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Abstract: In this research article, we build and implement an efficient spectral algorithm for handling linear/nonlinear 
mixed Volterra-Fredholm integro-differential equations. First, we expand the exact solution as a truncated series of the 
generalized Fibonacci polynomials, and then we discretize the equation via Simpson’s quadrature formula. Finally, we 
collocate the resulted residual at the roots of the shifted first-kind Chebyshev polynomials. Also, the rate of convergence 
is studied and the truncation error estimate is reported. Some numerical examples are exhibited to prove the applicability 
and accuracy of the algorithm.
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1. Introduction
Fractional calculus is a very essential mathematical field that is generalizing the ordinary derivatives and integrals 

to any non-integer order. It has recently gained popularity in a variety of fields since a lot of physical phenomena are 
explained by fractional differential equations such as biology, engineering, fluid mechanics, and many other various 
fields. Many types of research studied fractional differential equations numerically for example: [1] using the variational 
iteration method to solve fractional optimal control problems, [2] using the Taylor collocation method to solve fractional 
differential equations, [3] using the ultraspherical wavelets method for solving fractional Riccati differential equations, [4] 
using a spectral element method for working with nonlinear fractional evolution equation, [5] using Legendre spectral 
element system for solving time fractional modified anomalous sub-diffusion equation. It is widely known that obtaining 
theoretical solutions for fractional differential equations is difficult. Accordingly, it is essential to use numerical methods 
to achieve effective and accurate solutions for the fractional differential equations such as: differential transform method, 
spectral methods, and finite element methods. The spectral methods are the most important method for solving ordinary 
and fractional differential equations. This is due to many felicities such as: spectral techniques can give exponential 
convergence of the solutions of the differential equations and it also gives accurate results which are efficient and simple 

Contemporary Mathematics
http://ojs.wiserpub.com/index.php/CM/

Copyright ©2022 E. M. Abo-Eldahab, et al.
DOI: https://doi.org/10.37256/cm.3320221489
This is an open-access article distributed under a CC BY license 
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/
0000-0001-9517-0296
http://www.wiserpub.com/
http://ojs.wiserpub.com/index.php/CM/


Contemporary MathematicsVolume 3 Issue 3|2022| 309

application. The spectral method process is based on finding the approximate solution for a differential equation by a 
finite sum of specific basis sets that are usually orthogonal then evaluating the expansion coefficient in the sum to satisfy 
the differential equation and its conditions. There are three common types for evaluating the expansion coefficients for 
the spectral methods: Galerkin, collocation, and tau techniques. The first technique, Galerkin, includes finding a suitable 
orthogonal polynomial as a basis function that would satisfy the initial and boundary conditions of the differential 
equation and then impose the residual to be orthogonal with the basic functions. For examples: [6-7] using the Galerkin 
technique for finding a direct solution of high even-order differential equations, and solving the time-fractional telegraph 
equation. The second technique, collocation, ensures that the residual of the differential equation vanishes at a specified 
set of points. It is a suitable method for dealing with non-linear equations. For example: [8-12] using the collocation 
method for studying nonlinear FDEs (subject to initial/boundary conditions), studying the second-order multipoint 
boundary value problems, solving nonlinear FDEs subject to initial/boundary conditions, solving multi-term fractional 
differential equations, and solving one-dimensional time-fractional convection equation. The last technique, tau, works 
by decreasing the residual of the differential equation and then applying the initial and boundary conditions. It is 
considered a particular type of the Petrov-Galerkin method and it is usually applied to solve the differential equation 
that has complicated boundary conditions. For example: [13-14] using tau technique for solving a coupled system of 
fractional differential equations through generalized Fibonacci polynomial sequence, and solving a class of fractional 
optimal control via Jacobi polynomials. The Fibonacci polynomial is a polynomial sequence that could be considered 
as a circular generalization of the Fibonacci numbers. It is useful for many fields such as: physics, biology, statics, and 
computer science, see [15]. Many types of research discussed these polynomials and their generalized technically for 
example: [13] using Spectral tau Algorithm for a certain coupled system of fractional differential e quations through 
generalized Fibonacci polynomial sequence, [16] studied generalized Fibonacci sequences on an integral domain, [17] 
studying A novel operational matrix of Caputo fractional derivatives of Fibonacci polynomials, and [18] solving one-
dimensional variable-order space-fractional diffusion equations using Fibonacci collocation m ethod. The integral 
equations have an important role in many branches of applied mathematics. It appears in many useful formulas such as 
Fredholm and Volterra integral equations. The Volterra-Fredholm integral equations evolved from parabolic boundary 
value problems and From spatio-temporal statistical modeling The Epidemic Growth. Many researchers obtained several 
methods for solving linear/nonlinear Volterra-Fredholm integral equations for example: [19] using the Bernstein’s 
approximation method to solve the numerical solution of nonlinear Fredholm and Volterra integral equations, and [20] 
studied an hp-version collocation method for solving nonlinear Volterra integral equations of the first kind.

