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Abstract: The present work has a twofold purpose. a) It proposes a quantum-mechanical approach to constrained 
molecular chains and their small vibrations and rotations, by employing in a compact way vector variables and 
operators associated to the constituent units of the chain. The methods here differ from standard approaches based upon 
cartesian coordinates and normal modes and generalize previous quantum Hamiltonians describing only rotational 
degrees of freedom. Several models in D = 2, 3 spatial dimensions, with new Hermitean Hamiltonians, are formulated 
and analyzed. The chains studied successively display an increasing number of constraints: freely-jointed, freely-
rotating and with constrained torsions. Conservation of total orbital angular momentum is analyzed. As a partial test, by 
using the present approach, the vibrational frequencies of certain triatomic molecules (water vapour, hydrogen sulfide, 
heavy water and sulfur dioxide) are computed and shown to be consistent with experimental data. b) A new (quantum-
mechanical) analysis of polymerization, namely, the growth of a freely-jointed molecular chain (of the kind considered 
above) by binding an additional unit 1 to the chain, is presented. They move in a very dilute solution in a fluid at rest 
in thermal equilibrium about room temperature. The analysis is based upon a mixed (quantum-classical) distribution 
function in phase-space: a quantum Wigner-like one for unit 1 and a classical Liouville one for the chain. That leads to 
an approximate Schmolukowski equation for unit 1 alone and, through it, to compute the mean first passage time (MFPT) 
for unit 1 to become bound by the chain. The resulting MFPT displays a temperature dependence consistent with the 
Arrhenius formula for rate constants in chemical reactions.

Keywords: constrained molecular chains, freely-jointed, freely-rotating, quantum hermitean hamiltonians, 
polymerization
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1. Introduction
1.1 General features and overview

In various ranges of absolute temperature T in an interval about room temperature, certain degrees of freedom in 
molecular chains are constrained by strong (covalent) forces. Specifically, by assumption, KBT (KB being Boltzmann 
constant) is adequately smaller than typical electronic energies Eel. In this work, the words “molecular chains” will 

Contemporary Mathematics
http://ojs.wiserpub.com/index.php/CM/

Copyright ©2022 Ramon F. Alvarez-Estrada.
DOI: https://doi.org/10.37256/cm.3320221586
This is an open-access article distributed under a CC BY license 
(Creative Commons Attribution 4.0 International License)
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0884-1157
http://www.wiserpub.com/
http://ojs.wiserpub.com/index.php/CM/


Contemporary Mathematics 354 | Ramon F. Alvarez-Estrada

be employed independently of the number of constituent units along it. Molecular chains formed by N units will be 
considered: monomers, small molecules, atoms. all possibilities being encompassed, depending on the context, just by 
denoting them generically “units”. In those ranges of T, the constituent units (monomers, small molecules, atoms) in 
the molecular chain have unaltered inner structures, behave essentially as single entities and keep their individuality. 
Such individuality enables not to worry about molecular features which are not altered in some given phenomena and 
temperature ranges and to concentrate on the remaining degrees of freedom in the molecular chain which do change. 
Possible changes of the latter may include, among others, chemical reactions (involving only electrons in external 
atomic shells in certain constituent units), leading to the eventual formation or destruction of some bond. This standpoint 
suffices, generally speaking, for treating chemical and biochemical processes at those ranges of T [1-5].

Molecular and macromolecular chains provide the basis for vast, diversified and very important fields, interrelated 
among themselves (see [3, 5] to which one may add, for instance, polymer science [6]). Constraints (of those degrees of 
freedom which either do not change or suffer small changes) in molecular chains are at the root of important phenomena 
of molecular physics: for instance, vibrations. The basis for the study of those phenomena in constrained molecular 
chains is provided by quantum mechanics.

To the best of the author’s knowledge, standard quantum-mechanical analysis of vibrations in molecules assume 
usually from the outset constrained distances and angles and concentrates on small deviations and vibrations about the 
latter (extending, in turn, standard approaches to vibrations in crystals [7]). Thus, for instance, molecular vibrations in 
molecules are dealt with at length in [8], [9] while vibrations in biological macromolecules, specifically in DNA, are 
studied in [10-11]. It is emphasized that those standard approaches are based generically on cartesian coordinates and 
normal modes and (except for a few exceptions) appear to make no use of vector variables and operators associated to 
the constituent units of the chain.

In different situations, it is possible to bypass approximately the quantum mechanical description and to employ 
classical mechanics one and, even, probabilistic ones.

Thus, as formulated and employed currently, chemical kinetics employs effective rate equations [2, 12-13] in which 
rate constants appear explicitly, omitting their connections to quantum-mechanical quantities. However, for instance, 
one should also remember the well known Transition State Theory of chemical reactions which, even if employing rate 
equations, makes, in certain formulations and at certain stages, a direct appeal to quantum mechanics [14]. Then, when 
chemical reactions are involved, something, at least, from the quantum approach may be required unavoidably at some 
stage for a deeper understanding.

Other important approaches are based upon classical statistical mechanics, still with some quantum-mechanical 
additions, and are aimed at describing properties of chemical interest: see, for instance [15].

Vast phenomena and properties of polymers can be accounted for combining phenomenological, chemical and 
thermodynamical developments [6]. Different well-established studies on macromolecular chains (polymers, biopoly-
mers) are based upon phenomenological and probabilistic approaches: the standard Gaussian model for freely jointed 
polymer chains as random walks and modifications thereof, like the extension for freely-rotating chains (including 
persistent lengths to approximate constrained angles between neighbouring bonds)…. Such models do provide useful 
approximations for real single polymer chains (under various conditions, for instance, when excluded volume effects 
can be neglected) [1, 16]. See also [17-19]. For theoretical approach employing functional integrals, see [20]. Various 
quantum-mechanical approaches, from standpoints different from the ones developed in the present work, can be seen 
in [21-24].

The very addition of one additional unit to a molecular chain (polymerization) can be currently analyzed through 
direct and standard thermodynamical and kinetic approaches [6]. However, since polymerization amounts to a chemical 
reaction, one may expect that certain genuine quantum-mechanical features in it would eventually require a deeper 
analysis.

1.2 Previous quantum models for constrained molecular chains

In previous works [25-31], quantum models were formulated for 3D molecular chains and polymers at thermal 
equilibrium (supposedly, in solution in a fluid at thermal equilibrium). In particular, variational computations in [25, 27, 
29-31] led to certain quantum Hamiltonian for freely-jointed molecular whains (which will also be derived in Eq. (34) 
in subsection 4.1 of the present work). In [32] a detailed (approximate) analytical computation in the classical limit lead 
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from that Hamiltononian (identical to Eq. (34)) for a polymer at thermal equilibrium just to the standard Gaussian model 
and some of its properties. Furthermore, in [27] an extension for a freely-rotating chain of the approximations in [32], 
led to obtain a persistent length, in approximate consistency with [1, 16]. This indicated that that quantum approach 
has consequences which do approximate the behaviour of real polymers. Application of those variational quantum-
mechanical techniques led to an approximate model for DNA [33]. In turn, based upon the latter, a generalized Gaussian 
model with suitable interactions included led to a model for DNA thermal denaturation and consistent predictions for its 
time duration [34].

In those works [25, 27-31, 33], the resulting quantum Hamiltonians after the variational computations only 
included rotational degrees of freedom, but not vibrational ones. They did not allow either the possibility of discussing 
chemical reactions (for instance, polymerization). The present work will be devoted to extensions of those models to 
deal with those two issues.

1.3 New quantum models in the present work

The present work has a dual purpose.
a) It will generalize non-trivially the quantum models reminded in the previous subsection [25, 27-31], in which 

small vibrations about constrained coordinates were not easy to analyze. So, a new but related quantum-mechanical 
approach will be proposed in which small vibrations and rotations in constrained molecules can be analyzed 
systematically. In so doing, from the outset vector variables and operators associated to the constituent units of the 
chain, which will provide compact and economical descriptions, are employed. Thus, the present work does not rely 
upon cartesian coordinates and normal modes. That will display several advantages (for instance, conservation of 
total orbital angular momentum). As particular cases aimed to test the consistency of the formalism, some triatomic 
molecules will be treated.

b) It will provide a new fresh (quantum-mechanical) look at dynamical processes like polymerization, namely, the 
growth of the molecular chain in a fluid, in a simplified case.

Both purposes are strongly interrelated: the study of polymerization in a chain will require some previous model 
for the latter. In particular, upon developing b), use will be made of the 3D model in [25, 27, 29-31] and in Eq. (34)
(subsection 4.1 of the present work), in the classical limit.

Various chains with increasing complexity will be treated, so as to proceed to dynamical processes in a later 
section. For the sake of readability, Sections 2-5 will present the main developments, by omitting many technical aspects 
and several complicated constructions, which are summarized in Appendixes A-L. Useful formulae helpful in building 
up the new models are summarized in Appendix A. Section 2 outlines some essentials on Quantum Mechanics and 
vector formulations for three-dimensional (3D) and two-dimensional (2D) chains, as a basis for the new developments 
in the present work. Section 3 present new vector approaches to small vibrations about constrained coordinates in 2D 
freely-jointed (fj) and freely-rotating (fr) chains. Section 4 generalizes Section 3 to the more difficult 3D fj and fr chains. 
As examples and new results, the corresponding Schrodinger equations for fj chains for N = 2 are solved in outline for D 
= 2 and D = 3 in Appendixes B and C, respectively. Appendix F deals with the D = 2 fr chain for N = 3. Section 5 treats 
quantum-mechanically a dynamical process: polymerization of a fj chain. Variational consistency checks of the models 
for fj chains in Sections 3 and 4 are outlined in Appendixes D and E. Appendixes G and H, by reminding potentially 
interesting results from previous variational computations on constraints in 3D fr chains [29-31], lead to new effective 
Hamiltonians. Appendix I deals with total orbital angular momentum for 3D chains. Appendix J summarizes useful 
computations employed in Section 5. For completeness, Appendices K and L treat succinctly 3D chains with vibrations 
and torsional constraints and branched chains, respectively.

