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1. Introduction
Let X and Y stand for Banach spaces, Ω ⊂ X denote a nonempty convex set. By C 2(Ω) we denote the space of twice 

differentiable operators defined on the set Ω. Let F : Ω → Y be a C 2(Ω) operator. Let also L(X, Y ) denote the space 
of bounded linear operators mapping X into Y. A plethora of problems reduces to determining a solution x∗ ∈ Ω of the 
nonlinear equation

( ) 0.F x =

This is one of the most challenging tasks in computational sciences. Most solution methods for equation (1) are of 
iterative nature, since the point x∗ is found in closed form only in special cases.

We present the semi-local convergence analysis of the class of methods defined for each n = 0, 1, 2, ... by

1( ) ( )n n n ny x F x F x−′= −

2 1
1 ( ) ( ) ( ),n n n n n n n nx y I M L L A F x F y−

+ ′= − + +

where F'(x) : Ω → L(X, Y ), F'(x)−1 : Ω → L(Y, X ), Mn := M(xn), M : Ω → L(X, Y ), An = A(xn), A : Ω → L(X, Y ), 

Copyright ©2022 Ioannis K. Argyros, et al. 
DOI: https://doi.org/10.37256/cm.3220221471
This is an open-access article distributed under a CC BY license 
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

(1)

(2)

http://www.wiserpub.com/
http://ojs.wiserpub.com/index.php/CM/
https://orcid.org/0000-0003-0035-1022
https://orcid.org/0000-0002-9189-9298
https://orcid.org/0000-0002-3530-5539


Contemporary Mathematics 218 | Ioannis K. Argyros, et al.

Ln = L(xn), L : Ω → L(Y, X ) and Ln = LF (xn) = F'(xn)−1F''(xn)F'(xn)
−1F(xn), where F', F'' stand for the first and second 

Fréchet derivative of operator F [1].
The second derivative is easy to evaluate in some interesting cases: to mention a few
(1) The operator F'' is constant.
(2) The operator in equilibrium problems depends on the connection between two elements vi.vj, and the second 

derivative is constant.
(3) Many integral equations can be solved so that the second derivative is also constant.
Many popular fourth convergence order methods are special cases of (2).
Traub’s Method [2, 3]; Choose Mn = I to obtain

1( ) ( )n n n ny x F x F x−′= −

2 1
1 ( ) ( ) ( ).n n n n n n nx y I L L A F x F y−

+ ′= − + +

Two-Step Method [4, 5]: Choose Mn = I and An ≡ 0 to have

1( ) ( )n n n ny x F x F x−′= −

1
1 ( ) ( ) ( ).n n n n nx y I L F x F y−

+ ′= − +

Special Two-Step Method [4]: Choose 1 5( ) ( )
2 2 FA x I L x′

 = − 
 

 to get

1( ) ( )n n n ny x F x F x−′= −

2 1
1

1 5 ( ) ( ) ( ).
2 2n n n n F n nx y I L L I L x F x F y−

′+
 
 
 

  ′= − + + − 
 

Many other choices for linear operators Mn and An are possible [2, 6-8]. Therefore, it is important to provide a 
unified convergence analysis for these methods by studying (2).

If ||x∗ − xn+1|| ≤ C ||x∗ − xn||
q for some constant C > 0 and q ≥ 1, we say that the convergence order of the method is q.

In this paper we are also motivated by Traub’s theorem for scalar equations and optimization considerations. Let X 
= R.

Theorem 1.1 (Traub [2]) If A(x) is a sufficiently many times differentiable function, then method

( )n ny Q x=

2 1
1 (1 ) ( ) ( )n n n n n n nx y L L A F x F y−

+ ′= − + +

has order of convergence min{s + 2, 2s}, where s is the order of iterative function Q.
The convergence of the aforementioned four methods has been shown using Lipschitz-type continuity conditions 

on F'' or higher than order two derivatives which are not on these methods [4, 10-12]. Hence, the utilization of these 
methods is limited although they may converge. But to solve equations containing operators that are at least three times 
differentiable or whose F'' is not Lipschitz-type continuous.

