

Research Article

Geodesic Triangles in \mathbb{H}^2 with Short Sides

Rita Gitik^D

Department of Mathematics, University of Michigan, Ann Arbor, MI, 48109, United States E-mail: ritagtk@umich.edu

Received: 12 February 2022; Revised: 26 September 2022; Accepted: 10 October 2022

Abstract: We prove that if M is an orientable hyperbolic surface without boundary (possibly compact, possibly with infinitely generated fundamental group) and γ is a closed geodesic in M then any side of any triangle formed by distinct lifts of γ in \mathbb{H}^2 is shorter than γ .

Keywords: hyperbolic surface, Poincaré disc, geodesic, covering space, tree, free group

MSC: 51M10, 57M15, 57M10, 53C22, 30F45, 20E05

1. Introduction

Behavior of closed geodesics in hyperbolic surfaces has been a fruitful subject of research for many years. Such geodesics are often studied by looking at their lifts in covering spaces of the surface, cf. [1-7]. In this paper we consider three geodesics in \mathbb{H}^2 which are lifts of the same closed geodesic γ in an orientable hyperbolic surface without boundary (possibly compact, possibly with infinitely generated fundamental group), cf. [8] and [3]. We prove that if these three geodesics intersect to form a triangle then each side of that triangle is shorter than γ . Note that two lifts of γ can intersect if and only if γ is self intersecting.

In contrast, a triangle in \mathbb{H}^2 formed by three arbitrary geodesics can have sides of any length (see Section 2 of this paper).

Geodesic triangles in hyperbolic plane have been investigated for a long time. The best known result, proved independently by several mathematicians in the nineteenth century, is that the area of a geodesic triangle in the hyperbolic plane is equal to $[\pi - (\text{sum of the angles of the triangle})].$

The main result of this paper is the following theorem.

Theorem 1. Let *M* be an orientable hyperbolic surface without boundary (possibly compact, possibly with infinitely generated fundamental group) and let γ be a closed geodesic in M. Any side of any triangle formed by distinct lifts of γ in \mathbb{H}^2 is shorter than γ .

Remark. Note that triangles considered in Theorem 1 need not be innermost.

The proof of Theorem 1 utilizes an algebraic lemma proven in Section 5 and geometric results proven in Section 3 and Section 6.

Copyright ©2022 Rita Gitik.

DOI: https://doi.org/10.37256/cm.3420221362 This is an open-access article distributed under *a* CC BY license (Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

2. The hyperbolic plane

In this paper we work with the Poincaré disk model of the hyperbolic plane \mathbb{H}^2 and the Poincaré metric, given by

$$ds^{2} = \frac{4(da^{2} + db^{2})}{(1 - a^{2} - b^{2})^{2}}$$

The Poincaré disc is the open unit disc in the complex plane

$$D = \{ z \in \mathbb{C} : |z| < 1 \}$$

Any two points a and b in the Poincaré disk are joined by a unique geodesic, which is a part of the circle or the straight line passing through a and b and orthogonal to the boundary of the Poincaré disc.

The hyperbolic distance between *a* and *b* is given by

$$d(a,b) = 2tanh^{-1}\frac{|a-b|}{|1-\overline{b}a|}$$

where |a - b| denotes the Euclidean distance between a and b; \overline{b} denotes the complex conjugate of b and $|1 - \overline{b}a|$ denotes the Euclidean distance between 1 and $\overline{b}a$. In particular, the hyperbolic distance between 0 and any real positive $c \in D$ is given by

$$d(0, c) = 2tanh^{-1}(c)$$

As $\lim_{c\to 1} 2tanh^{-1}(c) = \lim_{c\to 1} \frac{1}{2}ln(\frac{1+c}{1-c}) = \infty$, it follows that any diameter of *D*, which is a geodesic in *D* in the hyperbolic metric, has infinite length in the hyperbolic metric.

A polygon in D which has all its vertices on the boundary circle $\{z \in \mathbb{C} : |z| = 1\}$ of D is called an ideal polygon.

Consider an ideal geodesic triangle in D with vertices -1, i, and 1. All sides of this triangle have infinite length, in contrast with Theorem 1.

3. An intermediate cover

Let *M* be an orientable hyperbolic surface without boundary (possibly compact, possibly with infinitely generated fundamental group) and let γ be a closed geodesic in *M*. Let *l*, *m*, and *n* be distinct lifts of γ to \mathbb{H}^2 which form a triangle. Let *g* and *h* be elements of $\pi_1(M)$ such that m = gl and n = hl. Let α generate the stabilizer of l in $\pi_1(M)$, so $\alpha(l) = l$.

