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Abstract: The role of sudden application or removal of a porous material on generalized Couette flow in a horizontal 
channel is carried out. The governing momentum equation is obtained and solved with the necessary initial and 
boundary conditions. The well-known Laplace transform technique is employed to transform the PDEs into ODEs 
and then solved exactly in the Laplace domain. A numerical approximation based on the Riemann-sum is employed 
to transform the solutions obtained from the Laplace domain to the time domain. Based on the simulated results, it is 
found that the time taken to attain steady-state skin-friction and volumetric flow rate is strictly affected by the sudden 
application/withdrawal of porous medium. Also, despite the sudden application/withdrawal of porous medium, the 
velocities, skin-friction and volumetric flow-rates still attain steady state values. 
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1. Introduction
The scrutiny of flow formation in channels is a well-known problem in the literature due to its unending 

applications in the area of nuclear cooling, power generation, astrophysics, and solar winds. The generalized Couette 
flow on the other hand involves flow formation due to the combination of pressure gradient and impulsive motion of 
at least one of the plates. This phenomenon has significant application in drug delivery for cancer patients and design 
of micropumps. Couette [1] pioneered the flow formation due to the constant motion of one of the boundaries. Later, 
Mazumder [2] obtained an exact solution for Couette flow with oscillatory boundaries in a rotating system. Also, Akonur 
and Lueptor [3] examined the three dimensional velocity field for wavy Taylor-Couette flow while Jha and Apere [4-5] 
studied the unsteady MHD two-phase Couette flow of fluid-particle suspension and time-dependent MHD Couette flow 
of rotating fluid with Hall and ion-slip currents respectively. They found that the Hartmann number has retarding effect 
on fluid velocity. 

The applications of flow formations in porous media cannot be overemphasized as they range from drying of 
porous solid, waste disposal, storage of grain coal, petroleum industry, aerodynamic stability and polymer technology. 
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In the study of Couette flow formation in a composite channel filled with a porous material, Kuznetsov [6-7] carried 
out an analytical investigation of the fluid flow in the interface region between a porous medium and a clear fluid in 
channels partially filled with porous medium for Couette flow and no-slip flows respectively. Al-Nimr and Alkam [8] the 
transient behavior of non-Darcy fluid flow in parallel-plates channels partially filled with porous materials. Daskalakis 
[9] discussed the role of temperature dependent viscosity on Couette flow through a porous medium of a high Prandtl 
number. Jha et al. [10] studied the influence of transpiration on free convective Couette flow in a composite channel. 
In other works, Vafai and Kim [11] gave an exact solution for fluid mechanics of the interface region between a porous 
medium and a fluid layer while Jha and Odengle [12] and Jha and Apere offered a semi-analytical solution for MHD 
Couette flow in a composite channel and porous annulus respectively. 

Inspired by the findings of Kumaran et al. [13] and Jha and Oni [14] where they numerically and analytically 
studied the transition of MHD boundary layer flow past a stretching sheet respectively. They found that the steady-
state velocity and local skin friction varies with the magnetic field when there is a sudden application of magnetic field 
whereas unchanged for the sudden removal of the magnetic field. For exploration of crude oil and many other minerals, 
it is, therefore, significant to study the role of sudden application/withdrawal of porous material on generalized Couette 
formation in a horizontal channel. The novelty of this work is the establishment of analytical solutions to describe 
generalized Couette flow formation in a horizontal channel with sudden application or withdrawal of a porous material. 
These solutions deserve great attention as they have significant application in the area of crude-oil exploration and 
refinery. 

2. Mathematical analysis
Consider the motion of incompressible, viscous, laminar fluid between two parallel plates filled with a porous 

material. The fluid exists in the region 0 ≤ y' ≤ h where the y' axis is the coordinate normal to the flow and h is the width 
of the channel. The fluid motion is fully developed hydrodynamically. The fluid flow inside the channel is set up by a 
combined pressure gradient in flow direction and motion of the lower plate with constant velocity u0 which is located at y' 
= 0.

dp
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−

u = 0

y = 0

y = h

y'

x'

h

u = u0

(a)

u = 0

y'

x'

h
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u = u0

dp
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−

Figure 1. Schematic of the problem (a) Case I, (b) Case II

As the flow is fully developed and the plates are of infinite length, this means that all physical governing 
parameters are functions of y' and t'. Two cases are considered in this article, namely: case I (sudden application of a 
porous material) and case II sudden withdrawal of a porous material (see Figure 1).
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2.1 Case I: Sudden application of a porous material

Following above assumption, and considering a steady, generalized Couette flow at initial state (t = 0); the 
mathematical model governing flow formation is given as:

2

2
sd u' dps

dx'dy'
= (1)

With the boundary conditions:

(2)

0; at 0su' u y'= =

0; at su' y' h= =

By means of the ensuing non-dimensional quantities: Y = y'/h, X = x'/h, u's = Us/u0, where Us, is the non-
dimensional steady-state velocity in the absence of porous material. Then equations (1) and (2) in dimensionless form 
become:

(3)
2

2
sd U dPs

dXdY
=

1; at 0sU Y= =

(4)0; at 1sU Y= =

The solution of (3) with boundary conditions (4) is:

(5)
2

(1 )
2 2s

dPs Y YU Y
dX

 
= − + − 

  

The pressure gradient is obtained from [21], 

(6)1 1
0 0

( )sU Y dY dY=∫ ∫

So that on solving for dPs
dX

, the velocity Us becomes:

(7)21 2 3sU Y Y= + −

At t' > 0, a sudden porous material is applied throughout the fluid flow (Figure 1a). In this article, the equation for 
the unsteady generalized Couette flow filled with porous material is given in dimensionless form as:
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(8)
2

2
( )A A A AU U H t U dP

t Da dXY
γ

∂ ∂
= − −

∂ ∂

Where 2
KDa
h

=  is the Darcy number, K is the permeability and H(t) is a unit step function; In this case:

(9)
1 for 0

( )
0 for 0

t
H t

t
>

=  ≤

Subject to the following initial and boundary conditions

0,  ,  0 1A st U U Y≤ = ≤ ≤

(10)1;  at 0
0

0;  at 1
A

A

U Y
t

U Y
= =

> =  = =

The solution of equation (8) subject to (10) can be obtained using the Laplace transform technique defined as 
follows:

(11)
0

   where ( , ) 0 for convergence.( , ) ,st
A AU y s U y t e dt s

∞ − >= ∫

Taking the Laplace transform of equation (8), we obtain the following ordinary differential equation

(12)
2

2
2

1 1 1 (1 2 3 )A A Ad U U dP
S Y Y

Da s dXdY γ γ
  − + = − + −      

The solution of equation (12) subject to boundary condition (10) is obtained as:

(13)

2

2 2
sinh( ) 6 1 (1 6 ) cosh( )
sinh( ) (1 ) (1 )(1 ) (1 )

A A
A

dP dPY Da Da Da sDa Da DaU
s s sDa dX s sDa dXsDa sDa

β β
β

  + −
= − + − +   + ++ +   

2
1 (1 6 )cosh( )

(1 ) (1 )
AdPDa Da sDa DaY

s s sDa dX sDa
β

 + −
+ + − 

+ +  

2

2
3 2 (1 6 )

(1 ) (1 ) (1 ) (1 )
AdPDaY DaY Da Da sDa Da

sDa sDa s sDa dX sDa
+ −

− + − +
+ + + +

1where .sDa
Da

β
γ
+

=

The skin-frictions at the walls Y = 0 and Y = 1 are respectively given as:
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(14)

(15)

2

0 2 2
0

6 1 (1 6 ) cosh( )
sinh( ) (1 ) (1 )(1 ) (1 )

A A A

Y

dU dP dPDa Da Da sDa Da Da
dY s s sDa dX s sDa dXsDa sDa

βτ β
β

=

  + −
= = − + − +   + ++ +   

2
(1 )

Da
s sDa

+
+

2

1 2 2
1

6 1 (1 6 )cosh( ) cosh( )
(1 ) (1 )(1 ) (1 )

A A A

Y

dU dP dPDa Da Da sDa Da Da
dY s s sDa dX s sDa dXsDa sDa

τ β β β
=

  + −
= = − + − +   + ++ +   

2

3
1 ( 6(1 )) 4sinh( )

(1 ) (1 )(1 )
AdPDa Da Da sDa Da

s s sDa dX sDasDa
β β

 − +
+ + − − 
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Also, the volumetric flow-rate in this current research is given in dimensionless form as:

1
0A AQ U dY= ∫

2

2 2
(cosh( ) 1) 6 1 (1 6 ) cosh( )

(1 ) (1 )(1 ) (1 )
A AdP dPDa Da Da sDa Da Da

s s sDa dX s sDa dXsDa sDa
β β
β

  − + −
= − + − +   + ++ +   

2

3 2
sinh( ) 1 ( 6(1 )) (1 6 )

(1 ) (1 )(1 ) (1 )
A AdP dPDa Da Da sDa Da Da sDa Da

s s sDa dX s sDa dXsDa sDa
β

β

 − + + −
+ + − − + 

+ ++ +  
(16)