For example: Let X = Y = R, Ω = [−0.5, 1.5]. Define function Ψ on Ω by

(3)

(4)

(5)

(6)
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3 2 5 4log 0( )
0 0.

t t t t if tt
if t

 + − ≠Ψ = 
=

Then, t ∗ = 1, is a zero of equation Ψ(t) = 0, and

2 2( ) 6 log 60 24 22.t t t t′′Ψ = + − +

Obviously Ψ'' (t) is not bounded on Ω.
We address these concerns by providing a semi-local convergence analysis for method (2) based on operator F' and 

F'' that only appear on it. Hence, we extend the usage of these methods and in the more general setting of method (2).
Scalar majorizing sequences are introduced in Section 2. The semi-local convergence appears in Section 3 followed 

by numerical examples in Section 4 and the conclusions in Section 5.

2. Majorizing sequences
Let K0, K, K1, K2, m, α, b be positive and η be a non-negative number. The numbers are connected to the operators 

appearing on method (2) in Section 3. Define sequence {tn} for n = 0, 1, ... by t0 = 0, s0 = η,

2

1
0

( )
2(1 )

n n n
n n

n

bK s t
t s

bK t
γ

+
−

= +
−

1 1
1 1

0 1

( )
,

1
n n n n

n n
n

bq d t s
s t

bK t
+ +

+ +
+

−
= +

−

where 22

0
 

( ) 1, , , 1
1

 
1

n n
n n n n n n n

n n

bK s t
m q

bK t
β α γ β

β
−

= = + = = +
− −

    and 1 1 1
1 ( ) ( )
2n n n n n n nd K s t t s K m α+ +

 = − + − + + 
 

 
. 

This sequence is shown to be majorizing for method (2) in Section 3. But first, we present some convergence results for 
this sequence.

Lemma 2.1 Suppose

0

1 .nt bK
<

Then, sequence {tn} is such that *
1

0 0

1 1,  limn n n nn
t s t t t

bK bK+ →∞
≤ ≤ < = ≤ , and t ∗ is the least upper bound of sequence 

{tn}.

Proof. It follows from (7) and (8) that sequence {tn} is non-decreasing and bounded from above by 
0

1
bK

 and as 

such it converges to t ∗.
Next, we present some stronger results for the convergence of sequence {tn} but which are easier to verify than (8).
Define polynomials fn

(1),  fn
(2) and  fn

(3) on the interval S = [0, 1) by

(1) 1
2 0( ) (1 ) 1n n

nf t bK t bK t tη η−= + + + −

(2) 2 1( ) (1 )
2

n
n

bKf t mt t tα η−= + +

(7)

(8)

t ∗
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0 (1 ) 1,nbK t t η+ + +…+ −

(3) 1 2
1 1( ) 2

2
n n

n
Kf t b Kt t mK t K tη η α+ = + + + 

 

1
0 (1 ) 1,nbK t t η+− + +…+ −

2
1 0 2 2( ) ,g t K t K t K= + −

2 2 2
2 0( ) (1 ) (1 ) ,

2 2
K Kg t mt t t mt t K tα α= + + − + + +

2
3 0( ) 2 2g t K t Kt K= + −

and

4 1 0( ) 2 (1 )( ) 1.g t bK t t m t t bKα η= − + + + −

By these definitions, we have g1(0) = −K2, g1(1) = K0, g2(0) = 
2
K

− , g2(1) = K0, g3(0) = −2K, g3(1) = K0, g4(0) = 

bK0η − 1 < 0 (if bK0η < 1) and g4(1) = bK0η. Then, the intermediate value theorem assures that equation gi(t) = 0, i = 1, 

2, 3, 4 have zeros in the interval (0, 1). Denote by ξi the smallest such zeros, respectively. Let 0
1 2 2, ,

2
 

bK
a bK a

γ η
η= =  

0 1 1 0
3

0 1

( )
91 )

bq d t s
a

bK tη
−

=
−

 for n ≠ 0 a = max{a1, a2, a3}, ξ5 = min{ξ1, ξ2, ξ3}, ξ = max{ξ1, ξ2, ξ3}, λ = min{1 − bK0η, ξ4, µ}, 

where 
21 2

2
m αµ

α
+ +

= . 