Let X be the cover of M corresponding to the subgroup of $\pi_1(M)$ generated by α , g, and h. Note that X is an orientable hyperbolic surface with the fundamental group generated by either one, two, or three elements.

If $\pi_1(X)$ has 1 generator then X is a double-punctured sphere.

If $\pi_1(X)$ has 2 generators then X is either a punctured torus or a three-punctured sphere.

If $\pi_1(X)$ has 3 generators then X is either a double-punctured torus or a four-punctured sphere.

In any case *X* is a non-compact surface.

As $\pi_1(X)$ contains α , it follows that γ lifts to a closed geodesic γ_X in X, and γ and γ_X have the same length. Note that γ_X is the quotient of l by the action of α . As X is hyperbolic, γ_X is the unique closed geodesic in its homotopy class. Note also that the stabilizer of m in $\pi_1(M)$ is generated by $g\alpha g^{-1}$, and the stabilizer of n in $\pi_1(M)$ is generated by $h\alpha h^{-1}$.

As m = gl and $g \in \pi_1(X)$, it follows that l and m have the same image in X, namely γ_X . As n = hl and $h \in \pi_1(X)$, it

follows that *l* and *n* have the same image in *X*, namely γ_X . Hence the geodesics *l*, *m*, and *n* are lifts of γ_X to \mathbb{H}^2 .

It follows that in order to prove that Theorem 1 holds for the surface M which might be compact or have infinitely generated fundamental group, it suffices to prove Theorem 1 for a non-compact surface X with finitely generated fundamental group. Moreover, surface X is restricted to have one of the five homeomorphism classes described above. The proof is completed in section 6.

4. The tree T in \mathbb{H}^2

Excellent expositions of hyperbolic geometry can be found in [7, 9-12].

Let *M* be an orientable non-compact hyperbolic surface without boundary which has finitely generated fundamental group. We consider the standard metric on the hyperbolic surface *M*, given by the covering map from \mathbb{H}^2 to *M*.

The following classical facts are contained, for example, in [11] pp. 415-427 and [12] pp. 122-125.

Let the genus of *M* be *g* and let *h* be the number of holes in *M*. Let n = 2g + h - 1. Note that *M* is the interior of a compact surface *N* with *h* boundary components, and *N* also has genus *g*. The surface *N* can be cut by *n* properly embedded disjoint arcs into a disc. It follows that there exist infinite simple disjoint geodesics x_1, \dots, x_n in *M* such that *M* cut along the union of x_i , $1 \le i \le n$, is an open two-dimensional polygon *P*. Also there exist closed geodesics y_1, \dots, y_n in *M* such that $x_i \cap y_i = \text{point and } x_i \cap y_j = \emptyset$ for $i \ne j$, which generate the fundamental group of *M*. Note that the fundamental group of *M* is a free group of rank *n*. The universal cover of *M* is the hyperbolic plane \mathbb{H}^2 , so *M* is the quotient of \mathbb{H}^2 by the action of $\pi_1(M)$. Let \widetilde{P} be a lift of the polygon *P* to \mathbb{H}^2 . Note that \widetilde{P} has 2n sides.

Recall that an end of a surface without boundary and with finitely generated fundamental group is homeomorphic to a product $S^1 \times [0, \infty)$.

The following fact is contained, for example, in Theorem 9.8.6. on p. 424 of [11]. Hyperbolic surfaces without boundary and with finitely generated fundamental group have two kinds of ends: a cusp end, which has finite area, and a flare end, which has infinite area. If all the ends of M are cusps then \tilde{P} is an ideal polygon in \mathbb{H}^2 . The action of $\pi_1(M)$ on \mathbb{H}^2 creates a tessellation of \mathbb{H}^2 by the translates of the closure of \tilde{P} . Let T be the graph in \mathbb{H}^2 dual to that tessellation, i.e. the vertices of T are located one in each translate of \tilde{P} , and each edge of T connects two vertices of T in adjacent copies of \tilde{P} , so each edge of T intersects just one lift of one x_i in one point. As \mathbb{H}^2 is simply connected, T is a tree.

The tree *T* was introduced in [8] pp. 111-112. It can be considered to be the Cayley graph of the group $\pi_1(M)$ which is a free group of rank *n* generated by the set y_1, \dots, y_n . Define the distance $d_T(u, v)$ between two vertices *u* and *v* of *T* in *T* to be the number of edges in a shortest path in *T* connecting *u* and *v*. A geodesic between vertices *u* and *v* in *T* is a shortest path in metric d_T joining *u* and *v*. An infinite geodesic in *T* is an infinite path in *T* such that any of its finite subpaths is a geodesic in metric d_T in *T*.

5. Algebraic lemma

We use the notation of Section 4.

