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Abstract: Maslov index is defined as the number of the intersection of a loop of Lagrangian subspaces with a
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1. Introduction

In the process of treating the asymptotic expression of the solution of the quasiclassical question, e.g. the
Schrédinger equation, Maslov [1] defined an index by the intersection number of an oriented closed curve in an
n-dimensional Lagrangian submanifold M with a two-sided 1-codimensional cycle on M. Arnold [2] proved that the
Maslov index coincides with a cohomology class and also with the index for the corresponding loop in the Lagrangian
Grassmaniann £(n) (the manifold consists of all Lagrangian subspaces in RZ"), which is defined as an intersection
number of this corresponding loop with a singular cycle called Maslov cycle. Arnold’s work can be generalized to the
case of a path of Lagrangian subspaces with its endpoints lying in the complement of the Maslov cycle. Robbin and
Salamon [3] generalized a new definition of Maslov index for any path even if its endpoints lie in the Maslov cycle.
They defined an associated form Q : L(n) x L(n) — R, when a Lagrangian subspace is represented by a Lagrangian
frame, the form Q can be expressed explicitly in a matrix form. Robbin and Salamon also defined the relative Maslov
index for a pair of loops of Lagrangian subspaces. In [4] Robbin and Salamon also showed that the Maslov index agrees
with the spectral flow of an associated matrix family. On the other hand, Cappell, Lee and Miller [5] showed four
definitions of Maslov index with respect to a pair of loops of Lagrangian subspaces and proved that they are equivalent
to each other. The Maslov index also can be used to other objects, for example, Schrodinger operators [6], loops in a
coisotropic submanifold [7] and so on. So it is necessary to develop the properties of the Maslov index.

One important property of Maslov index is that the linear symplectomorphisms, the linear isomorphism of R
preserving the symplectic form, preserve Maslov index. In this article, we study how more general isomorphisms,
such as quasi-symplectic isomorphisms which change the symplec-tic form based on a fixed coefficient, act on Maslov
index. Explicitly, let the vector space R* be equipped with the standard symplectic form e, the quasi-symplectic
isomorphisms ‘¥, in (RZ", m,) are the isomorphisms satisfying ‘ijo = Jw, with a nonzero constant coefficient 4. As in [3]
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the Maslov index u for a loop A(f) of Lagrangian subspaces is defined as the sum of signature of a crossing form I'(A, V)
where V is a fixed Lagrangian subspace (see (12)) and the Maslov index for a pair of loops is defined as the sum of the
signature of a relative crossing form (see (14)). Then

Theorem 1.1 For a pair of loops A,(#), A,(f) in L(n), quasi-symplectic isomorphisms ¥, change the sign of the
Maslov index depended on the sign of the coefficient 4. i.c.,

WA AL (1) 70,
YA (1), A = 1
O, AL (0.9, A5 (1) {_#(Al(t)’ N (1)

Analogous to Sp(2n), all the A-coefficient quasi-symplectic matrices form a manifold denoted by QSp,(2n). Let
¥,(¥) be a loop in QSp,(2n), then
Theorem 1.2 In the above setting, we have

WA 0, Ay (1) >0,
¥, (DA (1), (A (1)) = 2
AOCINOR AQIG) {_ﬂ( A 720 )

In particular, if A,(f) = V" where V'is the fixed Lagrangian subspace and let A(f) = A(¢) for simplicity, we have
Remark 1.3

[ wA@, V) A>0,
u(Y, (OAQ@), Y, (V) = {_N(A(t)’ V) A<O. v

All the quasi-symplectic matrices with any nonzero coefficient also form a Lie group denoted by QSp(2n). For a
loop ‘i’i(t) in QSp(2n), the coefficient also is a smooth function A(f) which is nonzero for any 7. We have
Remark 1.4

18 (DA (1), (DAL (1)) = 1y (DA (1), W, (DA, (2)) 4)

where ¥, (1) = ﬂ(‘i’i(t)) is a loop in some QSp,(2n) via a projection 7 : QSp(2n) — QSp,(2n).
Theorem 1.5 In the above setting, we have

wA@D V) +u(¥, @V, V) 2>0,

u( (OA(@), V) = {—N(A(t)» V)+u(¥, (00, V) 1<0. ©

2. Preliminaries

In this section, we recall some fundamental definitions and results that we will use throughout the article.
The vector space R* is called symplectic if it is equipped with a nondegenerate skew-symmetric bilinear 2-form

w : R* x R* — R, which is called a symplectic form.
n
In particular, the standard symplectic form e, has the form oy = dei Ady; under the coordinate system {x,, ...,
i=1
X3 Vi -ees V) OF R*". For any vector & =(u, v) € R"xR" with k=1, 2, », also can be described as follow

T T
wo(&1,E) =<uy, vy >—<V,ly >=uj vy — V] Uy (6)
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where < -, - > is the standard inner product of R".