The above solutions govern the flow formation of generalized Couette flow in a horizontal channel with the sudden 
application of a porous material. These solutions are in the Laplace domain and need to be transformed to the time 
domain using the Riemann-sum approximation technique of Laplace inversion [18]. In this technique, any mathematical 
function in Laplace-domain can be inverted to the time-domain as follows [16-20]:

(17)
1

1( ,  ) ( , ) Re ( , )( 1)  0 1
2

t N n
A A An

e inU Y t U Y U Y Y
t t

π∋

=
 = ∋ + ∋ + − ≤ ≤  

∑ ∋∋
∋

The Riemann-sum approximation for the Laplace inversion involves a single summation for the numerical process 
its accuracy depends on the value of ε and the truncation error dictated by N. According to Tzou [19], the value of εt 
that best satisfies the result is 4.7. In addition, it has been shown by [10, 12, 15] that the Riemann-sum approximation 
approach of Laplace inversion is a promising technique for obtaining high accuracy with an exact solution for a large 
value of n (in this work, the value of n with high accuracy is n = 2000).

2.2 Case II: Sudden withdrawal of porous material

Consider a generalized Couette steady flow formation in a horizontal channel filled with a porous material as 
depicted in Figure 1b. the lower plate at y = 0 is assumed to be moving with uniform velocity of U0 while the plate y = 
h is at rest. Flow formation is induced by the combined effect of pressure gradient as well as motion of the lower plate. 
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Based on the physics above, the principal momentum equation is achieved in dimensionless form as:

1;  at 0ssU Y= =

(19)0;  at 1ssU Y= =

(18)
2

2
1ss ss ssd U U dP

Da dXdY γ γ
− =

The solution to equation (18) with boundary condition (19) is given as:

(20)

1 11 cosh cosh sinh

1 cosh
1sinh

ss

ss ss
ss

dP YDa
dX Da Da DadP dPYU Da Da

dX dXDa
Da

γ γ γ

γ
γ

       
 − −                        = + + −            

 

The pressure gradient is also obtained by the use of equation (8) as:

(21)2

1 1 1 1sinh 1 sinh cosh 1 cosh

1 1 1sinh sinh 1 1 cosh

ss

Da Da
Da Da Da DadP

dX
Da Da Da Da

Da Da Da

γ γ
γ γ γ γ

γ γ
γ γ γ

            − + −                                 =
        

− − −                      

Suddenly, the porous material is gradually removed following as follows:

(22)
0 for 0

( )
1 for 0

t
H t

t
>

=  ≤

So that

(23)
2

2
W W WU U dP
t dXY

∂ ∂
= −

∂ ∂

subjected to the initial and boundary conditions:

1;  at 0
0,  

0;  at 1
W

W

U Y
t

U Y
= =

>  = =

0,  ,  0 1W sst U U Y≤ = ≤ ≤

(24)

Like previous case, by the use of Laplace transform technique, the solution to equation (23) subject to (24) is given 



Contemporary Mathematics 248 | Michael O. Oni, et al.

as:

( )

1 11 cosh cosh sinh

11 sinh

ssdP YDa Da
dX Da Da Da

s Da
Da

γ
γ γ γ

γ
γ
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(25)
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γ
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−
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(26)

( )5

1
1 1 ,
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γ

γ
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−
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Similarly, the skin-frictions at the walls Y = 0 and Y = 1 are respectively given as:

(27)
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The above equations (25-29) describe flow formations of generalized Couette flow in a horizontal channel with the 
sudden withdrawal of porous material. These equations have significant application in the area of crude-oil exploration 
and refineries. Equations (25-29) are in the Laplace domain and must be transformed to the time domain following the 
procedure of (17). 

3. Results and discussion
The role of sudden application/removal of a porous material on generalized Couette flow in a horizontal channel is 

carried out. The solutions obtained show that the sundry parameters explaining the physics of the current work are the 
Darcy number (Da) which is directly proportional to the permeability of the porous material, time (t) and the ratio of 
viscosities (γ). For a clearer understanding of the impact of various sundry parameters entering flow formations, figures 
are depicted to ascertain these effects. 

