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Abstract: In this paper, we use the Eigenfunction method (Ritus’ method) to calculate the Klein-Gordon propagator 
under an external magnetic field with an exponential damping factor b, in a four-dimensional Euclidean space. We 
write the propagator of scalar field in terms of plane waves and Laguerre polynomials. Also the eigenvalues associated 
to differential operator show the quantization in the xy-plane through the Landau levels. We apply the calculated 
propagator to the mass parameter of an interacting boson system under an exponentially decaying magnetic field.
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1. Introduction
Quantum Field Theory (QFT) is the theory of the creation, propagation and annihilation of quantum particles. The 

probability amplitude of these events happening is given by an important mathematical function, called the Feynman 
propagator. The propagator is also important to calculate the scattering rate in heavy ion collision processes. According 
to the spin of the particles, we must take into account different propagators, e.g., particles of zero spin (half) are related 
to the Klein-Gordon (Dirac) propagator [1]. It is easy to find the propagator of the free scalar field, namely, all we need 
to do is apply a Fourier transform to the differential equation satisfied by the Klein-Gordon propagator, and then specify 
the propagator in momenta space.

An interesting subject to explore is QFT under an external electromagnetic field [2]. This external field can 
be created in the collision of particle beams in accelerators, such as the LHC. To describe spin zero particles in an 
external field scenario, we need to couple this external field to the scalar field propagator. This means modifying the 
Klein-Gordon equation and, consequently, the equation that the propagator satisfies. In this case, the system loses its 
translational invariance and, for this reason, the Fourier transform is no longer applicable for the calculation of the 
scalar propagator.

However, in his classic paper of 1951, J. Schwinger introduced the proper-time method for computing the 
Feynman propagator under an external field [3]. In Schwinger’s method, we have a system initially in D-dimensions 
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and an additional coordinate with time dimension (the so-called proper-time) is needed to write the propagator under 
an external field. From a dimensional point of view, in the proper-time approach, we have the change D → D + 1. 
The integral equations in proper-time method become difficult to solve, for instance, Schwinger solved the propagator 
problem under an external field only for constant fields and plane wave fields [3, 4].

In this perspective, V. Ritus developed an elegant eigenfunction method to calculate the propagator under external 
fields in the 1970s [5-7]. The Ritus method consists of solving the eigenvalue equation associated to the specific 
operator that appears in the field equation modified by the external field. After that, it is proved that the eigenfunctions 
found form a complete set of eigenfunctions and then it becomes possible to expand the Green’s function of the scalar 
field (Feynman propagator of the scalar field) in terms of these eigenfunctions.

In the 2000 years, the Ritus method was used to calculate the propagator of a bosonic field with spin 1 in the 
context of the electroweak theory [8, 9]. In the following decade, this method was also applied in a fermionic system 
with spin 1/2 in low dimensions for the description of graphene [10] and in a Minkowski space-time with four 
dimensions for the calculation of the chiral condensate [11]. We would like to emphasize that when a magnetic field 
is a pplied to a charged system, we have the emergence of so-called Landau levels. These energy levels are quantized 
in the plane orthogonal to the applied magnetic field. For simplicity, it is more common for some authors to make an 
approximation to deal with Landau levels: they use only the Lowest Landau Level (LLL).

In what follows, we will consider Ritus’ method to calculate the propagator of a spinless field under an 
exponentially decaying magnetic field. In other words, let us calculate the Klein-Gordon propagator under an 
exponentially damped external magnetic field by factor b. We have taken into account all Landau levels and not only the 
LLL. In fact, this paper is part of the same line of study that we have done in the Refs. [12, 13].

The paper is organized as follows: in Section II, the general aspects of Ritus’ method are presented. As we 
would like to be pedagogical, first we will find the free scalar propagator, that is, without external magnetic field 
by the eigenfunction method. Next, we apply the Ritus’ method to calculate the Klein-Gordon propagator under 
an exponentially decreasing magnetic field in the z direction. Its found a discrete spectrum in the xy-plane for the 
eigenvalues of the Klein-Gordon operator modified by the external field. In addition, the eigenfunctions are written in 
terms of complex exponentials and Laguerre functions. In Section III, we apply the scalar field propagator under an 
exponentially damped magnetic field calculated in Section II to a system of interacting bosons and we investigate the 
behaviour of mass parameter in that system over several values of the magnetic field and damping factor b. In Section 
IV, we make some observations and comments on the results. We choose a natural system of units such that ℏ = c = 1 
and a four-dimensional Euclidean space with the four-position vector given by u ≡ u ρ = (τ, x, y, z).