This paper is concerned with the numerical solution of the following general mixed Volterra-Fredholm integro-
differential equation [21].

(1)1
1 20 0

( ) ( ) ( ) ( ,  ,  ( )) ( ,  ,  ( )) .
xaAD u x Bu x C f x x t u t dt x t u t dtλ κ µ κ+ = + +∫ ∫

Where A, B, C, λ and µ are known constants, 0 < a ≤ 1, 0 ≤ x ≤ 1, If A ≠ 0, we have the initial condition u(0) = u0 
such that: f (x), λ(x, t) and µ(x, t) are analytic known functions, a and b are constants and u(x), should be a continuous 
function, is the unknown function that we will try to obtain it.

2. An overview on generalized Fibonacci polynomials
In the beginning, we know that we can get the Fibonacci polynomials from the following recurrence relation

(2)1 2( ) ( ) ( );  2,i i iE y yE y E y i− −= + ≥

with the initial values: E0(y) = 0 and E1(y) = 1.
The sequence of Fibonacci polynomials {E1(y); i ≥ 0} can be extended to produce the sequence {φi

m,n(y); i ≥ 0 such 
that m and n any real constants} which is built using the recurrence relation below:
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(3), , ,
1 2( ) ( ) ( );  2,m n m n m n

i i iy my y n y iϕ ϕ ϕ− −= + ≥

with the initial values: φ0
m,n(y) = 0 and φ1

m,n(y) = 1.
We can express φi

m,n(y) in its analytic form as:

(4)
1

2
, 2 1

0

1
( ) ( ) ,

i

m n r i r
i

r

i r
y n my

r
ϕ

− 
  

− −

=

 
 



− −
=


∑

where i   is the largest integer that is less than or equal to i.
Recognize that φi

m,n(y) is a polynomial of degree (i − 1). Then, to prevent any possible ambiguity in notation we 
can write the generalized Fibonacci polynomials with a degree i by the following formula.

(5), ,
1( ) ( );  0,m n m n

i iQ y y iϕ += ≥

which implies that the sequence of polynomials Qi
m,n(y) is created by the recurrence relation below:

(6), , ,
1 2( ) ( ) ( );  2,m n m n m n

i i iQ y myQ y nQ y i− −= + ≥

with the initial values: Q0
m,n(y) = 1, and Q1

m,n(y) = my.
There are many popular polynomials that we can consider as special cases of the generalized Fibonacci 

polynomials Qi
m,n(y). These polynomials are Fibonacci, Pell, Fermat, second kind Chebyshev, and second kind Dickson 

polynomials. And we can obtain them respectively as,

3, 2 2, 1
1( ) ( ),  ( ) ( ),i ii iy Q y U y Q y− −
+ = =

1,( ) ( ).i iE y Q yα−=

1,1 2,1
1 1( ) ( ),  ( ) ( ),i ii iF y Q y P y Q y+ += =

Qi
m,n(y) has the following analytic form:

(7)2
, 2

0
( ) ( ) ,

i

m n s i s
i

s

i s
Q y n my

s

 
  

−

=

 
 
 

−
= ∑

and in turn, can be written as:

(8), 2
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2( ) ,
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where:

0, odd,
1, even.k

r
r

λ


= 


The following form is another essential formula of the generalized Fibonacci Polynomials called Binet’s form.

(9)
2 2 2 2

,
2 2

( 4 ) ( 4 )
( ) ;  0 1.