Sections 2, 3 and 4 are written, by omitting most computational details, which are collected in all Appendices 
except in Appendix J. In turn, Section 5 describes the main lines in the argument, while most computational details are 
outlined in Appendix J.

A general comment about subscripts will be in order (of course, to be adequately interpreted, depending on the 
context). The first subscript will indicate the spatial dimension: D = 2, 3. Subscripts fj, fr, v, τ will refer to specific 
chains: freely-jointed, freely-rotating, inclusion of vitrations, torsional constraints, respectively, and so on. The last 
subscript in some dynamical variable will remind the unit to which that variable is associated to.
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2. 3D and 2D open linear chains: general aspects
In three-dimensional (3D) space, one considers a system of N non-relativistic units, with masses Mi, forming an 

open linear molecular chain. Let Ri, RCM and yi (1 ≤ i ≤ N − 1) be the position vectors of the units, of the center-of-

mass (CM) and the relative ones for the units, respectively. One has: 1
11 1 and ( ).N N

CM i i i i i ii iM M M M−
+= == = − =∑ ∑R R y R R

1
11 1 and ( ).N N

CM i i i i i ii iM M M M−
+= == = − =∑ ∑R R y R R

The quantum Hamiltonian operator is: 2 2
1 1 1,  ( /2 )( ) . N

el i iiH E H M U=+ = − ∇ +∑ 

  is Planck’s constant and ∇ is 

the gradient operator. For notational simplicity, ∇i is understood to denote the gradient with respect to Ri. The molecular 
chain is treated in the framework of the Born-Oppenheimer approximation [4], so that the (most rapidly-varying) 
electronic degrees of freedom have already been integrated out and their effect is accounted for by Eel + U. Eel (< 0) 
is the electronic energy (essentially, a constant), which will always be substracted. U is the remaining (real) potential 
energy. The degrees of freedom associated to RCM are factored out. One gets: 2 2

1 ( /2 )( ) ,H M H= − ∇ +R 

  with (y ≡ (y1, 
y2, …, yN−1)):

2 1

, 1
( ).

2 i j

N

ij
i j

H A U
−

=
= − ∇ ∇ +∑ y y y

 (1)

Also for notational simplicity, ∇R denotes the gradient with respect to RCM. The constants Aij are given by: 
1 1 1 1

1 if ,  if 1,  if 1,i i i jM M i j M j i M j i− − − −
++ = − = − − = +  and 0, otherwise. U(y) is independent on RCM and depends on 

absolute values of linear combinations of yl (like |yj|, |yj + yl| and so on). In 3D spherical coordinates, threemomentum 
operators read:

(2)3, ,
i

i
i

i i
i i

y y
∂

− ∇ = − −
∂y

a
u 

(3)3,
1, ,

sini ii i i i
i i i

y i iθ ϕθ θ ϕ
∂ ∂

= = +
∂ ∂

y u a u u 

(4)( )cos sin , sin sin , cos ,i i i i i iϕ θ ϕ θ θ=u

(5)( )cos cos , sin cos , sin ,
i i i i i iθ ϕ θ ϕ θ θ= −u

(6)( )sin , cos , 0 .
i i iϕ ϕ ϕ= −u

The vectors , , 
i ii ϕ θu u u  constitute an orthonormal set. Let:

(7)3, 3, ,l l li≡ −e u a

l = 1, …, N − 1 [26, 29-30]. Let 1 1 13 2
3 31 1 1[ ] , [ ] sin .N N N

l l l l l ll l ld y dy d dϕ θ θ− − −
= = == ≡∏ ∏ ∏y dΩ dΩ  Let θ ≡ (θ1, …, θN−1), 

φ ≡ (φ1, …, φN−1). The 3D scalar product of two wavefunctions ψj, j = 1, 2, depending on all yl, l = 1, … N − 1 reads:
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(8)
1

2 *
1 2 3 3 1 2

1
( , ) [ ] ,

N

l l
l

y dyψ ψ ψ ψ
−

=
≡ ∏∫ dΩ

the integration being carried out over any yl, l = 1, … N − 1, and ∗ denoting complex conjugate. An important property 
is the Hermiticity of both e3,l and   H̃ with the scalar product in Eq. (8).

Let 1
sini ii

i i i
i iϕ θθ θ ϕ

∂ ∂
= − +

∂ ∂
l u u   be the i-th 3D orbital angular momentum operator (associated to ui) and let 

1
3 1

N
ii

−
== ∑L l  be the total 3D orbital angular momentum. It commutes with   H̃ ([A, B] ≡ AB − BA, for any operators A, B): 

[  H̃, L3] = 0.
In 2D standard polar coordinates, the Hamiltonian is also given in Eq. (1), with:

(9)2, , ,
i

i
i i i i

i i
i i y

y y
∂

− ∇ = − − =
∂y

a
u y u 

(10)( ) ( )2, , cos , sin , sin , cos
i ii i i i i i

i
i ϕ ϕϕ ϕ ϕ ϕ

ϕ
∂

= = = −
∂

a u u u

The vectors , , 
i ii ϕ θu u u constitute an orthonormal set. There are N − 1 angular variables in (φ1, …, φN−1) = φ. Let:

(11)2, 2, 2, , 2, ,( , ), 1, , 1.
2

l
l l i x i y

i
e e l N≡ − = = … −

u
e a



The 2D scalar product is given by the right-hand-side (rhs) of Eq. (8), now with 1 1 12
2 21 1 1[ ] , [ ] .N N N

l l l ll l ld y dy dϕ− − −
= = == ≡∏ ∏ ∏y dΩ dΩ 

1 1 12
2 21 1 1[ ] , [ ] .N N N

l l l ll l ld y dy dϕ− − −
= = == ≡∏ ∏ ∏y dΩ dΩ  The Hamiltonian and e2,l are Hermitean under Eq. (8). Let i

i
l i

ϕ
∂

= −
∂
  be the i-th orbital angular 

momentum operator, associated to ui. Let 1
2 1

N
iiL l−

== ∑  be the total orbital angular momentum. A curious property is the 

set of commutation relations: 2, , 2, , 2, , 2, , 2, , 2, ,[ , ] , [ , ] , [ , ] .i x i y i i x i i y i y i i xe e i l e l i e e l i e= − = − =    By using them, it follows 

that L2 commutes with the 2D   H̃.

3. 2D open linear chains including small vibrations
New models for 2D freely-jointed and freely-rotating molecular chains with small vibrations will be presented in 

this Section, involving various approximations.

3.1 2D freely-jointed with vibrations

Let, as a dominant effective approximation of the covalent bonding (neglecting other interactions), nearest-

neighbour atoms interact through harmonic-oscillator-like potentials 1 2 2
0, = (2 ) ( )  (  = | |)j jj j j j j jV A y d yω− − y  with 

vibrational frequencies ω0, j and bond lengths dj [29]. Then, one approximates: 1
1( ) .N

jjU V−
== ∑y  In latter sections 

further nondominant contributions to U(y) will be included. Let the frequencies ω0, j (with ω0, j much smaller than Eel) 
be somewhat (but not much) larger than some energy scale (for instance, KBT). One is also assuming that, on that energy 
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scale, angular degees of freedom are not contrained. In such a regime, on physical grounds one expects that yj equals, 
approximately the constant distance dj (bond length), except for some small (radial) variable displacement xl : yj = dj + 
xj, with |xj|  dj.

Let: x = (x1, …, xN−1). Then, the following approximations will enable to proceed from the 2D counterpart of Eq. 