Denote the length of the word W in $\pi_1(M)$ by L(W). Note that each oriented edge of T is labeled by one of the generators $\{y_i, 1 \le i \le n\}$ or their inverses $\{y_i^{-1}, 1 \le i \le n\}$, so each oriented path in T is labeled by a word in $\{y_i, 1 \le i \le n\}$ and $\{y_i^{-1}, 1 \le i \le n\}$.

Recall that any element f of $\pi_1(M)$ acts on T leaving invariant a unique infinite geodesic in T, called the axis of f. The following result is a generalization of Lemma 1 in [3].

Algebraic Lemma. Let f and f' be conjugate elements in $\pi_1(M) = \langle y_1, \dots, y_n \rangle$, and let A and A' be the axes of f and f' respectively. Let W be a reduced and cyclically reduced conjugate of f. If A and A' intersect in an interval of length L(W) - 1 then they coincide.

Proof. Note that *W* is a shortest word in the conjugacy class of *f*, and both *A* and *A'* are labeled by a bi-infinite word \cdots *WWWWWW* \cdots . Let the intersection of *A* and *A'* be labeled by a subword *V* of \cdots *WWWWWWW* \cdots such that L(V) = L(W) - 1. WLOG the word *V* is the initial subword of *W*, hence there exists a decomposition W = Vy, where *y* is either

a generator or an inverse of a generator in $\pi_1(M) = \langle y_1, \dots, y_n \rangle$, i.e. $y \in \{y_i, y_i^{-1} | 1 \le i \le n\}$. Let W' be a reduced and cyclically reduced conjugate of f' containing V. Then W' is also a shortest word in the conjugacy class of f'. Therefore either W' = yV or W' = Vy = W. In either case, the intersection of A and A' contains an interval of length L(W), obtained by adding a single edge with label y to an end of the interval with label V. Hence A and A' coincide.

6. Proof of Theorem 1

In Section 3 the proof of Theorem 1 was reduced to five cases.

Note that a single-punctured hyperbolic sphere has a trivial fundamental group, so it does not have closed geodesics, hence Theorem 1 is vacuously true in this case.

A twice-punctured sphere is homeomorphic to an annulus, so its fundamental group is infinite cyclic. Hence the preimage in \mathbb{H}^2 of any closed geodesic in a two-punctured sphere consists of a single geodesic line. It follows that in this case there are no triangles in \mathbb{H}^2 which satisfy the hypothesis of Theorem 1.

A proof of Theorem 1 for a hyperbolic single-punctured torus is given in [3].

The remaining two cases can be combined to avoid unnecessary technicalities and they follow from Theorem 2 stated below, completing the proof of Theorem 1.

Theorem 2. Let *M* be an orientable non-compact hyperbolic surface without boundary which has finitely generated fundamental group and let γ be a closed geodesic in *M*. Any side of any triangle formed by distinct geodesic lines in the preimage of γ in \mathbb{H}^2 is shorter than γ .

Proof. We use the notation from previous sections. Let x_1, \dots, x_k be infinite simple disjoint geodesics in M which cut M in a polygon P. Consider the tree T in \mathbb{H}^2 defined in Section 4. Choose a $\pi_1(M)$ -equivariant projection $s : \mathbb{H}^2 \to T$. This means that g(s(x)) = s(g(x)) for any $g \in \pi_1(M)$ and $x \in \mathbb{H}^2$. It can be arranged that the restriction of s to each component of the lift of γ in \mathbb{H}^2 is monotone, so s maps each component of the lift of γ onto a geodesic in T.

The exposition below generalizes a proof of a special case of Theorem 2 which appeared in [3].

Assume to the contrary that there exists a triangle in \mathbb{H}^2 formed by geodesic lines *l*, *m*, and *n*, which are distinct lifts of the geodesic γ , such that the length of the side lying in *l* is longer than γ . Note that *l* is stabilized by some element *f* in $\pi_1(M)$ which acts as a hyperbolic isometry of \mathbb{H}^2 .

Let *P* be the intersection of *l* and *n*, and let *X* be the intersection of *l* and *m*. The length of γ is equal to the length of the segment Pf(P) which is equal to the length of the segment $f(P)f^2(P)$.

Consider two cases. The graphic illustrations of the cases can be found in [3].

Case 1. The side *PX* of the triangle formed by lines *l*, *m*, and *n* is shorter than the segment $Pf^{2}(P)$.

By assumption, the side PX is longer than γ , so the segment $Xf^2(P)$ is shorter than the segment PX. Consider the geodesics f(n) and $f^2(n)$. As f is an isometry, the geodesics n, f(n), and $f^2(n)$ make the same angle with l. Then as $Xf^2(P)$ is shorter than PX, the angle between n and l is equal to the angle between $f^2(n)$ and l, and the opposite angles between m and l are equal, it follows that m and $f^2(n)$ intersect.