2. Ritus’ method
The eigenfunction method is based on the solution of the eigenvalue equation for the operator that comes from the 

field equation.
In general terms, let L̂ be the operator that satisfies the equation

ˆ 0,=

for a field F.
The Green’s function (propagator) associated to L̂ satisfies

4( , )ˆ ( ).G u u u uδ′ ′= ± −

Furthermore, the eigenvalue equation

( ) ( ),ˆ
p p pu uζ λ ζ=
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with the eigenvalue λp associated to the operator L̂, combined to the complete set formed by eigenfunctions ζp(u) given 
by

* 4( ) ( ) ( ),p pdp u u u uζ ζ δ′ ′= −∫

allows the expansion of the Green’s function of the operator L̂ in terms of eigenfunctions ζp, namely,

*( , ) ( ) ( ) ( ),p pG u u dp u g p uζ ζ′ ′= ∫ 

where ( ) 1/ pg p λ= ± .
Below, we will apply the Ritus’ method in two cases: free scalar field and scalar field under an external 

exponentially decaying magnetic field.

2.1 Klein-Gordon free propagator by eigenfunction method

Free scalar particles are described by the free Klein-Gordon equation, which in Euclidean space 4D is written as

2 2( ) ( ) 0.m uφ−∂ + =

We assume Einstein’s notation: 2 2 2 2 2
x y zµ µ τ∂ = ∂ ∂ = ∂ + ∂ + ∂ + ∂  and ϕ(u) is the free scalar field. 

As we already mentioned, finding Green’s function is fundamental to perform calculations in QFT. In the Euclidean 
space, the Feynman propagator G(u, u′) satisfies the following equation (see Ref. [14])

2 2 4( ) ( , ) ( ),m G u u u uδ′ ′∂ − = − −

where δ4(u − u′) = δ(τ − τ′)δ(x − x′)δ(y − y′)δ(z − z′) is the Dirac’s delta function in 4D.
We know that the plane waves in Euclidean space, exp(ipαuα), are eigenfunctions of ∂ν with eigenvalue ipν:

[ ] [ ]exp( ) exp( ) .ip u ip ip uµ α α µ α α∂ =

Since

2[ , ] 0,ν∂ ∂ =

we notice that plane waves are also eigenfunctions of ∂2 operator with eigenvalue −p2. Furthermore, the plane waves 
form a complete set of eigenfunctions

4
* 4

4 [exp( )][exp( )] ( )
(2 )
d p ip u ip u u uµ µ ν ν δ
π

′ ′= −∫

and

4
* 4

4 [exp( )][exp( )] ( ).
(2 )
d u ip u ip u p pµ µ ν ν δ
π

′ ′= −∫

Thus, we can expand G(u, u′) in terms of these eigenfunctions

(1)

(2)

(3)

(4)

(5)
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[ ]
4

*
4( ) exp( ) ( ) exp( ) ,

(2 )
d pG u u ip u g p ip uµ µ ν νπ

′ ′ − =  ∫

where g(p) is the propagator in momentum space. Note that the translational invariance was represented by G(u, u′) 
≡ G(u − u′) in Eq. (6). To find g(p), we apply (∂2 − m2) to Eq. (6). After that, we use Eq. (2) and we take Eq. (4) into 
consideration. The result is

2 2
1( ) ,g p

p m
=

+

where 2 2 2 2 2
x y zp p p p pτ= + + + .

2.2 The Klein-Gordon propagator in an exponentially decreasing external magnetic field by 
eigenfunction method

Now, let us calculate the scalar propagator under a damped magnetic field by factor b, namely 0 ˆexp( )B bx z= −B .  
This external field is obtained by extA∇×



 and we choose the gauge [ ]00, 0, ( / ) exp( ), 0extA B b bxµ = − .
In this case, the Klein-Gordon equation modified by the external field is given by

2 2( ) ( ) 0,D m u− + Φ =

where D2 = DµDµ, being the operator Dµ ≡ ∂µ + ieAµ
ext due the minimal coupling in Euclidean space [15].

Under this magnetic background, the propagator satisfies the equation

2 2 4( ) ( , , ) ( ).extD m G u u A u uδ′ ′− = − −

Notice that the commutator between D2 and ∂ν is non zero, i.e.,

2 2[ , ] 0 plane waves are not eigenfuntions of operator.D Dν∂ ≠ ⇒

Thus, we have to find the eigenfunctions, Ep(u), of the operator D2 (the so-called Ritus’ eigenfunctions) and to 
check if they form a complete set. After that, we can expand the propagator G (u, u′, Aext) in terms of them.