There exist some special subspaces in a symplectic vector space. In particular, the subspace V' of (Rzn, w) is called

Lagrangian if V is identified with the subspace V” = {v € R* | (v, w) =0, Vw € V}. All the Lagrangian subspaces of

R* form a manifold, which is called Lagrangian Grassmanian and denoted by L(#). In this article, a loop A(f) means
A : [0, 17— L(n) is a smooth curve in £(n) and A(0) = A(1).

2n

A linear isomorphism f": (RZ", w,) — (R™, w,) is called symplectic if it presverses the symplectic form, explicitly,

for any pair of vectors ¢, &, € R

@y(&1,62) = wy(f (&), f(£2)) (7

and the equation (7) is usually abbreviated as f *a)o = w,. We consider some isomorphisms analogous to symplectic
isomorphisms.
Definition 2.1 A linear isomorphism f : (RZ", ®,) — (Rzn, m,) is called quasi-symplectic if f satisfing f ‘0 =lw

where 4 is a nonzero constant. In particular, f is called anti-symplectic if 1 = —1.

2 2 R P ) .
" x R when we work in R”™" with a fixed cannonical basis. In

We can identify a linear map with a matrix in R
this article we make no differentiation between the linear map and the corresponding matrix. Moreover, a matrix is
called symplectic if the corresponding linear transformation is a symplectomorphism, is called quasi-symplectic if the
corresponding linear isomorphism is quasi-symplectic. Note that symplectic matrix ¥ has the following form (one also
can see [8, Page 20]).

Lemma 2.2 If ¥ has the form

i

where 4, B, C and D are real n x n matrices, then ' is symplectic if and only if the following equations hold

ATc=cT 4,
B'D=D"B,
ATp-c'B=1 (®)

Proof. For any two vectors z, = (1, v,) € R" x R” where k= 1, 2, We have
w(z1,2p) = u1Tv2 —vlTuz =w(Vz,¥Yz,)
=< Auy + Bv|,Cuy + Dvy > — < Auy + Bv,,Cuy + Dy >
=ul (4TCc-cT Ayuy +vI (B'D-D" By,

+ul (ATD-CT By, +vI (BTC- D" Ayu,.

This completes the proof. o
In this article, we denote by ¥ the symplectic matrix and we denote by ¥, the quasi-symplectic matrix when the
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corresponding quasi-symplectic isomorphism V', satisfies ‘PZw = Jw for a nonzero constant 1. Analogous to the proof of
Lemma 2.2, it is obvious that the quasi-symplectic matrices have the following form.
Corollary 2.3 If quasi-symplectic matrix ‘¥, has the form

|: :|
\Pj':

where 4, B, C and D are real n x n matrices, then the following equations hold

ATc=cT 4,
B'D=D"B,
AT'D-CTB =21 =diag(2,1,-,2). )

A B
In this article, we assume that symplectic matrix ¥ has the form ¥ = {C D} satisfying condition (8) and quasi-

symplectic matrix ¥, has the form ¥, = [iC

B
D} unless otherwise stated. Note that there exists a diffeomorphism

A0
0:¥Y—>Y,=VYI, with/, = [ 0 J where / is n x n identity matrix.

Remark 2.4 It is known that all symplectic matrices ¥ form a Lie group Sp(2n). The diffeomorphism ¢ shows that
the set consisting of all quasi-symplectic matrices ¥, where A is a nonzero constant, is a smooth manifold denoted by
QSp,(2n). 1t is easy to verify that QSp,(2n) is not a group and the set consisting of all quasi-symplectic matrices V', with
any nonzero 4 is a Lie group denoted by QSp(2n).

In this article, we study how the quasi-symplectic matrices change Maslov index. Here we introduce the

fundamental definitions about Maslov index, and give a definition of Maslov index based on [3].

Lemma 2.5 Let X and Y be real n x n matrices and define A  R>" by

A=imZ,

z=[* 10
=y (10)

Then A € L(n) if and only if the matrix Z has rank » and
xTy=vTx.