Notice that these functions and parameters depend on the original constants. Next, we show the second result on 
majorizing sequences for method (2) based on the developed notation.

Lemma 2.2 Suppose

0 1  1bK t <

and

50 .a ξ ξ λ≤ ≤ ≤ ≤

Then, the following assertions hold

2
1 10 ( ) ,n n

n n n ns t s tξ ξ η ξ η− −≤ − ≤ − ≤ ≤

2 1 1
1 10 ( ) ,n n

n n n nt s t sξ ξ η ξ η+ +
+ −≤ − ≤ − ≤ ≤

**
1 :

1n n nt s t t η
ξ+≤ ≤ ≤ =

−

(9)

(10)

(11)

(12)

(13)
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and

* **lim .nn
t t t

→∞
= ≤

Proof. Mathematical induction is employed to show

2

0

( )
0 ,

1
n n

n

bK s t
bK t

ξ
−

≤ ≤
−

2

0

(1 )( )
0 ,

2(1 )
n n

n

bK m s t
bK t

ξ αξ+ + −
≤

−

2 1nβ ≤

and

1 1

0 1

( )
0 ( ).

1
n n n n

n n
n

bq d t s
s t

bK t
ξ+ +

+

−
≤ ≤ −

−

These estimates are true for n = 0 by the definition of sequence {tn}, (9) and (10).

Then, we have 
2

**
1 1 0 0 1 0 0 0 1

10 ( ),  0 ( ) and .
1ns t s t t s s t t tξξ ξ η ξ η

ξ
−

≤ − ≤ − ≤ − ≤ − ≤ + = <
−

Suppose that

0 ,n
n ns t ξ η≤ − ≤

1
10 n

n nt s ξ η+
+≤ − ≤

and

1
**1 .

1

n

nt tξ η
ξ

+−
≤ <

−

Evidently, estimate (15) holds if

2 0 (1 ) 0n nbK bKξ η ξ ξ ξ η ξ+ + +…+ − ≤

or

(1)
1( ) 0  at .nf t t ξ≤ =

We must relate two consecutive polynomials f n
(1)

(1) (1) (1) (1)
1 1( ) ( ) ( ) ( )n n n nf t f t f t f t+ += − +

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)
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1 (1)
2 0 (1 ) 1 ( )n n

nbK t bK t t f t nη η+= + + +…+ − +

1
2 0 (1 ) 1n nbK t bK t tη η−− − + +…+ +

(1) 1
1( ) ( ) ,n

nf t g t t bη−= +

so

(1) (1) 1
1 1( ) ( ) ( ) .n

n nf t f t g t t bη−
+ = +

In particular, by the definition of g1 and ξ1, we get

(1) (1)
1 1( ) (  ) at .n nf t f t t ξ+ = =

Define function on the interval [0, 1)

(1) (1)( ) lim ( ).nn
f t f t∞ →∞

=

By the definition of functions  f n
(1)(t) and  f ∞

(1), we get

(1) 0( ) 1.
1
bK

f t
t
η

∞ = −
−

So, (21) holds if

(1)
1( ) 0 at ,f t t ξ∞ ≤ =

which is true by (10). Next, we need to show

0

( )
0

2(1 )
n n n

n

bK s t
K t

γ
ξ

−
≤ ≤

−

or instead (by (15)) (16). Similarly, (16) holds if

2
0(1 ) (1 ) 0

2
n nbK m bKξ αξ ξ η ξ ξ ξ η ξ+ + + + +…+ − ≤

or

(2)
2( ) 0 at .nf t t ξ≤ =

We can write

(2) (2) (2) (2)
1 1( ) ( ) ( ) ( )n n n nf t f t f t f t+ += − +

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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2 1
0(1 ) (1 ) 1