Let *T* be the tree in \mathbb{H}^2 defined above and let *W* be a reduced and cyclically reduced word conjugate to *f* in $\pi_1(M)$. The geodesic lines *l*, *m*, and *n* are transversal to the lifts of the geodesics x_1, \dots, x_k in \mathbb{H}^2 . Consider the intersections of the lifts of the geodesics x_1, \dots, x_k with lines *l*, *m*, and *n*.

Let *b* lifts of x_1, \dots, x_k intersect both *l* and *n* to the left of the point *P* and let *a* lifts of x_1, \dots, x_k intersect both *l* and *n* to the right of the point *P*. Then there are a + b lifts of x_1, \dots, x_k crossing *l* and *n*, hence the length of the intersection $s(l) \cap s(n)$ is a + b. The Algebraic Lemma implies that a + b < L(W) - 1. By a similar argument, the number *c* of the lifts of x_1, \dots, x_k intersecting both *l* and *m* is also less than L(W) - 1. As *f* is an isometry, there are *b* lifts of x_1, \dots, x_k crossing *l* and $f^2(n)$ to the left of $f^2(P)$. Then the total number of the lifts of x_1, \dots, x_k crossing *l* between the points *P* and $f^2(P)$ is at most a + b + c, which is strictly less than 2L(W). However by construction, the number of the lifts of x_1, \dots, x_k crossing *l* between the points *P* and $f^2(P)$ should be equal to 2L(W).

This contradiction completes the proof of Theorem 2 in Case 1.

Case 2. The side *PX* of the triangle formed by lines *l*, *m*, and *n* is longer or equal than the segment $Pf^{2}(P)$.

Let *a* lifts of x_1, \dots, x_k intersect both *l* and *n* to the right of the point *P*. Then the length of the intersection $s(l) \cap s(n)$ is not shorter than *a*, hence the Algebraic Lemma implies that a < L(W) - 1. Let *c* be the number of the lifts of x_1, \dots, x_k intersecting both *l* and *m* to the left of the point *X*. Then the length of the intersection $s(l) \cap s(m)$ is not shorter than *c*, hence the Algebraic Lemma implies that c < L(W) - 1. Therefore the total number of the lifts of x_1, \dots, x_k crossing *l* between the points *P* and $f^2(P)$ is at most a + c, which is strictly less than 2L(W). However by construction, the number of the lifts of x_1, \dots, x_k crossing *l* between the points *P* and $f^2(P)$ is determined the points *P* and $f^2(P)$ should be equal to 2L(W).

This contradiction completes the proof of Theorem 2 in Case 2.

7. Acknowledgment

The author wants to thank Hans Boden and Vrej Zarikian for their support.

Conflict of interest

The author declares that there is no personal or organizational conflict of interests with this work.

References

- Basmajian A. The stable neighborhood theorem and lengths of closed geodesics. *Proceedings of the American Mathematical Society*. 1993; 119(1): 217-224.
- [2] Freedman M, Hass J, Scott P. Closed geodesics on surfaces. *Bulletin of the London Mathematical Society*. 1982; 14(5): 385-391.
- [3] Gitik R. Conjugate words and intersections of geodesics in \mathbb{H}^2 . Journal of Topology and Analysis. 2021; 13(1): 175-185.
- [4] Hass J, Scott P. Curve flows on surfaces and intersections of curves. *Proceedings of Symposia in Pure Mathematics*. 1993; 54(3): 415-421.
- [5] Hass J, Scott P. Shortening curves on surfaces. Topology. 1994; 33(1): 25-43.
- [6] Neumann-Coto M. A characterization of shortest geodesics on surfaces. *Algebraic and Geometric Topology*. 2001; 1(1): 349-368.
- [7] Rivin I. Geodesics with one self-intersection and other stories. Advances in Mathematics. 2021; 231(5): 2391-2412.
- [8] Hass J, Scott P. Intersections of curves on surfaces. Israel Journal of Mathematics. 1985; 51: 90-120.
- [9] Beardon AF. The geometry of discrete groups. Graduate Texts in Mathematics. 1st ed. Springer, New York; 1983.
- [10] Lehner J. A short course in automorphic functions. Holt, Rinchart, and Wiston, New York; 1966.
- [11] Scott P. The Geometries of 3-manifolds. Bulletin of the London Mathematical Society. 1983; 15(15): 401-487.
- [12] Stillwell J. Geometry of surfaces. Springer, New York; 1992.