2 4

i i
m n
i

my m y n my m y n
Q y y

i m y n

+ + − − +
= ≤ ≤

+

The following are the first generalised Fibonacci Polynomials:

, , , 2 2
0 1 2( ) 1,  ( ) ,  ( ) ,m n m n m nQ y Q y my Q y m y= = =

, 3 3 , 4 4 2 2 2
3 4( ) 2 ,  ( ) 3 ,m n m nQ y m y mny Q y m y m ny n= + = + +

, 5 5 3 3 2
5 ( ) 3 3 .m nQ y m y m ny mn y= + +

Now, we clarify an important theorem for the fractional derivative of the Fibonacci polynomial vectors by driving 
its operational matrix. We follow the proceed in [13].

Theorem 1. Let Φ(x) = [Q0
m,n(x), Q1

m,n(x), Q2
m,n(x), …, QM

m,n(x)]T be the generalized Fibonacci polynomial vector, 
then for any α > 0 the following statement holds:

(10)( )( )( ) ( ),d xD x x H x
dx

α
α α α

α
−= =

ΦΦ Φ

where H 
(α) = (hαi, j) is the Fibonacci operational matrix of fractional derivatives with order (M + 1) × (M + 1), and it can 

be expressed as:

(11)( )

0 0 0 0

( ,0) ( , ) 0 0
.

( ,0) ( , ) 0

( ,0) ( ,1) ( , 2) ( , )

H
i i i

M M M M M

α

α

α
α

α α

α α α

ω α ω α α

ω ω

ω ω ω ω

… 
 
 
 …           

=  
 … …
 
 
 … 

   

   

   

In addition, the elements (hαi, j) are given explicitly by the form

,
( , ), , ;

0, otherwis
 
e.

 
 i j

i j i i j
hα αω α ≥ ≥  = 


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And,

(12)
2 2! ( 1) 1 !

2( , ) .
! ! ! (1 )

2 2 2

j i j

i j ji
ii b

i j
i j j

λ

λ λ

α
λ α

λλ υ υ ξ
ω

λ λ λ λ α

− −

+ +

=  

+ − − 
 =

− − +      Γ + −     
     

∑

Proof. See [11].                                                                                                                                                             □

3. Numerical spectral solution of Volterra-Fredholm integral equations
In this section, we will investigate the method of solving the Volterra-Fredholm integro-differential equation 

numerically using the Generalized Fibonacci tau method (GFTM). 
According to Eq.(1), we consider the approximate solution of u(x) as:

(13)
1

,

0
( ) ( ),

M
m n

i i
i

u x c Q x
+

=
∑

where,

0 1 2 1[ , , ,..., ] ,T
i MC c c c c +=

and

, , , ,
0 1 2 1( ) [ ( ), ( ), ( ),..., ( )].m n m n m n m n

Mx Q x Q x Q x Q x+Φ =

The residual of the Volterra-Fredholm integro-differential equation can be written as:

(14)1
1 20 0

( ) ( )( ) ( ) ( ) ( , , ( )) ( , , ( )) .
x

R x A D u x Bu x Cf x x t u t dt x t u t dtα λ κ µ κ= + − − −∫ ∫

For the first integral we set: t = xz. 
Consequently,

(15)1 1
1 20 0

( ) ( )( ) ( ) ( ) ( , , ( )) ( , , ( )) .R x A D u x Bu x Cf x x x xz u xz dz x z u z dzα λ κ µ κ= + − − −∫ ∫

Or, in other words

(16)1
0

( ) ( )( ) ( ) ( ) ( , , ( ),  ( )) ,R x A D u x Bu x Cf x x z u z u xz dzα κ= + − − ∫

where:

1 2.xκ λ κ µκ= +
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Now apply Romberg’s integration rule:

(17)1
, ,0

( ) ( ) ,m n m ng z dz g E= Γ +∫

where:

12

0,0 ,0 1,0
1

(0) (1) 1 2 1,  2 ( ),
2 2 2

n
n

n n n
k

g g kr r r g
−

−
−

=

+ −
= = + ∑

( 1)
, , 1 , 1 1, ,

1( ) ( ),  (4 ).
4 1

n m
n m n m n m n m m nmr g r r r E − +

− − −= + − = Φ
−

Consequently,

( ) ( )( ) ( ) ( ) ( )( ).M MR x A D u x Bu x Cf x r k xα= + − − (18)

The final discretization of the Volterra-Fredholm integro-differential equation is given by

(19)( )( ) ( ) ( ) ( )( ); 0 1.M j M j j jA D u x Bu x Cf x r k x j Mα + = + ≤ ≤ +

With the aid of the initial condition, we get uM(0) = u0.
Where:

(20)
1

,

0
( ) ( ).