(1) to a new model. Variables will be changed as follows: (yl, φl) → (xl, φl), l = 1, …, N − 1. Also: 1 12 1 2 2
2 , 0,1 1 0

[ ] ,  ,  1 / 1/ ,  / / ,  (2 ) .N N
l l l l l l l l l l l j fjv j jj j jl ld d dx y dy d dx y d y x V V A xω

+∞ +∞− − −
= = −∞

→ → → ∂ ∂ → ∂ ∂ → =∏ ∏ ∫ ∫y dΩ
1 12 1 2 2

2 , 0,1 1 0
[ ] ,  ,  1 / 1/ ,  / / ,  (2 ) .N N

l l l l l l l l l l l j fjv j jj j jl ld d dx y dy d dx y d y x V V A xω
+∞ +∞− − −

= = −∞
→ → → ∂ ∂ → ∂ ∂ → =∏ ∏ ∫ ∫y dΩ

The molecular chain with those small radial vibrations is described by wavefunctions: ψ = ψ(x, φ). Let the new 
global 2D scalar product of two wavefunctions ψj, j = 1, 2 and 2D “momentum” operator be:

(12)
1

*
1 2 2, 2 1 2

1
, , ,( ) [ ] ( ) (  ),

N

fjv l l
l

d dx x xψ ψ ψ ϕ ψ ϕ
−+∞

−∞
=

≡ ∏∫ ∫ dΩ

(13)2,
2, , .i

fjv i i
i i

i
x d
∂

= − +
∂

e
π u

e2,i is given in Eq. (11). The following approximate Hamiltonian describing small “radial” vibrations about 
constrained distances along the 2D freely-jointed molecular chain will be assumed, suggested by the 2D counterpart of 
Eq. (1):

(14)
1 1

2, 2, , 2, , ,
, 1 1

1 , .
2

N N

fjv ij fjv i fjv j fjv fjv fjv j
i j j

H A U U V
− −

= =
= + =∑ ∑π π

An important property is the Hermiticity of any π2, fjv,i and   H̃2, fjv with the global 2D scalar product in Eq. (12). The 
total orbital angular momentum L2 given in Section 2 commutes with the 2D  H̃2, fjv. The purely angular motion of the 
freely jointed molecular chain is described by the x-independent part of   H̃2, fjv:

(15)
1

2, 2, ,
, 1 2

N ij
fj i j

i ji j

A
H

d d

−

=
= ∑ e e

and by wavefunctions ψ = ψ(φ), eigenfunctions of the stationary Schrodinger equation, with energy eigenvalues E:

(16)2, .fjH Eψ ψ=

See Appendix B for common 2D eigenfunctions of   H̃2, fj and L2 for N = 3. The consistency of these new models 
will be outlined in Appendixes D and E. These 2D fj chains will facilitate the understanding of the 3D fj chains in 
Subsection 4.1.

3.2 2D freely-rotating with vibrations

Let an energy scale (say, KBT) adequately smaller than that considered in Subsection 3.1 be considered. Then, 
forces between pairs of next-to-nearest-neighbour units may be strong enough to restrict the corresponding distances to 
fixed values, with allowance for small oscillations about them: they approximate the covalent bonding due to successive 
single pairs of shared electrons [3, 15]. Example: polyethilene. Thus, let the potentials between units which are next-
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to-nearest neighbours be: (2) (0)1 2 2 2
, 1 0, , 1 1 , 1 1 0, , 1, 1 , 12 ( / ) ( ) . j j j j j j j j jj j jj j j jV B d d dω β β ω−
+ + + + + ++ += −  are other frequencies, 

1 1
, 1 1 , 1 1 , 1 2 are lengths such that | |  and ( ) 1.j j j j j j j j j j j jd d d d d d B M M− −
+ + + + + +− ≤ ≤ + + =

For suitably large 2 (2)
0, , 1 , 11,  N

j j j jj Vω −
+ +=∑  hinders part of the allowed internal rotations in the molecular chain. Then, 

the angles between yj and yj+1, j = 1, …, N − 2, are also approximately contrained. It will be convenient to introduce, in 

general 2 2 1/2
1 1 1 , 1( 1, , 2) | =  |   [ 2 ]  and:j j j j j j j jj N y y y y β+ + + += − + + +y y

(17), 1 1 1cos( ).j j j j j jβ ϕ ϕ+ + += = −u u

Specifically, one supposes [1, 4]:

(18)
2

0, 0, , 1 0, , 1 2,  ll
l l l B l l

l

A
K T

d
ω ω ω+ +> > >



  

for any l. This and Subsection 3.1 will characterize a freely-rotating chain: constrained distances between neighbours 
and next-to-nearest ones. Then:

(19)
1 2

(2)
, 1

1 1
( )

N N

j j j
j j

U V V
− −

+
= =

= +∑ ∑y

The N − 1 angular variables in φ will be replaced by other more suitable N − 1 ones, namely: φ0(≡ (N − 1)−1 1
3 1

N
ii

−
== ∑L lφl)

and the set of all βj, j+1, using (17). Various useful D = 2 formulae will be collected in Appendix A. One has: [dΩ]2 = 
2

, 1 0 21[ ] .N
j jj d d Jβ ϕ−

+=∏
The following approximations for suitably large ω0, j and ω0, j, j+1 will be lead from Eq. (14) to a new model for a 

2D freely-rotating chain with radial and angular constraints and small vibrations. Let: (0) (0) 1 2 2 2
1 1 , 1 1, 1 ( ) (2 ) ( ). One approximates:l l j j j j j jj j d d d d dβ −
+ + + ++ = = − −u u

(0) (0) 1 2 2 2
1 1 , 1 1, 1 ( ) (2 ) ( ). One approximates:l l j j j j j jj j d d d d dβ −
+ + + ++ = = − −u u

(20)(0)
, 1 , 1, 1j j j jj j bβ β+ ++ +

(0)
, 1 , 1(| |   | |,j j j jb β+ +  in order to allow for small angular variations (0)

, 1 , 1(| |   | |,j j j jb β+ + about the constant (0)
, 1 , 1(| |   | |,j j j jb β+ + . Let bnn = 

(b1,2, …, bN−2, N−1). One has: (2) (2) 1 2 2 2
, 1 0, , 1 1 , 1 , 1, 1 , , 1 2 ( / ) .j j j j j j j j j jj j frv j jV V B d d d bω−
+ + + + ++ +→ =  Variables will be changed, 

by recalling the above transformation: 1 1 2
0 2 2, 2, 2, 0 , 11 1 1( ,  ) ( ,  ,  ). Then [ ] [ ] ,  [ ] .N N N

nn l l l l fr fr fr j jl l lx x b d dx d dx J d dbϕ ϕ ϕ− − −
+= = =→ → =∏ ∏ ∏dΩ dΩ dΩ

1 1 2
0 2 2, 2, 2, 0 , 11 1 1( ,  ) ( ,  ,  ). Then [ ] [ ] ,  [ ] .N N N

nn l l l l fr fr fr j jl l lx x b d dx d dx J d dbϕ ϕ ϕ− − −
+= = =→ → =∏ ∏ ∏dΩ dΩ dΩ  See Appendix A for the Jacobian J2 and for the (constant) Jacobian J2,fr .

The molecular chain with those small radial and angular vibrations is described by stationary wavefunctions ψ = 
ψ(x, φ0, bnn). On physical grounds, wavefunctions take on their dominant contributions for small values of all bj, j+1. By 

allowing for −∞ < bj, j+1 < +∞, the contributions of non small values |bj, j+1| will be subdominant. The new global 2D 

scalar product of two wavefunctions ψj, j = 1, 2: is:
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1 22
1 2 2, 2, 2, 1 20
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In connection to (13), one defines here:
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with (0)
, 1j ja +  given in Eq. (62), Appendix A. λ is a parameter: e2, frv, i is Hermitean under Eq. (21) only if λ = 2(N−1), to 

be assumed in what follows. Notice the change of structure between the two expressions for e2,i (Eq. (11)) and e2, frv, i.
By assumption, the approximate 2D Hamiltonian describing small vibrations about constrained distances between 

neighbour and next-to-near neighbours atoms is 2(2) (2)
, , 11( ) :N

frv frv j jjU V−
+== ∑

(26)
1

(2) (2)
2, , 2, ,2,

, 1

1
2

N

ij frv i frv j fjvfrv frv
i j

H A U U
−

=
= + +∑ π π

π2, frv, i and (2)
2, frvH  generalize Eqs. (13) and (14). As λ = 2(N − 1), an important property is the Hermiticity of ( )

2,
i

frvH  

with the 2D scalar product (21).

The total orbital angular momentum 1 (2)
2 0 2,1 ( )( / ) ( / ) commutes with .N

i frviL i i Hϕ ϕ−
== − ∂ ∂ = − ∂ ∂∑ 

   Then, there are 

common eigenfunctions (2)
, , , , ,2, for  and E m E m E m E m E mfrvH E L mψ ψ ψ ψ ψ= =

2
(2)

, , , , ,2, for  and E m E m E m E m E mfrvH E L mψ ψ ψ ψ ψ= =

  with eigenvalues E and m (m = 0, ±1, 

±2, …, as ψE,m is periodic in φ0 with period 2π), respectively. One has: ψE,m = exp imφ0. fE,m. The eigenfunction  fE,m of 
(2)
2, ,frv mH  (which results from (2)

2, frvH  with −i(∂/∂φ0) replaced by m), depends on all xi and all bj. j+1 and is independent 
on φ0.

An important point is that in 2
2, ,frv mH  the m-dependent terms are linear in all xi and all bj. j+1. This implies that 

they will not contribute to the vibrational frequencies (at least, to orders ω0,i and ω0,i,i+1, although they will to the 
eigenfunctions), that is, the vibrational frequencies do not depend on the rotational state. The case N = 3 in subsection 3.3 
will illustrate it. The following contribution from Eq. (26)

(27)
1

2, ,3 2, , , 2, , ,
, 1

1
2

N

fr ij frv r i frv r j
i j

H A
−

=
= ∑ e e
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can be interpreted as the Hamiltonian for the overall rotations of the fr chain without vibrations. See also Appendix F 
for the case N = 3 and Appendix H for further discussion. There are very important approximately planar (2D) chains: 
among others, the strict closed rings structures corresponding to the carbohydrate ribose (in RNA) and deoxyribose (in 
DNA) and the nitrogenous bases (derivatives of pyrimidine) cytosine and thymine (in DNA) and uracil (in RNA). The 
description of those closed rings, omitted here, would require suitable additions of potentials (linking both ends of the 

chains) to (2)
fjv frvU U+  in Eq. (26) (or variants there of).