2
n kbK mt t t bK t tα η η+= + + + + +…+ −

(2) 2 1( ) (1 )
2

n
n

bKf t mt t tα −+ − + +

0 (1 ) 1nbK t t η− + +…+ +

(2) 1
2( ) .n

nf t g t bη−= +

So, we get

(2) (2) 1
1 2( ) ( ) .n

n nf t f t g t bη−
+ = +

In particular, we have

(2) (2)
1 2( ) (  a) .t n nf t f t t ξ+ = =

Define function f ∞
(2) on the interval [0, 1) by

(2)
(2) ( ) lim( ).

n
f t t∞ →∞

=

It follows that

(2) (2)( ) ( ),f t f t∞ ∞=

so (29) holds, if  f ∞
(2)(t) ≤ 0 at t = ξ2, which is true by (10). By the definition of βn, estimate (17) holds if

22( ) 1,mξ αξ+ ≤

which is true by the choice of µ and (10). It follows that

2.nq ≤

Hence, estimate (18) certainly holds if

2
1 1

0 1

2 ( ) ( )
2 ,

1

n n n n

n

Kb K s t s t m K K

bK t

ξ ξ αξ ξ
ξ

+

 − + − + + 
  ≤

−

or

1 2
1 12

2
n nKb K mK Kξ η ξ η ξ α ξ+ + + +  

(30)

(31)

(32)

(33)

(34)
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1
0 (1 ) 1 0,nbK ξ ξ η++ + +…+ − ≤

or

(3)
3( ) 0 at .nf t t ξ≤ =

This time we have

(3) (3) (3) (3)
1 1( ) ( ) ( ) ( )n n n nf t f t f t f t+ += = +

(3)
3( ) ( ) ,n

nf t g t t bη= +

and

(3) (3)
1 3( ) ( ) at .n nf t f t t ξ+ = =

Define function (3) (3)( ) lim ( ).nn
f t f t∞ →∞

=  Then, we obtain

(3) 2 0
1 1( ) 2 ( ) 1.

1
bK

f t b mtK t K
t
η

α∞ = + + −
−

So,

(3)
4( ) 0 at ,f t t ξ∞ ≤ =

if

4 4( ) 0 at ,g t t ξ≤ =

which is true by (10). The induction for estimates (15)-(18) is complete. Hence, sequence {tn} is non-decreasing and 
bounded from above by t ∗∗, and as such it converges to t ∗ ∈ [0, t ∗∗].

3. Semi-local analysis
Let U(x0, s), U[x0, s] stand for the open and closed balls, respectively, centered at the point x0 ∈ X and of radius s > 0.
The following conditions (H) are used. Suppose
(H1) There exist x0 ∈ Ω, b > 0, η ≥ 0, αn ≥ 0, α ≥ 0, such that mn ≥ 0 and m ≥ 0 such that

1 1
0 0( ) ( , ),  ( ) ,F x Y X F x b− −′ ′∈ ≤‖ ‖L

1
0 0( ) ( ) .F x F x η−′ ≤‖ ‖

 and .n n n nA M m mα α≤ ≤ ≤ ≤‖ ‖ ‖ ‖

(35)

(36)

(37)
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(H2)

0 0 0( ) ( )F x F x K x x′ ′− ≤ −‖ ‖ ‖ ‖

for each x ∈ Ω. Set 0 0
0

1( , ) .U x
bK

Ω = ∩ Ω

(H3)

1( ) ,F x K′ ≤‖ ‖

2( )F x K′′ ≤‖ ‖

and

( ) ( )F y F x K y x′ ′− ≤ −‖ ‖ ‖ ‖

for all x ∈ Ω0 and y = x − F' (x)−1F(x) ∈ Ω, or x, y ∈ Ω0. Denote by K̄ the constant in the first case and by K the one in 
the second case. Notice that K̄ ≤ K. We use K in the results that follow although K̄ can also be used.

(H4) Condition (8) of Lemma 2.1 or conditions (8) and (9) of Lemma 2.2 hold. 
and

(H5) U[x0, t ∗] ∈ Ω.
Next, we need an auxiliary result connecting the iterates of method (2).
Lemma 3.1 Suppose that iterates {xn}, { yn} exist for each n = 0, 1, 2, .... 