M
m n

M i i
i

u x c Q x
+

=
= ∑

By applying the spectral tau method to find the numerical solution for u(x) we get,

(21),
0

( ) ( ) 0;  0,  1,  2,  ...,  1.
l m n

ix R x Q x dx i Mα = = −∫

Now we have a system of algebraic equations of dimensions M + 2 that by solving it using Newton iterative 
method we will get the numerical solution of u(x).

4. Convergence and error analysis
In this section, we study the investigation of the convergence and error analysis for the expansion of generalized 

Fibonacci polynomials. The following two theorems are satisfied. 
Theorem 2. Let u(x) be defined on the interval [0, 1] and |u(i)(0)| ≤ N 

i, i ≥ 0, where N is a positive integer constant, 
and let u(x) expands as:

,

0
( ) ( ).m n

r r
r

u x c Q x
∞

=
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Then:

1. 

1( )
| || | ,

!

r

r

N
ac

r
σ

+

≤

2. The series is absolutely convergent.
Proof. See [13].                                                                                                                                                             □
Theorem 3. If u(x) satisfies the same hypothesis of Theorem (1), and if el(x) be the truncation error such that:

,

1
( ) ( ).m n

l i i
i l

e x c Q x
∞

= +
= ∑

Then the truncation error estimates as follows:

| ( ) | .
( 1)!

l

le x c
l
τ

<
−



Proof. See [13].                                                                                                                                                             □
In the following theorem we investigate the global error of the numerical solution of equation (1) and give an 

estimated value for it. 
Theorem 4. If el(x) be the truncation error, and 

[0,1]
max ( )l l

x
E xη

∈
=  be the global error, assuming that: |A| ≤ A1, |B| ≤ 

B1 and L2 ≤ L1. Where A1, B1 and L1 are positive constants. Then we obtain the global error estimate as follows:

(22)
1

1 1 ( 1)! ( 1)!

i l
g

l
gE A L ge c
i l

τσ γ
+

≤ +
+ −



such that:

1 1 1 2max( , , , , , )A Bγ λ κ κ µ=

Proof. Let

(23)1
1 20 0

( ) | ( )( ) ( ) ( ) ( , ) ( )) ( , ) ( )) |,
x

l l lx A D u x Bu x Cf x x t u t dt x t u t dtαη λ κ µ κ= + − − −∫ ∫

where

1 1( , , ( )) ( , ) ( ).x t u t x t u tκ κ=

From eq. (1) we have,

(24)1
1 20 0

( ) ( ) ( ) ( , ) ( )) ( , ) ( )) .
x

Cf x AD u x Bu x x t u t dt x t u t dtα λ κ µ κ= + − −∫ ∫

Then
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(25)
1

2
1 2

1

( )
| |( ) | | | || ( ) | | || ( , ) || ( ) || | | || ( , ) || ( ) | .

!

r

l l l l
r i

N
ax A L B e x x t e t x x t e t
r

σ
η λ κ µ κ

+
∞

= +
≤ + − −∑

Let

,
| |
N g
a

=

then

(26)
1 1

1 1

(1 , ) (1 ) (1 , )(1 ) ( ) .
! ! (1 ) (1 ) ( 1)!

r r i
g g g

r i r i

g g i g i i g gg ge ge ge
r r i i i

σ σ σ σ σ
+ +∞ ∞

= + = +

Γ + Γ + −Γ +
= = − = =

Γ + Γ + +∑ ∑

Where

(27)
1

0 0
(1 ) (1 , ) 1 1 1 1 .