3.3 2D freely-rotating with vibrations: N = 3. Comparison with experimental data for vibrational 
frequencies

The Schrodinger equation (2)
2, frvH ψE,m = EψE,m for case N = 3 (with λ = 4), with M1 = M3 (A11 = A22) and di = d, ω0,i 

= ω0, i = 1, 2, will be analyzed in Appendix F and here. Eq. (26) yields:

(28)(2) (2)
2, ,2 2, ,32, 2, ,1 frv frfrv frvH H H H= + +   

Eq. (28) describes a 2D vibrating quantum “rigid body”.   H̃2, fr, 3 (frequency-independent) accounts for rotations in 

2D and has generic eigenfunctions exp imφ0 with eigenvalues 
(0) 2 2

11 12 (2)12
2, ,22, ,12

( ) 1[ ]. 
2 82

frvfrv
A A m H H

d

β+
+ +



   leads to 

two decoupled Hamiltonians:  H̃2, z, m (one displaced harmonic oscillator), giving rise to the frequency ωz, and 
1,2

(2)
2, ,Z bH  

(two coupled harmonic oscillators), yielding two frequencies, namely, 
1,2 1,2, , , , and .Z b Z bω ω+ −  The frequencies measured 

experimentally are 
1,2 1,2

(0)2
, , , , 0 0,12,   and . By eliminating both  and ,z Z b Z bω ω ω ω ω+ −  the resulting equations (29) and (30)) 

below involve: 
1,2 1,2

(0) 1
1 2 , , , , 12 11 2 112,  ,   ,   an, d  ( / [1 ( / )] ).z Z b Z bM M A A M Mω ω ω β −

+ − = − +

(29)

1,2 1,2

1,2 1,2

(0), , , , 12 122 2 12
(0)

12 11 12
2

, , , ,2 2

1 ( / )
( ) ( )

1 ( / )

( ) .( )

Z b Z b

z z

Z b Z b

z z

A A

A A

ω ω β
ω ω β

ρ
ω ω

ω ω

+ −

+ −

+
+ −

−
=

(30)
(0) 2 2

12 11 1 212
2

1 2

(1 ( / ) ) (1 ( / ))
1 2( / )

A A M M
M M

β
ρ

− +
=

+

Approximate numerical analysis of Eqs. (29) and (30) and comparisons to experimental data are carried out for 
several triatomic molecules. Frecuencies are given in cm−1. Experimental data for vibrational frequencies are taken from 
[35]. Complementary and interesting information is given in [1, 9, 36-37]. The following results for and consistency 
between the left- and right-hand-sides (lhs, and rhs, respectively) of Eq. (29) have been obtained:

Water vapour (H2O): ωz = 3756, 
1,2, ,Z bω + = 3657, 

1,2, ,Z bω − = 1595, (0)
12β  = 0.259, MH /MO = 0.063. lhs = 0.979, rhs 

= 1.033.

Hydrogen sulfide (SH2): ωz = 2626, 
1,2, ,Z bω + = 2615, 

1,2, ,Z bω − = 1183, (0)
12β  = 0.035, MH /MS = 0.03. lhs = 0.97, rhs 

= 1.00.

Heavy water (D2O): ωz = 2788, 
1,2, ,Z bω + = 2671, 

1,2, ,Z bω − = 1178, (0)
12β  = 0.259, MD /MO = 0.133. lhs = 1.058, rhs = 

1.050.
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Sulfur dioxide (SO2): ωz = 1360, 
1,2, ,Z bω + = 1151, 

1,2, ,Z bω − = 518, (0)
12β  = 0.485, MO /MS = 0.499. lhs = 1.337, rhs = 

1.516.

4. 3D open linear chains with vibrations
New models for 3D freely-jointed and freely-rotating molecular chains with small vibrations will be contructed in 

this Section, through new approximations.

4.1 3D freely-jointed with vibrations

Like for D = 2 in Subsection 3.1, let the frequencies ω0, j be adequately larger than some suitably energy scale (for 
instance, KBT) and let yj = dj + xj, with some small (radial) variable displacement xl. Let: x = (x1, …, xN−1). Variables 

are changed through: (yl, θl, φl) → (xl, θl, φl), l = 1, …, N − 1. Also: 1 13 2 2 2 1 2 2
3 , 0,1 1 0

[ ] ,  ,  1/ 1/ ,  / / ,  (2 ) .N N
l l l l l l l l l l l j fjv j jj j jl ld d dx y dy d dx y d y x V V A xω

+∞ +∞− − −
= = −∞

→ → → ∂ ∂ → ∂ ∂ → =∏ ∏ ∫ ∫y dΩ
1 13 2 2 2 1 2 2

3 , 0,1 1 0
[ ] ,  ,  1/ 1/ ,  / / ,  (2 ) .N N

l l l l l l l l l l l j fjv j jj j jl ld d dx y dy d dx y d y x V V A xω
+∞ +∞− − −

= = −∞
→ → → ∂ ∂ → ∂ ∂ → =∏ ∏ ∫ ∫y dΩ  The molecular chain with those small radial 

vibrations is described by wavefunctions: ψ = ψ(x, θ, φ). The new global 3D scalar product of two wavefunctions ψj,  j = 
1, 2 is:

(31)
1

2 *
1 2 3, 3 1 2

1
( , ) [ ] ( , , ) ( , , ),

N

frv l l
l

d dx x xψ ψ ψ θ ϕ ψ θ ϕ
−+∞

−∞
=

≡ ∏ ∫∫ dΩ

also integrating over the whole N − 1 solid angles. The actual 3D counterpart of (22) and the approximate Hamiltonian 
describing small “radial” vibrations about constrained distances between neighbour atoms along the molecular chain 
are:

(32)3,
3, ,

i
fjv i i

i i
i

x d
∂

= − +
∂

e
π u

(33)
1

3, 3, , 3, ,
, 1 2

N ij
fjv fjv i fjv j fjv

i j

A
H U

−

=
= +∑ π π

with the same expression for Ufjv as in Subsection 3.1. π3, fjv, i and   H̃3, fjv are Hermitean with the global 3D scalar product 
in Eq. (31). The total orbital angular momentum L3 is the same as in Section 2 and commutes with   H̃3, fjv. The purely 3D 
angular Hamiltonian and the scalar product for the freely jointed molecular chain are:

(34)
1

3, 3, 3,
, 1 2

N ij
fj i j

i ji j

A
H

d d

−

=
= ∑ e e

(35)*
1 2 3, 3 1 2( , ) [ ] ( , ) ( , ),fjψ ψ ψ θ ϕ ψ θ ϕ≡ ∫ dΩ

the integration being carried out over the whole N − 1 solid angles. The angular motion is described by wavefunctions ψ 
= ψ(θ, φ), eigenfunctions of the stationary Schrodinger equation, with energy eigenvalues E:
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3, .fjH Eψ ψ= (36)

The D = 3 eigenfunctions of (36) with definite angular momentum are treated briefly in Appendix C. The varia-
tional test of consistency in Appendices D and E for D = 2 can be readily extended to D = 3. The result is the same as in 
Eq. (82), with the same zero-point energy as for D = 2, but with the D = 3 operator   H̃3, fjv given in Eq. (33). The purely 
angular motions described by   H̃3, fj will be essential for the understanding of single polymerization of 3D fj chains in 
Section 5.

4.2 3D freely-rotating chains with vibrations

The same energy scales, approximations regarding distances between nearest and next-to-nearest neighbour units 
and potentials as in Subsection 3.2 for 2D are also assumed for 3D. Eq. (17) is replaced by:

(37), 1 1 1 1 1cos cos sin sin cos( ).j j j j j j j j j jβ θ θ θ θ ϕ ϕ+ + + + += = + −u u

The 2(N − 1) angular1 variables in θ and φ will be replaced by the following more suitable ones: θ1, …, θN−1, φ0(≡ 

(N − 1)−1 1
1( ) .N

jjU V−
== ∑y φj) and the set of all βj, j+1, by using Eq. (37). One has: 2 1

3 , 1 0 31 1[ ] [ ] [ ] ,  [ ] ],N N
j j lj ld d d J d dβ ϕ θ θ θ− −

+= == =∏ ∏dΩ  

2 1
3 , 1 0 31 1[ ] [ ] [ ] ,  [ ] ],N N

j j lj ld d d J d dβ ϕ θ θ θ− −
+= == =∏ ∏dΩ  the Jacobian J3 being given in Appendix A.

For suitably large ω0, j and ω0, j, j+1, the molecular chain becomes a 3D freely-rotating one with small vibrations. 

The approximations for βj, j+1 and potentials are the same as those for 2D. Let bnn = (b1,2, …, bN−2, N−1). Variables are 

changed as: (x, θ, φ) → (x, θ, φ0, bnn). Then 1 1 22 2
3 3, 3, 3, 0 , 11 1 1[ ] [ ] ,  [ ] [ ][ ],N N N

l l l l fr fr fr j jl l ld dx d dx J d d dbϕ θ− − −
+= = =→ =∏ ∏ ∏dΩ dΩ dΩ

1 1 22 2
3 3, 3, 3, 0 , 11 1 1[ ] [ ] ,  [ ] [ ][ ],N N N

l l l l fr fr fr j jl l ld dx d dx J d d dbϕ θ− − −
+= = =→ =∏ ∏ ∏dΩ dΩ dΩ  where J3, fr = J3, fr(θ) is given in Appendix A.