Set

( )( )1
1 10

( ) ( )  n n n n nD F y x y F x dθ θ+ +′ ′= + − −∫ �

( )
1

10
( )n n n n nM L F y x y dθ θ+′+ + −∫

( )
1 2

10
( )n n n n nL A F y x y dθ θ+′ + −∫

and

( )( )1
1 1( ) ( ) .n n n n n n nC B B F y x y F xθ−

+ +′ ′= + − −

Then, the following assertions hold

1
1 1n n nC B D−

+ +=

and

1 1 1( ) ( ).n n n nF x C x y+ + += −

Proof. In view of (43), we have

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)
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( )( )1
1 1( ) ( )n n n n n n nC B B F y x y F xθ−

+ +′ ′= + − −

( )( )1 2
1( ) ( ) ( )n n n n n n n n nB I M L L A F y x y F xθ−

+′ ′= + + + − −

1
1,n nB D−

+=

by the definition (42). Moreover, we can write by the second substep of method (2)

1 1( ) ( ) ( ) ( )n n n nF x F x F y F y+ += − +

1
1 1( ) ( ) ( )( )n n n n n nF x F y B F x x y−

+ +′= − − −

( )( )1 1
1 10

( ) ( ) ( )n n n n n n nF y x y d B F x x yθ θ −
+ +′ ′= + − − −∫

1 1( ).n n nC x y+ += −

The semi-local convergence analysis of method (2) follows.
Theorem 3.2 Suppose that the conditions in H hold. Then, iteration {xn} generated by method (2) is well defined 

in U(x0, t ∗), remains in U(x0, t ∗) for each n = 0, 1, 2, ... and converges to solution x∗ ∈ U [x0, t ∗] of equation F(x) = 0. 
Moreover, the following bounds hold

,n n n ny x s t− ≤ −‖ ‖

1 1 ,n n n nx y t s+ +− ≤ −‖ ‖

and

* * .n nx x t t− ≤ −‖ ‖

Proof. It follows from (H1) and (7) that

1
0 0 0 0 0 0( ) ( ) ,y x F x F x s tη−′− = ≤ = −‖ ‖ ‖ ‖

so (46) holds for n = 0 and y0 ∈ U(x0, t ∗). Let u ∈ U(x0, t ∗). Then, by (H2), we get that

1 *
0 0 0 0 0( ) ( ) ( )         1,F x F u F x bK u x K t−′ ′ ′− ≤ − ≤ <‖ ‖‖ ‖ ‖ ‖

so F'(u)−1 ∈ L(Y, X ) by the Banach lemma on linear invertible operators [1, 5, 12] and

1
0

0 0
( ) ( )     .

1
bF u F x

bK u x
−′ ′ ≤

− −
‖ ‖

‖ ‖

Some estimates are needed:

(46)

(47)

(48)

(49)

□
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( ) ( ) ( ) ( ,( ) )n n n n n nF y F y F x F' x y x= − − −

so by (H3)

1 2 2
0( ) ( )         ( ) ,

2 2n n n n n
K KF x F y y x s t−′ ≤ − ≤ −‖ ‖ ‖ ‖

1 1( ) ( ) ( ) ( )( )n n n n n n nL F x F x F x F x y x− −′ ′′ ′= −‖ ‖ ‖ ‖

1 1
0 0( ) ( ) ( ) ( )n n n nF x F x F x F x y x− −′ ′ ′ ′′≤ −‖ ‖‖ ‖‖ ‖

2

0 0
,

1
n n

n
n

bK y x
bK x x

−
≤ ≤

− −


‖ ‖

‖ ‖

and

2
1         n n n n n nx y I M L L A+  − ≤ + + ‖ ‖ ‖‖‖ ‖‖ ‖‖ ‖‖ ‖

1 1
0 0  ( ) ( ) ( ) ( )n nF x F x F x F y− −′ ′ ′×‖ ‖‖ ‖

2
2 2

0 0 0 0
1

1 1
n n n n

n n
n n

bK y x bK y x
m

bK x x bK x x
α

  − − ≤ + +  − − − −   

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

2

0 0 0
  
1 2 n n

n

b K y x
b K x x

× −
− −

‖ ‖
‖ ‖

1 ,n nt s+≤ −

showing (47), where we also used || yn − xn || ≤ sn − tn and || xn − x0 || ≤ tn.
Next, we show the invertability of Bn. We get in turn by the definition of Bn that