(1 ) (1 ) (1 ) (1 ) 1 ( 1)!

i il li z ii i g g gz e dz z dz
i i i i i i

+
−Γ + −Γ + +

= ≤ ≤ ≤
Γ + Γ + Γ + Γ + + +∫ ∫

According to the theorem’s assumption, we have:

1

1 1 1 2

( )
| |( ) ( ) (| |) | || | | || |) ,

| | | | ( 1)!

i

l l

N
N N ax A L e B e
a a i

η σ λ κ µ κ

+

≤ + + +
+

(28)

then the global error estimated as:

1

1 1 ( 1)! ( 1)!

i l
g

l
gE A L ge c
i l

τσ γ
+

≤ +
+ −

 (29)

                                                                                                                                                                                      □

5. Numerical examples
In this section we are going to present some numerical experiments to check the applicability and accuracy of 

the method, also, we will test our results with some schemes appeared in previous papers by comparing them with the 
results in [19, 20, 22-24]. All of the numerical calculations were carried out using Mathematica software. 

Example 1. [22] Consider the following linear Fredholm integral equation problem: 

(30)
1

20
sin( ) ( )sin( ) ( ) .x xcos xxt u t dt

x
−

=∫

This equation has the exact solution u(x) = x. 
Table 1 compares our numerical results with those in [22]. We observe that the absolute errors obtained by our 
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method at different values of M are better than obtained by the other method. Table 2 gives the maximum absolute error 
of Eq. (30) for different values of m and n. Table 3 clarifies the time used for the running program (CPU time). Figure 1 
shows the absolute error in case of m = n = 1.

Table 1. Comparison between GFTM and [22] for Example 1

M 2 3 4 5 6 7 8

E 5 .10−15 3.5 .10−11 1.2 .10−9 2.10−9 1 .10−8 1 .10−9 1.5 .10−9

Results in [22] 2 .10−9 5.3 .10−5 1.3 .10−4 2.2 .10−4 3 .10−4 5.9 .10−4 3.8 .10−4

Table 2. Maximum absolute error E for different values of m and n for Example 1

m n M E M E M E M E M E M E

1 1

3

5 .10−15

4

3.5 .10−11

5

2 .10−9

6

1 .10−8

7

1 .10−9

8

1.5 .10−9

2 1 5 .10−15 2 .10−9 1.5 .10−8 2 .10−9 2 .10−9 2.5 .10−8

3 -2 2 .10−9 5 .10−3 5 .10−3 1.2 .10−3 1.4 .10−3 1.5 .10−3

3 -1 2 .10−6 1 .10−3 1 .10−3 1 .10−3 1 .10−3 1 .10−3

                   

10−8

10−10

10−12

10−14

0.0 0.4 0.80.2 0.6 1.0

M = 3

M = 5

M = 7

M = 4

M = 6

M = 8

Error

x

Figure 1. Graph of the error at M = 3, 4, 5, 6, 7 and 8
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Table 3. CPU time for Example 1

M CPU time

2 8.953

3 19.375

4 31.971

5  45.766

6 67.671

7 93.142

8 182.36

Example 2. [19] Consider the following linear Volterra integral equation problem:

(31)
0

1 ( ) ( ),  [0,1],
x

u t dt f x x
x t

= ∈
−∫

where

2 32( ) (105 56 48 ).
105

f x x x x= − +

This equation has the exact solution u(x) = x3 − x2 + 1.

Table 4. Comparison between GFTM and [19] for Example 2

M 2 3 4 5 6 7 8 9 10

E 4 .10−2 4 .10−13 4 .10−12 2 .10−12 1 .10−10 1.5 .10−9 2 .10−8 1 .10−8 1 .10−9

Results in [19] 6.4 .10−2 2.4 .10−2 3.3 .10−3 1.2 .10−3 1.9 .10−4 2.7 .10−4 1.7 .10−5 5.6 .10−5 4.5 .10−7

Table 5. Maximum absolute error E for Example 2

m n M E M E M E M E M E

1 1

3

4 .10−13

5

2 .10−12

7

1.5 .10−9

9

1 .10−8

10

1 .10−9

2 1 5 .10−13 8 .10−12 3.5 .10−11 6 .10−9 2 .10−8

3 -2 8 .10−14 2.5 .10−12 3 .10−11 4 .10−10 2 .10−9

3 -1 5 .10−14 4 .10−13 7 .10−11 1.2 .10−9 4 .10−9
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Table 6. CPU time for Example 2