The new global 3D scalar product of two wavefunctions ψj = ψj(x, θ, φ0, bnn),  j = 1, 2: is:

1 22 *
1 2 3, 3, 3, 1 20 0

1
( , ) [ ] ,

N

frv l l fr fr
l

d dx J
π π

ψ ψ ψ ψ
−+∞ +∞

−∞ −∞
=

≡ ∏∫ ∫ ∫ ∫ dΩ (38)

The total orbital angular momentum L3 is Hermitean under (38). The molecular chain with those small radial and 
angular vibrations is described by: ψ = ψj(x, θ, φ0, bnn). The 3D counterparts of Eqs. (22) and (23), are assumed to be, 
for simplicity:

(39)3, ,
3, ,

frv i
frv i i

i i
i

x d
∂

= − +
∂

e
π u

(40)(0) (0)
3, , 3, , 1 3, 1,

0 , 1 1,

1[ ]
1i ifrv i i i i i i

i i i i i
i i i a a

N b bθ ϕθ ϕ + −
+ −

∂ ∂ ∂ ∂
= − − − +

∂ − ∂ ∂ ∂
e u u u  

(0)
3, 1,j ja −  being given by Eq. (64) for βl,l+1 = (ulul+1)

(0). One expresses 
iθ

∂
∂

 in e3, frv, i in terms of 
iθ

∂
∂

|, which means 

differentiation for fixed φ0, all bi,i+1 and any θj (except θi). One differentiates (37) for fixed βj, j+1 = β(0)
j, j+1 and uses (66). 

Then, one recasts e3, frv, i in terms of (φ0, bnn) and all θj, as:
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(41)3, , 3, , , 3, , ,frv i frv r i frv v i= +e e e

(42)3, , ,
0

1|
1i ifrv r i i

i
i i i

Nθ ϕθ ϕ
∂ ∂

= − −
∂ − ∂

e u u u  

(43)(0) (0)
3, , , 1 11, , 1

1, , 1
( ) ( )frv v i i i i ii i i i

i i i i
i i

b b
β β− +− +

− +

∂ ∂
= − − − −

∂ ∂
e u u u u 

All ui and uφi
 are taken at fixed β’s. Under Eq. (38), e3, frv,v,i is Hermitean, but neither e3, frv,r,i nor π3, frj, i are. This 

(although different from the 2D case) will suffice and be convenient. The approximate 3D Hamiltonian describing 
small “radial” vibrations about constrained distances between neighbour and next-to-near neighbours atoms along the 
molecular chain is supposed to be:

(44)
1

(2) (2)
3, , 3, 3, ,3,

3, , 1

1
2

N

ij frv i fr frv j fjvfrv frv
fr i j

H A J U U
J

−
+

=
= + +∑ π π

π+
3, frv, i is the operator adjoint of π3, frv, i, with respect to the scalar product (38). Ufjv + U (2)

frv are the same as in Eq. (26). 

  H̃
 (2)
3, frv is Hermitean with the 3D scalar product in Eq. (38).

An analisis of 3D purely rotational motion is more complicated than for D = 2 and, so, it requires an specific 
analysis. See Subsection 4.3 and Appendixes G and H.

By considering rotational motions only, units ui and uj in a fr chain tend to be the more uncorrelated the larger |i − 
j| is: then, the fr chain can be approximated by a fj one formed by effective units (each constituted by a number of units 
of the previous fr chain) having larger effective lengths de [1, 3].

4.3 3D freely-rotating chain with vibrations: N = 3. Comparison of vibrational motions in 3D and 
2D

The Schrodinger equation   H̃
 (2)
3, frvψE,m = EψE,m for N = 3, with M1 = M3 (A11 = A22) and d1 = d2 = d, ω0,1 = ω0,2 = ω0 

will be analyzed here in outline. Eq. (44) yields:

(45)(2) (2)
3, ,2 3, ,33, 3, ,1 frv frfrv frvH H H H= + +   

(46)
2 3, , , 3, , ,(2) (2)

3, ,1
, 1

1 ( )( )
2

frv v i frv v j
ij i j fjvfrv frv

i i j ji j
H A i i U U

x d x d=

∂ ∂
= − + − + + +

∂ ∂∑
e e

u u

 

(47)
2 3, , , 3, , ,

3, ,3 3,
3, , 1

1
2

frv r i frv r j
fr ij fr

fr i ji j
H A J

J d d

+

=
= ∑

e e


 H̃ (2)
3, frv,1 has been simplified because 3, , ,( )frv v i

i
i i

i
x d
∂

− +
∂

e
u  is Hermitean and commutes with J3, fr. Eq. (45) 

describes a 3D vibrating quantum “rigid body”. By using Eq. (43), and performing scalar products of various uj vectors, 

one shows directly that (2) (2)
3, ,1 2, ,1 :frv frvH H=   the 3D purely vibrational motion coincides with the 2D one, studied in 
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Subsection 3.3 and Appendix F. Then, the consistency of the 2D vibrational frequencies computed in Subsection 3.3 
with experimental data continues to hold for the present 3D analysis.

 H̃3, frv,2 comes from the interference between 3, , , 3, , ,( )  and .frv v i frv r j
i

i i j
i s s

x d d
∂

− +
∂

e e
u  Both   H̃3, frv,2 and   H̃3, frv,3 differ 

from their counterparts in 2D.   H̃3, fr,3 is in principle a possible candidate for accounting for 3D rotational motion (it may 

be influenced by contributions from   H̃3, frv,2). For further analysis, see Appendixes G and H.

5. 3D polymerization of one single unit in open fj chains: quantum-classical 
description
5.1 Formulation of the model

The preceding approximate quantum descriptions provide a basis for approximate models for 3D single 
polymerization, namely, the growth of a molecular chain (from small to large) formed by units 2, …, N, by binding 
the additional unit 1. It will be physically equivalent, and certainly more economical (since the overall center-of mass 
of all units 1, 2, …, N has been factored out), to work with y1, instead of with R1. For simplicity, in the present model 
for polymerization, there is a fluid containing a very dilute solution of chains, the latter being adequately separated, on 
average, from one another. Consequently, one could proceed to the polymerization process in one single system: one 
unit and an individual chain (independently from the others).

The system (chain and unit 1) evolves in solution in a fluid at rest, in thermal equilibrium at KBT adequately 
smaller than all ω0, i and so that, by assumption, all vibrational states are the ground ones and the relevant degrees of 
freedom of the chain are the rotational ones (say, in principle, those in   H̃3, fj). The single unit 1, with kinetic energy in a 
suitable interval about KBT, interacts only with unit 2 in the chain through the (at least, partly) attractive and spherically 
symmetric potential U1 = U1(y1) = U1(y1) (y1 = |y1|): eventually, unit 1 becomes bound to unit 2. Unit 1 will be dealt 
with quantum-mechanically, as so is its binding process genuinely. For simplicity, no catalyst is considered.

In principle, the dynamics is accounted for by the quantum Wigner function for the chain and unit 1 and the 
associated non-equilibrium equation [38-40]. However, it is physically adequate, due to the influence of the fluid at 
such KBT, to approximate the quantum descriptions of the rotational motions of the fj chain in Subsection 4.1 by that 
provided by classical statistical mechanics.

For units 2, …, N forming the chain, the approximate transition to classical mechanics reads: e3,i → −a3,c,i, 

, ,, .
i ic c

i i
i iθ ϕπ π

θ ϕ
∂ ∂

− → − →
∂ ∂
   The terms proportional to iu s disappear. πθi,c

, πφi,c
 are classical momenta, 

canonically conjugate to θi, φi. Let θp = (θ2, …, θN−1), πθ,c,p = (πθ2,c
, …, πθN−1,c), and so on for φp, πφ,c,p, omitting unit 1. 

Let π3,c,1, be a momentum, canonically conjugate to y1, for the quantum-mechanical unit 1. From the above comments, 
the system is described by a mixed (quantum-classical) distribution function in phase-space: a quantum Wigner-like 
one for unit 1 and a classical Liouville-like one for the chain:  fm =  fm(y1, θp, φp, π3,c,1, πθ,c,p, πφ,c,p; t). By assumption,  fm 
fulfills the time(t)-reversible mixed (integro-differential) Wigner-Liouville equation:

(48)

21 2( / )A d

21 2( / )A d+
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A A f d f
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−∂
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∂ ∫ ∫y
y π π y
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 
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id if
A A f d f
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∂ ∫ ∫y
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 
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with 1
3, , ,2 3, , 3, , 3, , ,2, 2 ( /2 )( )( ). [ , ]N

fj c ij i j c i c j fj c m Pbi jH A d d H f−
== − −∑ a a   denotes the standard classical Poisson bracket 

[37, 40]. It approximates, in the classical regime, an integral contribution for the chain analogous to the one in Eq. 
(48) for unit 1. Notice that A12π3,c,1 is multiplied by the Poisson bracket of (−a3,c,2) and  fm.  fm(π3,c,1,0) is obtained just 
by replacing π3,c,1 by π3,c,1,0 in  fm. The dynamics will be considered for suffciently long time (t), so that the chain is 
essentially in thermal equilibrium at T. The solvent at thermal equilibrium is responsible for each individual chain to be 
also at thermal equilibrium, at the same temperature. Notice that (−a3,c,2) is coupled to ∇y1

. This influences the dynamics 

of unit 1 without altering the equilibrium states of the  fj chain. Let 1
3, , , , ,2[ ] .N

L i c i i c ii d d d dθ ϕθ π ϕ π−
==∏dΩ  Total 

probability is conserved, consistently: ∂∫d 3y1∫d
 3π3,c,1∫[dΩ]3,L  fm/∂t = 0.

