' ≥ j,  f λ'

j' is an isomorphism of C, then  f  is an isomorphism. 
For the sake of completeness and unifying notations, we include hereby Theorem 6.4 of [26] (see also [23], Section 

2) concerning the special case of inverse sequences and J = N. It is very useful, for instance, in detecting an N-shape  (i.e., 
a coarse shape) isomorphism of metrizable compacta (i.e., in the case (C, D) = (HcM, HcPol)). 

Theorem 8. Let X = (Xn, pnn') and Y = (Ym, qmm') be inverse sequences in a category C, let  f  : X → Y be a morphism 
of towN-C and let ( f ,  fm

j) be any simple representative of  f  with a commutativity radius γ and  f  strictly increasing. If for 
every j ∈ N and every m = 1, …, γ( j) - 1, there exists a C-morphism h jf (m) : Ym+1 → Xf (m) such that the diagram

( ) ( 1)

1( )

1

f m f m
j jj

m mf m

m m

X X

f h f

Y Y

+

+

+

←

↓ ↓

←



in C commutes, then  f  is an isomorphism of towN-C.
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Conversely, if  f  is an isomorphism of towN-C, then, for every m ∈ N, there exist an m' ≥ m and a j ∈ N such that, 
for every j' ≥ j, there exists a C-morphism h j'f (m) : Ym' → Xf (m) so that the following diagram

( ) ( )

( )

f m f m

j jj
m f m m

m m

X X

f h f

Y Y

′

′ ′′

′

′

←

↓ ↓

←



in C commutes.
Remark 4. We give no additional example but those of [21-23] and [26], though one can, by means of them, easily 

construct some with J = (N, ≤' ) (for instance, in the case of  iff nm n
m

′≤ ∈). However, although the categories pro*-

HTop and proJ-HTop (in this case) are pretty different, their isomorphism classifications coincide (Corollary 3). In order 
to find a new example, one should use an uncountable well ordered (J, ≤) and the transfinite induction technique. It leads 
to a complete new paper. Another possible way might be, firstly, to find a suitable invariant of the J-shape (proJ-HTop) 
and, secondly, to prove that it is not an invariant of the coarse shape (pro*-HTop), which again asks for a transfinite 
construction on an uncountable well ordered index set (of an inverse system) as well as on (J, ≤) (see [25]).
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