M CPU time

2 3

3 4.921

4 7.687

5 11.093

6 16.689

7 20.438

8 30.75

9 38.89

10 49.97

                   

10−9

10−13

10−11

10−15

10−17

0.0 0.4 0.80.2 0.6 1.0

M = 3

M = 7

M = 10

M = 5

M = 9

Error

x

Figure 2. Graph of the error at M = 3, 5, 7, 9 and 10

Table 4 compares our results with in [19]. It is clear that the absolute errors decrease drastically with increasing the 
number of steps. We notice that the obtained errors are the best and the least. Table 5 lists the maximum approximate 
error of Eq. (31) for different values of m and n. Table 6 illustrates the time used for the running program (CPU time). 
Figure 2 shows the absolute error in case of m = n = 1.

Example 3. [20] Consider the following non-linear Volterra integral equation problem:

(32)2 3 2
0

(1 ) ( ( ) ( )) ,  [0,10].
x

x t u t u t dt x x+ − − = ∈∫

The exact solution for this equation is not known. We will try to find the exact solution by using the series solution 
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method for solving Volterra integral equation of the first kind. 
Let the solution u(x) be an analytic function and apply Taylor series at x = 0 as

(33)
0

( ) .i
i

i
u x a x

∞

=
= ∑

Then substituting in the Eq. (32) as

(34)2 3 2
0

0 0
(1 ) ( ( ) ) [ ],

x i i
i i

i i
x t a t a t dt T x

∞ ∞

= =
+ − − =∑ ∑∫

where T [x
2] is the Taylor series for x2.

We solve the Eq. (32) by proceeding with a few terms of Taylor series, integrating the right side and equating the 
coefficients of x in both sides, then finally obtain the solution as

2 2( )
5 5

u x x= −

Now to find the numerical solution we apply the GFCM (Generalized Fibonacci collocation method). 
Table 7 illustrates the maximum approximate error of Eq. (32) for different values of m and n at three different 

values for M. Table 8 shows the time used for the running program (CPU time). Figure 3 shows the absolute error for 
different values of a and b. From this Figure, we observe that the convergence is exponential.

Table 7. Maximum absolute error E for different values of m and n for Example 3

m n M E M E M E

1 1

1

2 .10−1

3

4 .10−1

5

4 .10−1

2 1 2 .10−1 4 .10−1 4 .10−1

3 -2 2 .10−1 4 .10−1 4 .10−1

3 -1 2 .10−1 4 .10−1 4 .10−1

Results in [20] 1 .10−1 1 .10−3 1 .10−4

Table 8. CPU time for Example 3

M CPU time

1 80.813

3 5.875

5 10.471
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                   0.0 0.4 0.80.2 0.6 1.0

M = 3

M = 1

M = 5

Error

x

0.50

0.05

0.10

0.02

0.01

0.20

Figure 3. Graph of the error at M = 1, 3 and 5

Example 4. [23] Consider the following non-linear Volterra-Fredholm integral equation problem:

(35)
12 2

0 0
6( ) 3 sin( ) ( ) (1 ) ( )( ( )) ( ),

7 6cos(1)
x

u x x t u t dt t cos x t u t dt f x− − − − + =
−∫ ∫

where

2
2

66( (1)) ( )
7( ) ( ) 2(2 ( )) ( ) .

7 6 (1) 2

cos cos x xf x cos x cos x sin
cos

− +
= + − +

−

This equation has the exact solution u(x) = cos(x).
Table 9 compares our results to those observed in [23]. Table 10 lists the maximum absolute error of Eq. (35) for 

different values of m and n. Table 11 shows the time used for the running program (CPU time). In Figure 4 the results 
are displayed at M = 2, 4, 6, and 8 in case of m = n = 1.