The first step to find the propagator by Ritus’ method is to solve the eigenvalue equation

2 2 ,p pD E p E= −

where the minus sign is just a convention. The operator D2 is given by

2 2 2 2
4 2 22D yD iA e A= ∇ − ∂ −

( ) ( )
2

2
4 22 exp( ) exp( 2 ) ,D yi bx bx

b b
ω ω

= ∇ − − ∂ − −

where 2 2 2 2 2
4D x y zτ∇ = ∂ + ∂ + ∂ + ∂  and ω ≡ eB0 is the cyclotron frequency. Notice that D2 has two coupling variables x and y.

Since

(6)

(7)

(8)

(9)

(10)

(11)
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2 2 2[ , ] [ , ] [ , ] 0,y zD D Dτ∂ = ∂ = ∂ =

we use the following ansatz to solve Eq. (10) (for some details, see Ref. [16])

( ) exp ( ),p y zE u C i p p y p z X x
bτ
ωτ  = + +    

where C is a normalization constant. The Eq. (10) together with Eq. (11) gives

[ ] [ ] ( )
2 2 2 2

2 2 2 2
2 2 2 22 exp( ) exp( 2 ) ( ) 0.y y z

d p bx bx p p p p X x
dx b b b τ

ω ω ω  + − − − − − + − = 
  

Let us define the dimensionless variable x̄ = bx with −∞ < x̄ < +∞. Thus,

[ ] [ ] ( )
2 2 2 2

2 2 2 2 2
2 2 2 22 exp( ) exp( 2 ) ( ) 0y y z

db p x x p p p p X x
dx b b b τ

ω ω ω  + − − − − − + − = ∴ 
  

2
2

2 ( ) ( ) 0,d V x a X x
dx

  − + = 
  

where we have defined

[ ] [ ]2 2 2 2( ) 2 exp( ) exp( 2 ) ,y yV x p p x xλ λ λ≡ − − + −

and two new dimensionless parameters: 2 2 2 2 2 2 2 4( ) /  and /za p p p b bτ λ ω≡ − − ≡ .
To solve Eq. (14), let us change the variable x̄ by ξ, as way done in [17]. We get 

2 2
2

2 22 exp( )  ,d d dx
ddx d

ξ λ ξ ξ
ξξ

= − ⇒ = +

with 0 < ξ < ∞. The differential equation (14) written in new variable ξ becomes

2 2
2 2 2 2

2 ( ) ( ) 0.
4 y y

d d p a p X
dd

ξξ ξ λξ λ ξ
ξξ

  + − + + − = 
  

Taking into account Ref. [18], pg 188, Eq. (11), namely

2
/2 /21( ) 0, with solution ( ),

2 4 4
 x

n
xxz n z z e x L x

x
α αα α − +′ ′ + + − − = = 

 

where Lα
n(x) is the Laguerre polynomial associated to positive integers n and α. We have, after comparing the last two 

differential equations, that

(12)

(13)

(14)

(15)
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2 2 2 2

(2 1) / 2

/ 4.
y

y

p n

a p

λ α

λ α

= + +
 − = −

Solving system (16) we find

2 2 2 2 2 2

2 2 1                                                      

(2 1) ( / 4)(2 1) .
y

n z y

p n

p p p p p n b nτ

α λ

ω

= − −
 → = + + + − +

We have a restriction on integer n:

10, 1, 2, , [ ],  where ,
2yn N N pλ= = −

where the notation [N ] means the largest integer less than N.
Some authors, for exemple Ref. [19], page 843, Eq. (13.79), define the Laguerre functions ψn

α(ξ ), that are 
orthogonal

,0
( ) ( )n n n nd α αξψ ξ ψ ξ δ

∞
′ ′=∫

and satisfies the closure relation (see Ref. [20])

0
( ) ( ) ( ),n n

n

α αψ ξ ψ ξ δ ξ ξ
∞

=

′ ′= −∑

where

/2!( ) exp( / 2) ( ).
( )!n n

n L
n

α α αψ ξ ξ ξ ξ
α

= −
+

Therefore, the normalized Ritus eigenfunctions Ep(u) are

2 2 1
3/2

1( ) exp ( ),
(

 
2 )

yp n
p y z nE u i p p y p z

b
λ

τ
ωτ ψ ξ

π
− −  = + +    

with p = p( pτ, n, py, pz) and ξ = (2ω/b2) · e−bx. From Eq. (19), it is easy to show that the completeness relation between 
the eigenfuctions Ep(u) is