Proof. Given two vectors z, = (Xu, Yu) and z, = (Xv, Iv) in A, according to formula (6), we have w(z|, z,) = uT(XTY
p— T M
Y X)v. This completes the proof. ]

A matrix Z € R*" of the form (8) which satisfies X'Y — Y'X and has rank 7 is called a Lagrangian frame. If the
matrix

U=X+iY
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is unitary, Z is called a unitary Lagrangian frame.
Lemma 2.6 If A € L£(n) and ¥ € Sp(2n), then YA € L(n). And if ¥, € QSp,(2n), then ¥,A € L(n).
Proof. Let ¥ be a symplectic matrix as in Lemma 2.2 and Z a Lagrangian frame of A. Then

AX +BY
¥z =
(CX+DYJ

is the frame of WA. Given two vectors z; = ¥Zu and z, = YZv in WA, we have
(zy,2) = o(¥YZu,¥YZv)

= XTATcx+xTA"py+Y"B"cx +Y" B DY
~xTcTax-xTc"By -y D" ax —-Y" DT BY)v

=u' XxTA"D-c"Byw+u' YT (BT - D" 4)xv

=ul XTy-yTx)

=w(Zu,Zv).

If'¥, € QSp,(2n), then it follows from condition (9) that

o(z),25) =l (XTY YT X)W = dox(Zu, Zv). O

The Maslov index can be defined as the intersection number of the loop A(#) with the Maslov cycle X(n) of all
Lagrangian subspaces which intersect one chosen Lagrangian subspace V nontransversally. This set is a singular
hypersurface of L(n) of codimension 1 which admits a natural coorientation (one can see [2]). X(n) is stratified by the
dimension of the intersection with V. A generic loop will intersect only the highest stratum (where the interction is
1-dimensional) and all the intersections will be transverse.

More explicitly, let A7) : [0, 1] — L(n) be a path of Lagrangin planes with A(0) = A and A(0) = A. We define a
form

O(A, A)(v) =< X (0)u, Y (0)u > — < Y (0)u, X (0)uu >
=ul (X(0) Y(0)-Y(0) X(0)u (11)
X(@)

Y ()

At each crossing time ¢ € [0, 1] we define the crossing form

where Z(t) :( j is a frame of A(¢) and v = Z(0)u. A crossing for A(f) is a number ¢ € [0, 1] for which A(?) € Z(n).

T(AV 1) = O(AW), AD) Ay - (12)
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A crossing is called regular if the crossing form I'(A, V, £) is nonsingular. Then for a loop A(?) :[0, 1] — L(n) with
only regular crossings, we define the Maslov index

1A V) =Y signT(A,V, 1) (13)

t

where signl'(A, V, f) is the signature (the number of positive minus the number of negative eigenvalues) of the crossing
form and the sum runs over all crossings ¢.
For a pair of loops of Lagrangian subspaces A, A, : [0, 1] — L(n), we define the relative crossing form as follow

LA A, 1) =T (A, Ap (0),0) —T(Ag, Ay (), 1)

= O(A (), A (D) [y (1)nAy (1) ~O2 (0, A (D) 5 (nay ) (14)

and called the crossing ¢ regular if the form is nondegenerate. For a pair of loops with only regular crossing we define
the relative Maslov index by

(A, Ag) = D signl (A, AyL1) (15)

t

where the sum runs over all crossings ¢. And if A, = V/, this definition agrees with (13).

3. Proof of the main results

To prove the Theorem 1.1, we first consider the case that A,(7) = V where V is the fixed Lagrangian subspace and
let A,(#) = A(?) for simplicity.

Proof for one loop case of Theorem 1.1. It is sufficient to show how ¥, acts on the signature of the form Q(A, AW).
Let the matrix ¥, of ¥, and the frame Z(¢) of A(7) be defined as follow

A4 B
¥, = ,
AC D

X (t)J

“0~{

Then the frame ¥, Z(¢) of W, A(?) has the form

v, 2(0) = (E(t)} _ [AAX(t) + BY(t)j

F(t)) \ACX(t)+ DY ()

and

O(¥, A, ¥, A)(P,v) =< E(t)u, F(t)u > — < F(t)u, E(t)u >
=u" (E0) F(t)-F(t)" E(t)u
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where v =Z(t)u € A(t) N V for some u € R" and
EO F@)-FO)! E(t) = QAX () + BY(®)) (ACX (¢)+ DY(¢))
—(ACX(t)+ DY ()T (24X (t)+ BY (1))
=2xTATc-cTHxw)+2y@) (B"D-D' BY (1)