2        n n n n nB I M L A L− ≤ +‖ ‖ ‖ ‖‖ ‖ ‖ ‖‖ ‖

2
2 2

0 0 0 01 1
n n n n

n n
n n

bK y x bK y x
m

bK x x bK x x
α

 − −
≤ +  − − − − 

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

2 2

0 0

( ) ( )
1 1

n n n n

n n

mbK s t bK s t
bK t bK t

α
− −

≤ +
− −

1,nβ= <

so

(50)

(51)

(52)

(53)

(54)
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1     .n nB q− ≤‖ ‖

Moreover, we obtain by the definition of  Dn+1 and (H3) that

1 1
1    
2n n n n nD K y x x y+ +

 ≤ − + −  
‖ ‖ ‖ ‖ ‖ ‖

2
1 1 n nm K Kα+ + 

2
1 1 1

1 ( )
2n n n n n nK s t t s m K Kα+

 ≤ − + − + + 
 

 

1.nd +=

Furthermore, by the first substep of method (2), Lemma 3.1, (49) (for u = xn + 1), (7) and (56), we have that

1 1
1 1 1 0 0 1    ( ) ( ) ( ) ( )n n n ny x F x F x F x F x− −

+ + + +′ ′ ′− ≤‖ ‖ ‖ ‖‖ ‖

1 1

0 1 0

 
  

1
n n n

n

b C x y
bK x x

+ +

+

−
≤

− −
‖ ‖‖ ‖

‖ ‖

1 1

0 1 0
  

1
n n n n

n

bq d x y
bK x x

+ +

+

−
≤

− −
‖ ‖

‖ ‖

1 1  n ns t+ +≤ −

showing (46) for n replacing n + 1, where we also used

1 0 1 0        n n n nx x x y y x+ +− ≤ − + −‖ ‖ ‖ ‖ ‖ ‖

1 0n n nt s s t+≤ − + −

*
1nt t+= <

and

1 0 1 1 1 0        n n n ny x y x x x+ + + +− ≤ − + −‖ ‖ ‖ ‖ ‖ ‖

1 1 1 0n n ns t t t+ + +≤ − + −

*
1 .ns t+= <

That is xn, yn ∈ U(x0, t∗) for each n = 0, 1, 2, .... The induction for estimates (46) and (47) is complete. Hence, 
sequence {xn} is fundamental (since {tn} is convergent) in a Banach space X and as such it converges to some x∗ ∈ U[x0, 

(55)

(56)

(57)
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t∗]. By letting n → ∞ in (51), and using the continuity of F we get F(x∗) = 0. Finally, let j ≥ 0 be an integer. Then, we can 
write

1 1 1         n j n n j n j n j n j n nx x x y y x y x+ + + − + − + −− ≤ − + − +…+ −‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

1 1 1  n j n j n j n jt s s t+ + − + − + −≤ − + − +…

 n n n j ns t t t++ − = −

and if j → ∞ we obtain (48).
A uniqueness of the solution result is presented next.
Proposition 3.3 Suppose: there exists a simple solution x∗ ∈ U(x0, ρ0) of equation F(x) = 0 for some ρ0 > 0; 

condition (H2) holds and there exists ρ ≥ ρ0 such that

0
0( ) 1.

2
K

ρ ρ+ <

Set Ω1 = U [x0, ρ] ∩ Ω. Then, the point x∗ is the only solution of equation F(x) = 0 in the set Ω1.
Proof. Let z∗ ∈ Ω1 with F(z∗) = 0. Define T = 

1 * * *
0

( ( ))T F x z x dθ′= + −∫ F'(x∗ + θ(z∗ − x∗))dθ. Then, using (H2) and (59) we obtain

11 * *
0 0 0 00

( ) ( ( ))     ((1 ) ||    )F x T F x K x x y x dθ θ θ−′ ′− ≤ − − + −∫‖ ‖ ‖ ‖ ‖

0
0( ) 1.