By assumption: i) the chain and its influence on unit 1 are described by the (t-independent) classical Boltzmann 
equilibrium distribution 21 2( / )A d1 1 1

,2 ,2 12 3, ,1 3, ,2 3, , ,2 ,2 3, 3, , ,2= exp[ ( ) [ ( ) ]] ( = [ ] exp[ ( ) ]),  eq eq B c c fj c eq L B fj cf Z K T A H Z K T H− − −− − + −π a dΩ 

1 1 1
,2 ,2 12 3, ,1 3, ,2 3, , ,2 ,2 3, 3, , ,2= exp[ ( ) [ ( ) ]] ( = [ ] exp[ ( ) ]),  eq eq B c c fj c eq L B fj cf Z K T A H Z K T H− − −− − + −π a dΩ 

3, , ,2 3, ,1 3, ,2 1 ,2 1 1 1 3, ,1]), which includes ( ),  ,  with  ( , , ),fj c c c m eq cH f f f f f t− =π a y π

 ii) 3, , ,2 3, ,1 3, ,2 1 ,2 1 1 1 3, ,1]), which includes ( ),  ,  with  ( , , ),fj c c c m eq cH f f f f f t− =π a y π

  solves approximately Eq. (48). 

The contribution of A12π3,c,1 times the Poisson bracket multiplying it plus that of the Poisson bracket ([ H̃3, fj,c,2]Pb) acting 
upon  fm give a vanishing result. Then: ∫[dΩ]3,L  fm   f1∫[dΩ]3,L  feq,2, and ∫[dΩ]3,L  f1 f2(−a3,c,2)   f1∫[dΩ]3,L  feq,2(−a3,c,2) =  
f1[−(KBTd2)/A12)(∇π3,c,1

∫[dΩ]3,L  feq,2. ∫[dΩ]3,L  feq,2 ≡  f2 =  f2(π3,c,1) is studied in Appendix J. Eq. (48) becomes, in terms of 

W = W(y1, π3,c,1, t) =   f1 f2:

(49)

3, ,1 1
3

11 3, ,1 2 3, ,1,0 1 3, ,1,0[ ( )( ln )]( ) ( , , )]
cc B c c

W A K T f W d W t
t

∂
= − − ∇ ∇ +

∂ ∫π yπ π y π

3
1,0 3, ,1 3, ,1,0 1,0

1 1 1,0 1 1 1,03
2 ( )

 exp( )[ (| |) (| |)]
( )

c cid i
U U

π

−
× + − +∫

y π π y
y y y y



 

−

The (t-reversible) quantum Wigner Eq. (49) depends only on the degrees of freedom of unit 1: the non-
trivial  f2(π3,c,1) embodies the influence of the chain at equilibrium. The structure of  f2(π3,c,1) is a consequence 
of the tendency of unit 1 to interact with unit 2 (and not with the other units 3, …, N), the factoring out 
of the overall CM of all units 1, 2, …, N and the fact that all units 2, …, N constitute a classical  fj at 
thermal equilibrium. Eq. (49) is the standard Wigner equation for the non-standard quantum Hamiltonian 

3, ,1 1 11
2 2

,1 11 2 3, ,1 1 1( /2)( [ ln ]( ) (| |)
cn s cH A f i U− = − ∇ + ∇ → − ∇ ∇ +π y yy π y

   for unit 1.

As it is difficult to handle   H̃n−s,1, it will be approximated by   H̃eff,1 below. Accordingly, one approximates: −(KBT)
(∇π3,c,1

ln f2)  A12σπ3,c,1: see Appendix J. The constant σ (> 0 and dimensionless) accounts for the influence of the 
classical fj chain on the dynamics of unit 1. After this approximation, Eq. (49) becomes the following standard Wigner 
equation:

1
3

11 12 3, ,1 3, ,1,0 1 3, ,1,0( ) ( ) ( , , )]c c c
W A A W d W t
t

σ∂
= − + ∇ +

∂ ∫yπ π y π

(50)
3

1,0 3, ,1 3, ,1,0 1,0
1 1 1,0 1 1 1,03

2 ( )
 exp( )[ (| |) (| |)]

( )
c cid i

U U
π

−
× + − +∫

y π π y
y y y y



 

−

for the effective quantum Hamiltonian for unit 1: 
1

2 2
,1 11 12 1 1( /2)( ) (| |),effH A A Uσ= − + ∇ +y y

  which yields continuum 

and bound states, associated to unbound motion and polymerization of unit 1, respectively.

12
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5.2 Long time approximations and irreversible Schmolukowski equation: mean first passage time 
(MFPT)

Let: W[0] = W[0](y1, t) = ∫d 3π3,c,1)W(y1, π3,c,1, t). For long t, the counterpart of the t-reversible Eq. (49) for   H̃eff,1 is 
transformed into a t-irreversible Schmolukowski one for W[0] in Eqs. (107)-(108), by approximating as in [41] (which 
introduces T-dependences). See Appendix J. The physically interesting solution is, naturally, spherically symmetric (W[0] 
= W[0](y1, t)) so that Eqs. (107)-(108) become:

[0] 1
11 12 11 12 [2],[0] [0] [0]

1 1 1 1

2 1( )( )( [ ( ) ( ) ])eq eq
eq

W U
q A A D q A A W W

t y y y q y
σ σ

∂ ∂∂ ∂
= + + − + +

∂ ∂ ∂ ∂
 (51)

with qeq = (2KBT/(A11 +A12σ))1/2. The diffusion coefficient D = D(y1) (> 0) and [2],[0] = [2],[0](y1)(< 0) are discussed in 

Appendix J. It is convenient to replace W[0] by another distribution  f  =  f (y1, t) = y1
−2W[0](y1, t). Eq. (51) becomes:

(52)1
11 12 11 12 [2],[0] [2],[0] 11 12

1 1 1 1

1 2( ) [ [( ( ) ( ) ( ) ]]eq eq eq
eq

Uf q A A D q A A f f q A A f
t y y q y y

σ σ σ
∂∂ ∂ ∂

= + − + + + +
∂ ∂ ∂ ∂

 

which can be treated with various well-documented approximation techniques [12, 42-43], out of which the following 
one will be selected. It is interesting to compute approximately the time required for unit 1 to become attached to the 
chain as a next neighbour of unit 2, which implements polymerization. Such a time leads to an approximate estimate for 
probability of polymerization of unit 1 by the chain [43]. In more technical language, that boils down to study the mean 
first passage time (MFPT) formalism [12, 42-43], which is useful. The MFPT t(y1), providing an estimate of that time, is 
the solution of the so-called adjoint equation associated to Eq. (52):

(53)[2],[0] 11 122 2 1 1 1
11 12 [2],[0] 11 12

1 1 1 1 1

2 ( )( ) ( )1( ) ( ) [ ] ( )( ) 1eq
eq eq

eq

q A At y U t y
q A A D Dq A A

y y q y y y
σ

σ σ
+∂ ∂ ∂∂

+ − − + + = −
∂ ∂ ∂ ∂




provided that suitable boundary conditions be added. It is supposed that U1(y1): i) is finite for 0 < y1 < +∞, ii) is > 0 for 
0 < y1 < y1,0 (repulsive), iii) vanishes very quickly for y1 > y1,1, iv) is < 0 (attractive) in y1,0 < y1 < y1,1, v) has a minimum 
at y1 = y1,min, y1,0 < y1,min < y1,1, vi) (∂U1/∂y1) > 0 in y1,min < y1. That is, U1(y1) is qualitatively similar to a Morse-like 
potential. The natural boundary conditions for polymerization are chosen to be: t(y1,ab) = 0 (absorption), with y1,min < 
y1,ab < y1,1 and [∂t(y1)/∂y1]y1 = y1,2

 = 0, with y1,1 < y1,2 (reflection). Then, by a direct integration following [12, 42-43], the 

solution of Eq. (53) with those boundary conditions is:

(54)1

1,

1
1 12 2

1 1 11 12
( ) ( )

( ) ( ( ))ab

y
y

eq

dst y J s
D s s q A A σ

=
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(55)1,2 2

1 1

2
3 1 32 2

1
[2],[0] 2 [2],[0] 3

( / )1( ) exp[ ]
( ( )) 2 ( )

y s
s sB

ds U sds s
J s

s K T s
∂ ∂

=
−∫ ∫ 

Let 2

1

3 1 3
1 1, 1 1,2 1,2 [2],[0] 3

[2],[0] 3

(
  

/ )
lie in far from y . Then, 0, as ( ) 0.

( )
s

ab s
ds U s

y y y y s
s

∂ ∂
< < <∫ 


 The latter also implies 

that J(s1) > 0. That yields a T dependence in the right direction to provide a qualitative agreement with the well known 
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Arrhenius exponential formula for rate constants and with the fact that as T decreases, so does t(y1): unit 1 requires 
a shorter time to reach the close proximity of unit 2. To proceed one step further, one may argue that the dominant 
approximation to the last integral, due to the properties of [2],[0] (Appendix J) and (∂U1/∂y1), comes the lowest 
integration limit (s1) and is: U1(s1)/(−[2],[0](s1)). Then,

(56)1 1,2

1, 1

2
1 1 1 2 2

1 2 2
[2],[0] 1 [2],[0] 21 1 11 12

( )
( ) [ exp[ ].[ ]

2 ( ( )) ( ( ))( ) ( ( ))ab

y y
y sBeq

ds U s ds s
t y

K T s sD s s q A A σ − −+∫ ∫

 

which displays somewhat better such a T-dependence and, equivalently, that as |U1(s1)| increases (with U1(s1) < 0) unit 
1 requires a shorter time to become bound to unit 2. Still further approximations in the integral over s1 in Eq. (56) could 
be done, but they will be omitted. t(y1)

−1 can be interpreted, approximately as the rate for polymerization. It follows 
that t(y1)

−1 is given by integrals containing exponentials with a T dependence and the correct sign ressembling the well 
known Arrhenius exponential formula for rate constants in chemical reactions [2-3]. Further study about this lies outside 
the scope of this work.