+ X AT D-cTBY )+ 2y () (BT C-DT 4) X (1).
It follows from Corollary 2.3 that
EOFO)-FOTE@) = (X0 YO -Y ()T X(1)).
Thus
O, A, A) ) = aul (X(0) Y(0)-Y ()T X(0)u = 20(A, A)(v). (16)

It is clear that ¥, preserves the signature of the form Q(A, A)(v) if 1 is positive. When A = —1, it is obvious that
the positive eigenvalues of Q(A, A)(v) become the negative eigenvalues of O(Y A, ‘P)H/\)(‘Piv). So if 4 is negative, ¥,
changes the sign of signature of the form Q(A, A)(v). o

When /4 = 1, this proof also shows that symplectic matrices preserve the Maslov index.

To interpret the change of the Maslov index under quasi-symplectic isomorphisms, we assume the sympelctic
vector space to be R”. Then each straight line crossing zero is a Lagrangian subspace. Choose y-axis as the chosen
Lagrangian subspace, then X(1) only contains y-axis. Then the Maslov index for a loop of Lagrangian subspaces is the
intersection number with y-axis and intersecting upper self y-axis counterclockwise counts +1 meanwhile intersecting
upper self y-axis clockwise counts —1. Also, intersecting lower self y-axis counterclockwise counts +1 meanwhile
intersecting lower self y-axis clockwise counts —1.

Figure 1. The A =—1 case
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We consider the 4 < 0 case such as the anti-symplectic isomorphism ‘¥'_,(x, y) = (x, —y) and a loop y(¢) : [0, 1] —
L(1) such that y(0) = y(1) is the x-axis. It is obvious that ¥_, maps y-axis to y-axis and does not change X(1). In order
to underline the anti-symplectic isomorphism action, we take a vector A at the starting point of the loop. The movement
path of 4 can be described as the loop y(f). Then 4 intersects with upper self y-axis at a vector B and intersects with the
terminal point, x-axis, at a vector C, see Figure 1. It follows that u(y) = +1. However, the anti-symplectic isomorphism
W_, reverses the loop such that 4 intersects with lower self y-axis at a vector D and intersects with the terminal point,
x-axis, at a vector C. It follows that u(*_,(y)) = —1. That is because ¥_, changes the orientation fo the loop but does not
change the orientation of Z(1).

Consider the 4 > 0 case such as the quasi-symplectic isomorphism ¥; = (\/?_)x, x/gy), Y5 maps each line to itself
then the following equations hold

Yy (A)=~34=4'
¥;(B)=+3B=B'

¥,(C)=3C=C"

Then ¥,(4) intersects with upper self y-axis at a vector B’ and intersects with the terminal point, x-axis, at a vector C’,
see Figure 2. It follows that u(‘¥,(y)) = +1.

Figure 2. The 2 =3 case

For a pair of loops A, A, : [0, 1] — £(n) with the frame

Xq(t
210= ( Yf(if}

X, (t
Zy(1) = ( Y;((t))]

respectively, the relative crossing form (14) can be expressed as follow
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T(A},Ag, 1) = O(A (1), A ())(V) = O(A, (1), Ay ())(V)
=< X, (Ou, Yy ()u > — < Y (t)yu, X, (t)u >
—(< Xy (O, Yy () > — < Y (£)yu, Xo (H)u >)

where v =Z,(t)u = Z,(f)u € A,(¢) N A,(t) for some u € R". Then analogous to the one loop case, we have

Proof for two loops case of Theorem 1.1. In the above setting, for a quasi-symplectic isomorphism ¥, with the
form (9) the relative crossing form has the formula

LAY A1) = O(F, A (D, A (D)) — 0T A (1), ¥ A, (1))(F,)

= HO(A (1), A{())(V) — O(A5 (£), Ay ())(v))
=IT(A}, Ay, 1) (17)
according to the result (16). Then

. signl'(A,Ay,t) A>0,
signl (W, A, W3 Ap,0) =9
" —signl'(A[,A,,t) A<0.
This completes the proof of this case and hence the proof of Theorem 1.1. o
A loop ¥,(#) in QSp,(2n) acting on a fixed Lagrangian subspace V forms a loop ¥,(/)V in L(n) naturally. Then
we can define the crossing form I'(‘¥,(1)V, V, £) of ¥,(¥)V as in (12) and the Maslov index u(‘¥;(9)V, V) as in (13). The
Maslov index for the case that QSp,(2n) = Sp(2rn). When 4 = 1 is the definition of Maslov index for a loop of symplectic
matrices in [3]. To prove Theorem 1.2, we show that u(‘¥,(#)V, V) is nondependent on the choice of V.