2
K

ρ ρ≤ + <

Hence, z∗ = x∗ is implied by the identity T(z∗ − x∗) = F(z∗) − F(x∗) = 0, and the invertability of linear operator T.

Remark 3.4 (i) Condition (H5) can be replaced by U(x0, 
0

1
bK

) ⊂ Ω in the case of Lemma 2.1 and by U(x0, 1
η

ξ−
) 

⊂ Ω in the case of Lemma 2.2.
(ii) In Proposition 3.3 we did not assume all conditions (H) except (H2).

(iii) We can use smallest Lipschitz constants if instead of Ω0 if we consider the set Ω2 = U(x1, 
0

1
bK

 − η) and suppose 

Ω2 ⊂ Ω and bK0η < 1. Then, iterates lie in Ω2 and Ω2 ⊂ Ω0. Hence, the constants corresponding to K, K1 and K2 are at 
least as small.

(iv) We have chosen Newton’s method in the first substep of (2). But if we consider Q(x) = x − F'(x)−1G(x)F(x) in 
the Banach space version of (6), then we get

1 1 1( ) ( ) ( ) ( ) ( ) ( )n n n n n n n nL F x F x F x F x F x y x− − −′ ′′ ′ ′= − −

1 1( ) ( ) ( ) ( ),n n n n nF x F x G x y x− −′ ′′ ′= − −

where G : Ω → L( X, X ). Moreover, suppose G −1 ∈ L(X, X ) and ||G(x)−1|| ≤ τ for some τ > 0. Then, the conclusions of 
Theorem 3.2 hold for this method too if we simply multiply 

n by τ.

(58)

(59)

□

□
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4. Numerical example
We test the convergence criteria.
Example 4.1 Define the real function  f : Ω → R on Ω = B[x0, 1 − δ ], x0 = 1, δ ∈ (0, 1) by

3( ) .f t t δ= −

Then || f '(x0)
−1|| ≤ 1

3
, || f '( y) − f '(x)|| ≤ 6(2 − p)|| y − x || and hence for all x ∈ D, we have

( )
1

1 0
1

0 0

( ) 1( )         .
3 1 4(2 )(1 )1  ( ) ( ) ( ) 

f x
f x

p pf x f x f x

−
−

−

′
′ ≤ ≤

′ ′ ′ − − −− −
‖ ‖

‖ ‖
‖ ‖‖ ‖

Hence,

( )1 1 2(2 )( ) ( ) ( )    ( )         .
1 4(2 )(1 )

pf x f y f x f x L y x y x
p p

− − −′ ′ ′ ′− ≤ − ≤ −
− − −

‖ ‖ ‖ ‖ ‖ ‖

Then, the definitions are satisfied for 
2

0 2 1
1 1 1, , 1, 3(3 ), 6 1 , ,

3 3 3
  

2
   Kb m K K K Kδη δ

δ
−  = = = = − = = + = − 

 and 
2

2 2 .
3 1

K δα
δ

− =  − 
 Then, for δ = 0.98, we have t1 = 0.0070, t2 = 0.0063, t3 = 0.0063, t4 = 0.0063, t5 = 0.0063, t6 = 0.0063, 

and 
0

1
bK

 = 0.4950. So, condition (8) satisfied, and hence lim nn
t

→∞
=  t*.

Example 4.2 For the motivational example in the introduction, we have for x0 = 0.5; η = 0.2813, b = 
1
3

, K0 = 
32.3333, K1 = 33, K2 = K = 97/3, Mn = I, m = 1, α = 0.6532. We obtain t1 = 4.5585, t2 = 5.7840, t3 = 5.8081, t4 = 5.8081, 

t5 = 5.8081, t6 = 5.8081 and 
0

1
bK

 = 37. So, condition (8) satisfied. That is lim nn
t

→∞
=  t*.

5. Conclusion
A semi-local convergence of method (2) is presented under weaker than before conditions using majorizing 

sequences.
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