6. Conclusions and discussion
6.1 Conclusions

The main results in this work have a dual character:
a) Previous works on quantized constrained molecular chains [27-31] led to models for rotational degrees of 

freedom in the latter. However, it was difficult to include small vibrations in the resulting quantum Hamiltonians in 
[27-31]. One novelty of the present work is that through simple (but non-trivial) modifications of those models, new 
Hamiltonians can be constructed which include small vibrations.

a1) A systematic quantum-mechanical approach to 2D and 3D molecular chains with small vibrations about  fj,  fr 
and torsional constraints, based upon vector operators (generically denoted as e) associated to units and the search for 
Hermitean Hamiltonians, is developed thereby reformulating standard procedures based upon cartesian coordinates and 
zero modes. Hermiticity of the e’s does not hold in all cases: for instance, a Hermitean e2, frv,i is used for D = 2, but non-
Hermitean e2, frv,i is employed for D = 3. However, the crucial Hermiticity of the corresponding Hamiltonian always 
holds.

a2) Systematic consistency checks of the present approach are presented. In particular, the vibrational frequencies 
of certain triatomic molecules studied in subsection 3.3 are physically consistent with those already obtained through 
standard approaches [36] (see also [9, 37]). That can be regarded as an encouraging D = 2 check of consistency of the 
present vector formulation. The possibility of applying the quantum Hamiltonians presented in this work to study small 
vibrations of other small molecular chains is open: for instance, to closed-ring D = 2 chains (provided that suitable 
potentials be assumed).

b) A new quantum-mechanical analysis of 3D single polymerization by a molecular chain is presented, namely, 
about the growth of a fj chain formed by units 2, …, N, by binding the additional unit 1 (in the absence of a catalyst, 
for simplicity). The system (chain and unit 1) evolves in solution in a fluid at rest, in thermal equilibrium at KBT such 
that, by assumption, all vibrational states of the chain are the ground ones and only   H̃3, fj (Eq. (34) matters. The fj chain 
is assumed to be in thermal equilibrium in the fluid (and, so, approximately described by the Boltzmann distribution), 
while unit 1 is not. The starting point is a mixed (quantum-classical) distribution function in phase-space (Eq. (48)): a 
quantum Wigner-like one for unit 1 and a classical Liouville one for the chain. It leads to a quantum Wigner equation 
for unit 1 alone (Eq. (49)), for a non-standard Hamiltonian due to the influence of the fj chain. Further approximations 
yield a quantum Wigner equation for unit 1 alone (Eq. (50)), now for a standard Hamiltonian. The latter, in turn, is 
subject to other approximations which implement the irreversibility inherent to the polymerization process. That leads 
to an approximate T-dependent Schmolukowski equation (Eq. (51)), also depending on a constant σ (accounting for 
the influence of the fj chain), a diffusion coefficient D and a dimensionless function [2],[0] (associated to both unbound 
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motion of unit 1 and its bound states to unit 2 in the chain).
That Schmolukowski equation enables to derive an explicit formula for the mean first passage time (MFPT) for 

unit 1 to bind to unit 2 in the chain (Eqs. (54)-(55)) and, hence, an approximate rate for polymerization. The latter 
displays a temperature dependence resembling the well known Arrhenius exponential formula for rate constants in 
chemical reaction [2-3], which accounts for the dependence of rate constants in chemical reactions on temperature. This 
constitutes an, at least qualitative, check of consistency of the present quantum-mechanical approach to polymerization. 
Further study lies outside this work.

6.2 Discussion

A variety of quantum operator variables and Hamiltonians for 2D and 3D molecular chains have been analyzed in 
Sections 3,4 and various Appendixes (in particular, K and L). So, it seemed adequate to offer a panoramic overview of 
various reformulated models of molecular chain with constraints of increasing complexity, through related mathematical 
techniques. On the other hand, applications to dynamical processes, like polymerization, are more difficult by 
themselves and the analysis has been restricted to 3D fj chains (Section 5).

Having in mind the quantum models [27-31], leading to models for rotational degrees of freedom, a natural 
question arises: how do they compare with the restrictions of the models presented in the present work for rotational 
degrees of freedom? Appendices D through I precisely study, through various computations that consistency. In short: 
i) for freely-jointed chains, in D = 2 and D = 3, the same models are obtained in [27-31] and here, ii) for freely-rotating 
chains in D = 2, the same conclusion in i) holds (except, possibly, for some constant energy shift of order 2(mass × 
(bond − length))−1), iii) for freely rotating chains in D = 3, the question is more difficult: see the comment at the end of 
subsection 4.3 and Appendices G and H. It appears that there may exist more than one consistent quantum Hamiltonian 
to describe purely the rotations for freely rotating chains in D = 3. They appear to be consistent with rotational 
invariance, have somewhat different structures and would differ by terms of order 2(mass × (bond − length))−1. See 
Appendix I. The issue would deserve further study, which lies outside the scope here.

The study of molecular chains also poses conceptual issues. For a system formed by a small molecule, its wave 
function describes a set of identically prepared independent copies of the system, according to the standard probabilistic 
interpretation in Quantum Mechanics (see chapter 9 in [44]). On the other extreme, a very large macromolecular chain 
behaves as a single individual system, described classically: recall single DNA molecule experiments studying the 
mechanical separation of the two strands (DNA unzipping experiments): see [45] and additional references in [11]. 
Then, molecular chains, as their length and mass increase, enable to interpolate conceptually from the quantum regime 
to the classical one: in particular, one could entertain the possibility that the quantum-mechanical wave function would 
represent consistently one single individual chain, without need of identically prepared copies.
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Appendix
A useful definitions, Peierls inequality and various formulae

In order to avoid duplications and save space, the following useful formulae will be referred to along the work.
The scalar product of two complex wavefunctions ψj = ψj (u1, …, ur), depending of spatial variables u1, …, ur, is:

(57)*
1 2 1 1 1 1 2 1( , ) ... ( ,..., ) ( ,..., ) ( ,..., )r r r rdu du J u u u u u uψ ψ ψ ψ= ∫

J(u1, …, ur) being a given non-negative function. The operator adjoint A+ of the operator A is defined to fulfill:

(58)1 2 1 2( ,  ) ( ,  )A Aψ ψ ψ ψ+ =

for any ψj,  j = 1, 2. Partial integrations and complex conjugation are carried out in relating the rhs and lhs in (58). The 
operator A is Hermitean if A+ = A.

The following (Peierls) inequality [46] will be employed. Let a quantum system, with Hamiltonian  H̃, scalar 
product (,) and complete set of orthonormal eigenfunctions Ψσ (σ being a set of indices), be at thermal equilibrium 

at absolute temperature T. Then, the equilibrium partition function is: 1 1( , exp[ ( ) ] ) Tr[exp[ ( ) ]],B BZ K T H K T Hσ σ σ
− −= Σ Ψ − Ψ = −  

1 1( , exp[ ( ) ] ) Tr[exp[ ( ) ]],B BZ K T H K T Hσ σ σ
− −= Σ Ψ − Ψ = −   summing over all possible σ and Tr being the trace. Let Φσ1

 be an arbitrary orthonormal set 
of wave functions for the system, as the indices in σ1 vary. It is not required that the set of all Φσ1

 coincide with the 
complete set of exact eigenfunctions Ψσ of   H̃. Then, the above Z satisfies Peierls variational inequality [46]:

(59)1 1
1

1exp[ ( ) ( ,  )]BZ K T Hσ σ
σ

−≥ − Φ Φ∑ 

where the equality holds if the Φσ1
s are the complete set of exact eigenfunctions Ψσ nof  H̃. By suitable choices of the 

Φσ1
’s, the inequality leads to effective variational Hamiltonians (depending on a smaller set of variables), potentially 

useful in various dynamical settings. Use of Peierls variational inequality has been made in [28-29, 31].
D = 2. The Jacobian J2 (Subsection 3.2) is:

2
2 1/2

2 2 1,2 2, 1 , 1 , 1
, 11

1[ .., ] [ ], [1 ]
N

N N j j j j
j jl

J J a
a

β β β
−

− − + +
+=

= = = −∏ (60)

where Eq. (17) relates ulul+1 to |yl + yl+1|. One has:

(61), 1 1,
0 , 1 1,

1
1 j j j j

j j j j j
a a

Nϕ ϕ β β+ −
+ −

∂ ∂ ∂ ∂
= − +

∂ − ∂ ∂ ∂

All partial derivatives are carried out for fixed yj, for any  j. Also: 
, 1 , 1j j j jbβ + +

∂ ∂
→

∂ ∂
 (Subsection 3.2). One has 

(Subsection 3.2):

(62)(0) (0) (0) (0) 2 1/2
2, 2, 1,2 2, 1 , 1 , 1[ ,.., ],  [1 ( ) ]fr fr N N j j j jJ J aβ β β− − + += = −

D = 3. The Jacobian J3 (Subsection 4.2) is:
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(63)
1 2

3 3 1,2 2, 1
3, , 1 , 11 1

1[ ; ... ] [ sin ][
( )

N N

N N l
l l l ll l

J J
a

θ β β θ
β

− −

− −
+ += =

= = ∏ ∏

(64)2 2 1/2
3, , 1 , 1 1 1 1( ) [(sin sin ) ( cos cos ) ]l l l l l l l l l la β θ θ θ θ+ + + + += − −u u

The relationship of ulul+1 to |yl + yl+1| for D = 2 also holds for D = 3. 
The Jacobian J3, fr (Subsection 4.2) is:

(65)
1 2

3, 3, (0)
1 1 3, , 1 , 1

1[ ] [ sin ][
( )

N N

fr fr l
l l l l l l

J J
a

θ θ
β

− −

= = + +

= = ∏ ∏

Let  and .
i ii θ ϕ

+ + +u u u be the 3D column adjoint to the row vector ui and so on for the column vectors  and .
i ii θ ϕ

+ + +u u u  Then, one has 
the 3D completeness (diadic) relationship:

3i ii ii i Iθ ϕθ ϕ
+ + ++ + =u u u u u u (66)

I3 being the unit 3 × 3 matrix.