* 4( ) ( ) ( )p pd pE u E u u uδ′ ′= −∫

and the orthogonality is

( ) ( ) ( )*
,( ) ( ) ,p p y y z z n ndu E u E u p p p p p p

bτ τ
ωδ δ δ δ′ ′
 ′ ′ ′= − − −  ∫

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)
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where du = dτ dξ dy dz.
Finally, the propagator can be expanded in terms of Ritus’ eigenfuctions as

*( , , ) ( ) ( ) ( ),ext
p pG u u A d pE u p E u′ ′= ∫ 

where G( p) is the propagator in the momenta space. Applying the operator (D2 − m2) in Eq. (24) and taking into account 
Eq. (9), Eq. (10), and Eq. (22) we conclude that

2 2 2 2 2
1( ) .

(2 1) ( / 4)(2 1)z y

p
p p p n b n mτ ω

=
+ + + − + +



The quantization on xy-plane is represented by the Landau levels, 2
10, 1, , 
2

yp
n

b
ω ⋅  

= −  
   

 .

Note that the magnetic field ˆexp( )bx z= −0B B , in the limit b → 0, becomes a constant field along to z direction. In 
this case, the Eq. (25) gives correctly the propagator in the momenta space to a constant magnetic field (see for instance, 
Ref. [12], Eq. (18), for ωpy ≡ ω0).

3. System of bosons under an external magnetic field exponentially damped
For investigate corrections on the mass parameter m2 of a bosonic system in D Euclidean dimensions with quantum 

interaction (λ0 /4!)ϕ4, being λ0 the coupling constant and ϕ the bosonic field, we can use the following expression [21]

2 2 0 ( ),
2 (2 )

D

D
d pM m p

λ
π

= + ∫ 

where G( p) = 1/(p2 + m2) is the propagator in momenta space, without magnetic and temperature effects. 
Thermal effects over the system are including by Matsubara prescription [22, 23]

 ; ,
2 n

n

dp
T p i

τ
τ

τ
τ ω µ

π

+∞

=−∞

→ → −∑∫

where T is the temperature of the system, µ its chemical potential and ωnτ = πT(2nτ + 1/2) are the Matsubara frequencies 
of field ϕ.

Now, let us calculate the thermal correction to mass parameter m2 of a bosonic system with quantum interaction 
(λ0 /4!)Φ4(u) and under the presence of an external magnetic field with damping factor b along to the z direction in a 
four-dimensional Euclidean space. In that case, from Eq. (25) we have

2/
2 2 0

2 2 2 2 2
0

1 .
2 (2 ) 2 ( ) (2 1) ( / 4)(2 1)

b
z

n n n z

dpM m T
b i p n b n mτ τ

ωλ ω
π π ω µ ω

+∞

=−∞ =

= +
− + + + − + +∑ ∑∫







In the Figures 1 and 2 we show the behaviour of M in the temperature range 0 < T < 0.400 GeV, being m = 0.130 
GeV the chosen mass parameter of the model.

(24)

(25)
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Figure 1. Effective mass M with finite temperature and magnetic effects for several b factors, we fixed ω̃ = 10 · m2 and µ = 0.

Figure 2. Effective mass M with finite temperature and magnetic effects for several b factors, we fixed ω̃ = 40 · m2 and µ = 0.

We note that the exponential damping effect of the magnetic field over the system is to make its effective mass 
smaller as ω̃ increases. In addition, b factors relatively larger reinforce the decrease in the mass parameter M. The 
system temperature T also makes this parameter smaller. In fact, this last result is well known at constant magnetic fields 
[21-23].

4. Conclusion
In this paper, we apply the Ritus’ method to calculate the Feynman propagator of the Klein-Gordon field under an 

external magnetic field exponentially decreasing and damped by the factor b, i.e., we solved the eigenvalue equation for 
the Klein-Gordon operator modified by the external magnetic field.

After finding the Ritus eigenfunctions, we were able to expand the Green’s function of the scalar field in terms of 
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them. We note that the eigenvalue p2 depends on the factor b and py, for an exponentially decreasing external magnetic 
field. We apply the calculated propagator to a boson system in the temperature range 0 < T < 0.400 GeV. We found that 
the system mass parameter M takes on smaller values as b or the magnetic field strength increases.

Ritus originally proposed this method to find the propagator of the Dirac field under an external and constant 
electromagnetic field. However, the method is very powerful and can be applied in other contexts, as was done here.

We would like to emphasize that the additional quantum number k present in several papers describing the Ritus’ 
method, for example in [10, 11], was not necessary in our calculations. In that sense, our base is easier to manipulate 
than those found in these papers.
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