Table 1 justifies the accuracy of the Riemann-Sum Approximation (RSA) by comparing the velocity profile using 
PDEPE. Pdepe is an inbuilt matlab function used to solve parabolic partial differential equations. This numerical 
comparison gives an excellent agreement. 
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Table 1. Numerical comparison of RSA and PDEPE for fluid velocity for sudden application of porous material

Da = 0.1 Da = 1.0

Y t RSA PDEPE RSA PDEPE

0.0 0.2 1.0000 1.0000 1.0000 1.0000

0.5 1.0000 1.0000 1.0000 1.0000

1.0 1.0000 1.0000 1.0000 1.0000

0.0 0.2 0.7850 0.7851 1.2023 1.2023

0.5 0.7771 0.7771 1.1939 1.1940

1.0 0.7771 0.7770 1.1936 1.1937

0.0 0.2 0.5739 0.5738 1.1373 1.1372

0.5 0.5605 0.5605 1.1231 1.1231

1.0 0.5605 0.5604 1.1226 1.1225

0.0 0.2 0.4180 0.4181 0.8434 0.8434

0.5 0.4072 0.4072 0.8319 0.8317

1.0 0.4072 0.4070 0.8315 0.8314

0.0 0.2 0.0000 0.0000 0.0000 0.0000

0.5 0.0000 0.0000 0.0000 0.0000

1.0 0.0000 0.0000 0.0000 0.0000
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Figure 2. Velocity profile for different values of Da at different time
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Figure 3. Velocity profile for different values of Da and γ at steady-state 
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Figure 4. Skin-friction for different values of Da, γ and t at Y = 0 

Figure 2 presents the impact of Darcy number which is inversely proportional to the permeability of the porous 
material on velocity profile for the case of sudden application of porous material at different times. It is revealed that the 
time taken for attainment of steady state velocity is strictly dependent on Da. In fact, a straight line is achieved for flow 
whose Da = 1.0 at a steady state. Figure 3 on the other hand describes the combined impact of Da and γ on the velocity 
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profile. It is obvious from this figure that fluid velocity increases with γ and Da. This could be attributed to the fact 
that an increase in Da increases the porosity and thereby increasing fluid velocity. Figure 4 depicts the skin-friction for 
different values of Da, γ time (t) at the wall Y = 0. It is noticed that the time required to attain steady state skin-friction 
is strictly dependent on Da but weakly dependent on γ.
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Figure 5. Volumetric flow-rate for different values of Da, γ and t
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Figure 8. Skin-friction for different values of Da and γ

In fact, the time required to attain steady-state skin-friction is directly proportional to Da. Also, the maximum skin-
friction is achieved for the least value of Da. This could be attributed to the fact that an increase in Da increases the 
permeability of the porous material, which in turn reduces the force at which the fluid hits the surface of the channel. 

For a proper understanding of the impact of Da on volumetric flow-rate, Figure 5 presents the volumetric flow-
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rate as a function of Da, γ and time. It is obvious from this figure that the volumetric flow-rate is directly proportional 
to Da and inversely proportional to time. This is true based on the definition of Da; which increases with an increase in 
permeability between the porous material.

Figures 6a and 6b depict the velocity profiles for the case of sudden withdrawal of porous material for different 
values of time at Da = 0.1 and Da = 1.0 respectively. It is found from both figures that relative to the case of sudden 
application of a porous material, the time taken to achieve steady-state velocity is inversely proportional to Da. In fact, 
the time taken to achieve a steady-state solution for this case is extremely high relative to those of sudden application 
of a porous material. For a proper understanding of the role of γ on the velocity profile for this current case, Figure 7 
presents the combined impact of viscosity ratio (γ) and Da on the velocity profile. It is found that velocity profiles vary 
inversely with γ. Figure 8 on the other hand shows the skin-friction at both walls for different values of Da and γ. The 
asymmetry nature of skin-friction at both walls is observed regardless of the value of Da or γ. Figure 9 presents the 
effect of γ and Da on the volumetric flow-rate in the channel. It is observed that flow-rate is not sensitive to γ at high 
values of Da. 
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Figure 9. Volumetric flow-rate for different values of Da, γ and t 

The overall results of velocity, skin-friction and volumetric flow-rate for sudden application of porous material 
show a reverse trend to those of sudden withdrawal of porous material.

4. Conclusions
Investigation of the role of sudden application/withdrawal of a porous material on forced convection generalized 

Couette flow in a horizontal channel is carried out in this article. The partial differential equations governing flow 
formations are gotten and solved analytically using the Laplace transform method. The major findings in this article are 
summarized as follows:

1. Fluid velocity for sudden application of porous material behave differently with sundry parameters from those of 
sudden withdrawal of porous material. 
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2. The time taken to attain steady-state solutions is extremely high in the case of sudden withdrawal of porous 
material.

3. The volumetric flow-rate and skin-friction and sudden application of porous material have a reverse trend with 
those of sudden withdrawal of porous material.

It is important to state that the results obtained from this article have significant applications in the exploration 
of crude-oil and hydrodynamics. Also, it is hoped that the obtained results will not only be useful in industrial and 
engineering fields but also serve as an  improvement on previous studies. This work reduces to the work of Jha and Oni 
[15] when the porous material is replaced by a transversely applied magnetic field. 
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