Note that the crossing form I'(‘W,(9)V, V, £) is a quadratic form. Explicitly, let \¥',(¢) and the frame of V" be expressed
as follows

‘Pz(f)={

(7)

where W,(7) satisfying the condition (9) for each ¢. Then the crossing form has the formula where v = ((4()X + B(t)Y)u,
(C(OX + D(H)Y)u) = (Xu, Yu) € ¥,()V' N V for some u € R"

A(r)  B(1)
C(t) D()
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LCE, (V1) = 0¥, (0 %, (O )(v)
=< (A()X + B(O)Y )u,(C()X + D(t)Y )u >
—<(C()X + DY )u,(A()X + B@)Y )u >
=< Xu,(A)T C(t)—C@)" A(t))Xu >+ < Yu,(B(t)! D(t)- D(t)" B(t))Yu >
+< Xu,2(AT (/D) - CT (1) B(t))Yu > (18)
since the following equations hold according to Corollary (8)
AT @)+ A0 C@) =T () a@)+ @) A@),
BT (t)D(t)+ B(@)" D(t) = DT (1)B(t)+ D(t)" B(),

AT D)+ AT D@t)-CT (1)B(t)-C(t)! B(r) =0.

Formula (18) implies that the signature of this crossing form is independent on the choice of V' € L(n).
On the other hand, for any V, V' € L(n), suppose ¥’ € Sp(2n) such that V'="Y¥'}", then

HOE, (V1) = p(B, OV, PV = (8, (W7, 1)

where ‘P’*l‘l’)’(t)kl" can be identified with \P,(#). Hence
Lemma 3.1 For any two Lagrangian subspace V, V' € L(n), we have

u(¥, W, V) = u(¥; V" V). (19)

Based on Lemma 3.1 and formula (17), the relative crossing form at a crossing ¢ has the analogous result to formula
(17) as follow.

PV ALY A,0) =T(Y) ALY A (0),0) = T(Y; A0, WA (0),0)

= 0¥, (A1 (10, ¥, (DAL (D) [a ()~ ay 1) ~QF; (DAL (0, ¥, (DAL (D) [, ()~Ay(0)

+O(F, (DA (1), (DA (1) lAj (A, ey ~QFL (DAL (1 IRAGYINI0) lA{ ()AL ()
= AT(A}, Ay, 0). (20)

This completes the proof of Theorem 1.2. Consider the case that A,(¢) = V and A,(f) = A(?), then the following term
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O(F; (DAL (1. %, (DAL () |, (19 1)
vanishes. Then
T(Y, APV, 1) = AT(AV,0). 21)

Hence Remark 1.3 holds.
Consider a loop li’ll(t) in QSp(2n) with the form

. AM)A() B(t)
Y () = (22)
AC(1)  D(1)
A@) B(@) | . . . . . . L
where cty Dy is a symplectic matrix satisfying condition (8) and A(7) is a smooth nonzero function satisfying the

condition

0) = A1),

0) = A(1). (23)
Then for each crossing ¢ the relative crossing form is analogous to formula (20) as follow
T(P, ALY A1) = AOT (A, Ay, 0). (24)

When A(?) is nonnegative, the signature of F(‘i’AAl, ‘i’iAz, f) is same as the signature of I'(W,A,, ¥,A,, 1) where
AA@)  B()

W,(?) has the form ‘¥, (¢) = [lc(t) D)

} with 4 > 0. Moreover, W,(¢) can be viewed as the image of ‘i‘i(t) under the

projection

7:QSp(2n) = QSp, (2n)

At)A B A B
— . (25)
AC D AC D
Hence Remark 1.4 holds.

Let ¥,(¢) be a loop in QSp,(2n), A(?) a loop in £(n) and V' a fixed Lagrangian subspace, it is hard to find out the
relationship between the signature of I'(‘\Y,A, V, £) and the one of I'(A, ¥, £). Hence we apply the analogous way in [3]
and [8], firstly we review some results.

Lemma32If¥=%"¢ Sp(2n) is a symmetric, positive definite and symplectic matrix, then ¥* € Sp(2n) for any s
>0.