Table 9. Comparison between GFTM and [23] for Example 4

M 2 4 6 8

E 8 .10−1 9 .10−1 9 .10−1 2 .10−1

Results in [23] 2 .10−5 - - 1.4 .10−8
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Table 10. Maximum absolute error E for Example 4

m n M E M E M E M E

1 1

2

8 .10−1

4

9 .10−1

6

9 .10−1

8

2 .10−1

2 1 8 .10−1 9 .10−1 2.5 .10−6 2 .10−4

3 -2 8 .10−1 9 .10−1 9 .10−1 2 .10−4

3 -1 8 .10−1 9 .10−1 2.5 .10−6 2 .10−4

Table 11. CPU time for Example 4

M CPU time

2 1.546

4 5.813

6 8.03

8 13

                   

0.001

0.1

10−5

10−7

0.0 0.4 0.80.2 0.6 1.0

M = 2

M = 6

M = 4

M = 8

Error

x

Figure 4. Graph of the error at M = 2, 4, 6 and 8

Example 5. [24] Consider the following non-linear Fredholm fractional integro-differential equation problem:

1 2
0

( ) ( ) ( ),tD u x xe u t dt f xα − =∫ (36)
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where

1 2 2

2 3
( 6 6 5 5 )( ) (674 248 ) .

( 6 11 6 ) (1 )
x xf x x

α α α
α α α α

− − + + −
= − −

− + − + Γ −


This equation has the exact solution u(x) = x − x3.

Table 12. Absolute error E for Example 5

x α = 0.7 α = 0.8 α = 0.9 Exact

0.1 0.099 0.099 0.99 0.302649

0.2 0.192 0.191 0.109 0.286029

0.3 0.273 0.273 0.272 0.252505

0.4 0.336 0.336 0.335 0.202076

0.5 0.375 0.365 0.357 0.134742

0.6 0.384 0.384 0.384 0.0505042

0.7 0.375 0.375 0.375 -0.0506381

0.8 0.288 0.288 0.288 -0.168685

0.9 0.171 0.171 0.171 -0.303636

                   0.0 0.4 0.80.2 0.6 1.0

M = 2; α = 0.9

M = 4; α = 0.9

M = 4; α = 0.7

M = 8; α = 0.8

Error

x

10−4

10−8

10−6

10−10

10−12

0.01

1

Figure 5. Graph of the error at M = 2, 4 and 8
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Table 12 illustrates the approximate solutions for various values of α and the exact solution in [24]. Figure 5 shows 
the approximate solutions for various values of α.

Example 6. [25] Consider the following linear Volterra-Fredholm integral equation problem:

(37)1 2
0 1

( ) ( ) ( ) ( ),
x

u x tu t dt t u t dt f x
−

− − =∫ ∫

where

31( ) .
3

f x x x= −

This equation has the exact solution u(x) = x.
Table 13 gives the maximum absolute error of Eq. (37) for different values of m and n. Table 14 shows the time 

used for the running program (CPU time). In Figure 6 the results are displayed at M = 3, 5, 7, 9, and 10 in case of m = 2 
and n = 1.

Table 13. Maximum absolute error E for Example 6

m n M E M E M E M E M E

1 1

3

4.5 .10−13

5

2.4 .10−9

7

3 .10−5

9

3 .10−3

10

3 .10−2

2 1 2 .10−13 4.5 .10−10 3.5 .10−8 6 .10−4 3 .10−2

3 -2 2.6 .10−12 4 .10−10 5 .10−7 1 .10−4 2 .10−3

3 -1 1.1 .10−13 4 .10−10 1.2 .10−6 1 .10−5 2 .10−3

                   

10−5

10−9

10−3

10−7

10−1

10−11

10−13

0.0 0.4 0.80.2 0.6 1.0

M = 3

M = 7

M = 10

M = 5

M = 9

Error

x

Figure 6. Graph of the error at M = 3, 5, 7, 9 and 10
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Table 14. CPU time for Example 6

M CPU time

3 0.422

5 0.781

7 0.921

9 1.093

10 16.689

6. Conclusions
In this paper, we presented an efficient numerical technique for solving Volterra-Fredholm integro-differential 

equation. The proposed numerical method is based on using the operational matrix of fractional derivatives of the 
generalized Fibonacci polynomial and a suitable spectral method to transform Volterra-Fredholm equation into a 
system of algebraic equations that can be solved by mathematica software. We also discussed the convergence and error 
analysis of the generalized Fibonacci polynomial. Finally we illustrated some numerical examples to show the accuracy 
of the method.
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