Proof. Let 4, be the eigenvalues of ¥ and E; the corresponding eigenvector spaces for i = 1, ..., k. It is known that
all the eigenvalues are positive and ¥ determines a orthogonal decomposition
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@~

Il
—_

For any two nonzero vectors

k k
5=Zaiu,~, ﬂzzbi"i
i=1 i=1
in R*" where u,, v, € E, fori = 1, ..., k. Note that
o (u;,v;) = wg(Yu;, W) = 2400 (u;,v;)

for all 7, j and then either /li/lj =0 or wy(u;, vj) = 0 holds. This implies that

k k
wo(PIEY N = D ab;(3h) oo(up,v;) = Y abjog (uy,v;) = wg(S,n)
i,j=1 i,j=1
and hence ¥ € Sp(2n) for any s > 0. o

Define a map g : [0, 1] x Sp(2n) — Sp(2n) by

g(t,¥) =g, (¥) =¥ ¥) 2. (26)

12

Since ¥'¥ is symmetric, positive definite symplectic matirx, then (‘PT‘P)_ € Sp(2n) according to Lemma 3.2 and

hence g(¥) € Sp(2n) for any #> 0 and any ¥ € Sp(2n). Moreover, g is continuous, and
8o =id, g ly(m=1id forany ¢, g(Sp(2n)) = U(n)

since g,(‘¥) is also orthogonal. Hence

Lemma 3.3 Sp(2n) is homotopy equivalent to U(n).

Robbin and Salamon showed in [3] that the Maslov index is a homotopy invariant and has the equivalent definition
as follow.

X(t
( )J a lift of unitary frames. Then for any V' € L(n)

Lemma 3.4 Let A(¢) be a loop in £(n) and Z(¢) = [ Yt

w(AV) = M, dete (X (0)+iY (1)) = €O, 27)

McDuff and Salamon generalized this definition in [8] to the Maslov index u(¥(¢)) = u(‘P(t)V, V) for a loop ¥(¢) in
Sp(2n) and any fixed Lagangrian subspace V.

Lemma 3.5 Let W(¢) be a loop in Sp(2n) and U(?) = A(¢) + iC(¢) = P(E)(P()"P(#)) " a lift of unitary matrices.
Then

1(P(t)) = sH-5O) dete (A(t)+iC(1)) = PO (28)
T
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Remark 3.6 In Lemma 3.4 we consider the unoriented Lagrangian subspaces and in Lemma 3.5 the loop W(?)
endows the Lagrangian subspaces with an orientation. In other words, it may occur that ‘¥'(z,)V' = ‘¥(z,)V when Y(t,) #
Y(¢,). Hence the differences between equations (27) and (28) emerge.

It is sufficient to suppose that W(r) = U(#) according to Lemma 3.3, then the frames of W(¢)A(¢) have the form Z(¢)
_[ADOX@)-C()Y (1)
- [C(t)X(t) +AMDY (1)

], and hence
dete (AN X (6) - C(OY (1) +i(C()X (1) + A (£))) = & O +2P0)

a()+241) -a(0)-25(0)

T

H(¥AV) =

= W(AV) +2u(P). (29)

Let A(¢) = V, equation (29) also shows that u(\Y'V, V) = 2u(¥). Hence
HOPAY) = 1(AV )+ u(BV V). (30)
Consider the quasi-symplectic case, note that

\P/l :\Pll

[,11 0} {A(t) B(t)}
where [; = and ¥ = € Sp(2n).
0 7 C(t) D(1)

Then according to (30), we have

u(UAV) = (YU N),V) = w(GA V) + u(PV, V). (€2))

X(¢ AX (¢
Let the Lagrangian frame of A be Z(¢) = ( Y((t))]’ then Z, (¢) = ( Y(E))] is a frame of /,A, which is not a Lagrangian

frame. We transform Z(7) to a Lagrangian frame

[ xe
zi=14" " |. 32)

Y (1)
When 4> 0, Z i'(t) = Z(t) and A = [} A, then equation (31) yields

WA ) = WL AV )+ p(BY V) = p(A V) + u(PV, 1), (33)

' t
When 4> 0, Z,(1) = ( ( )], according to the crossing form (12) and this Lagrangian frame, we have

Y(t)

L(I,A,V,t)=-T(AV,1). (34)

Equation (30) shows that I'(/;A, V, t) has the same crossing time as I'(A, V, ¢) and hence
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A V) = =u(A,V) (35)
(VN V) = p(GA V) + (Y, V) = (A V) + u(PV, V). (36)

Moreover, let A(f) = V, eqution (29) also shows
u(ty V. V)= uC¥v.v). (37

Hence Theorem 1.5 holds according to equations (33), (36) and (37).
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