B Angular motion for D = 2 freely-jointed chains: solving Eq.  H̃2, fjψ = Eψ

It is adequate to have a feeling of the eigenfunctions fulfilling   H̃2, fjψ = Eψ. Then, Eq. (36) will be solved for N = 

3, M1 = M3 and di = d, i = 1, 2,. Let: φ0 = 2−1(φ1 + φ2), φ = φ2 − φ1. One searches for the common eigenfunctions f = 
exp(imφ0)g(φ) of L2 = −i(∂/∂φ0) and   H̃2, fj, with eigenvalues m(= 0, ±1, ±2, …) and E, respectively. One gets, with (d2/

A11
2)E − 2−1(m2 + 1) = em (0 ≤ φ ≤ 2π):

2
2

12 11 12 11 12 112[ (1 ( / )) cos ) ( / )sin ( /4 )(1 )cos ] .m
d dA A A A A A m g e g

dd
ϕ ϕ ϕ

ϕϕ
− − − − − = (67)

It will suffice to search for g as a cosine Fourier series:

0

1
( ) cos .

2 n
n

a
g a nϕ ϕ

+∞

=
= +∑ (68)

Upon replacing g in Eq. (67), one gets the three-term infinite recurrence relation for the amplitudes an, n = 1, 2, …

(69)2
, 1 1 , 1 1 ( )n n n n m nA a A a e n a+ + + − − −+ = −

(70)2 2
, 1 12 11 12 11 12 11( /2 )( 1) ( /2 )( 1) ( /8 )(1 )nA A A n A A n A A m+ + = − + + + + −

2 2
, 1 12 11 12 11 12 11( /2 )( 1) ( /2 )( 1) ( /8 )(1 )nA A A n A A n A A m− − = − − − − + − (71)
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One drops the an+1-term in Eq. (67), solves for an in terms of an−1 and iterates indefinitely. Then, Eq. (69) for n = 1, 2, 
… yields:

, 1
1 2

, 1 1 ,
, , 1, 2, 3, ...n

n n n n
m n n n

A
a D a D n

e n A D A
− −

−
+ + + −

= = =
− −

(72)

The successive iterations of Eq. (72) yield Dn, n = 1, 2, 3, …, as an infinite continued fraction. For n = 0, one also 
has: (2(M2A11)(1 − m2)a1 = 4erot,ma0. Combining this and the first equation in (72) for n = 1 gives:

(73)2
12 11 1( /8 )(1 ) .mA A m D e− =

Notice that the infinite continued fraction D1 depends on em, so that Eq. (73) is the eigenvalue equation, that is, an 
implicit equation for em, to be dealt through approximation techniques. For n ≥ n0, n0 being large and fixed, one finds 
easily the leading approximation |Dn|  |A12/2A11| ≤ 1. Then, the continued fractions Dn converge, since they fulfill the 
convergence condition imposed by the Worpitzky theorem [47]. Then, the leading contribution to 

0
cosnn n a nϕ+∞

=∑  an 

is bounded by 0
0 0 12 11| | (| /2 |) | cos |.n n

n n na A A nϕ+∞ −
=∑  The last series is (absolutely) convergent and then so is the one 

giving g in Eq. (68).

C Angular motion for D = 3 freely-jointed chains: solving Eq. (36)

The eigenfunctions fulfilling   H̃3, fjψ = Eψ for N = 3 require much more work than those of   H̃2, fjψ = Eψ (N = 2). 

That fact will be illustrated with the following study, for N = 3. H3, fj commutes with the total orbital angular momentum 
2

3 1 ii== ∑L l  (see Section 2). The problem of finding the common eigenfunctions of H3, fj, L
2
3 and the third component 

L3,z of L will be treated briefly. The common eigenfunctions of L2
3 and L3,z are directly provided by the general quantum-

mechanical recipes for composing two angular momenta [4]. Let ( , ), 1, 2i i
i i
m m

i il lY Y iθ ϕ= = , be the standard spherical 

harmonics, which are common eigenfunctions of l2i and the third component li,z of li with eigenvalues 2li(li + 1) and mi, 
respectively [48]. Then the common eigenfunction of L2

3 and L3,z with eigenvalues 2l(l + 1) and m, respectively, are:

(74)1 2
1 2 1 2

1 2
1 2 1 2, ;

,
 ,  ;  ,  | ,  m mm

l l l l l
m m

Y l l m m l m Y Y= < >∑

with |l1 − l2| ≤ l ≤ l1 + l2 and the summation is carried out over all m1, m2 such that m1 + m2 = m. The coefficients < l1, l2; 
m1, m2 | l, m > are the so-called Clebsch-Gordan ones [4]. By generalizing the procedure in Appendix B for D = 2, the 
common eigenfunctions  f (E, l.m) =  f (E, l.m; θ1, φ1θ2, φ2) of H3, fj, L

2
3 and L3,z with eigenvalues E, 2l(l + 1) and m, 

respectively, are searched for as the infinite superpositions:

(75)1 2
1 2

1 2 , , ;
,

( , . ) ( , ) m
l m l l l

l l
f E l m a l l Y= ∑

with unknown complex (angle-independent) amplitudes a(l1, l2)l,m, which in principle are allowed to depend on l, m. 
The summations are carried out, in principle, over all l1, l2 compatible with |l1 − l2| ≤ l ≤ l1 + l2. One has, for any l1, l2 
with the above restriction for given l:
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(76)1 2 3 4
3 4

3, 1 1 2 3 4 ,, ; , ,
,

( , ; , )m m
fj l ml l l l l l

l l
H Y a l l l l Y= ∑

with coefficients a1(l1, l2; l3, l4; l.m). One has: e2
i = l2i + 2 [31] and, by virtue of the action of eien, l  /= n, the summation in 

Eq. (76) is limited to |l1 − l3| ≤ 1 and |l2 − l4| ≤ 1. By using Eq. (76) in H3, fj  f (E, l.m) = E f (E, l.m), one gets the following 
infinite system for all a(l1, l2)l,m (for any l1, l2 with the above restriction for given l):

(77)
1 2

1 1 2 3 4 , 1 2 , 3 4 ,
,

( , ; , ) ( , ) . ( , )l m l m l m
l l

a l l l l a l l E a l l=∑

The summations are carried out, in principle, over all l1, l2 compatible with |l1 − l3| ≤ 1, |l2 − l4| ≤ 1. The case M1 = 
M3, di = d, i = 1, 2, l = 0 and m = 0 will be treated in outline. By using Eq. (76) and [48], one sees easily that l1 = l2 and:

(78)
1

1 1 11 1

1/2
0 1

12, ;0
( 1) (2 1)

( ),  
4

l

l l ll l
lY C P Cβ
π

− +
= =

β12 being given in Eq. (17) and Pl1
 being the Legendre polynomial of order l1. A direct, but lengthy, computation 

yields the three-term infinite recurrence relation for the amplitudes a(l1, l1)0,0, l1 = 1, 2, …

(79)1 1

2

, 1 1 1 0,0 , 1 1 1 0,0 1 1 1 1 0,02
11

( 1, 1) ( 1, 1) [ (( 1) 1)] ( , )l l
EdB a l l B a l l l l a l l
A

+ + − −+ + + − − = − + +


(80)1
1

1

21 1
, 1 12 11 1 1

1

2(1 ( 1) )
( /2 ) ( ( 1) 2( 1))

2( 1) 1
l

l
l

C l
B A A l l

C l
+

+ +
+ +

= − + + +
+ +

(81)1
1

1

21 1
, 1 12 11 1

1

2(1 ( 1) )
( /2 )

2( 1) 1
l

l
l

C l
B A A l

C l
−

− −
+ −

= −
− +

The behaviours of B±,l1
 for large l1 are similar to those of A±,n (Eqs. (70)-(71)) for large n. Then, the analysis of Eq. 

(79) is essentially similar to that for Eq. (69) and will be omitted.

D 2D and 3D freely-jointed chains with vibrations: consistency of models in Sections 3.1 and 4.1

The consistency of the new 2D and 3D freely-jointed models in subsections 3.1 and 3.2 for ω0,i > KBT (only 
vibrational ground states being relevant) will be outlined here. For that purpose for 2D, a variational computation 
inspired on Peierls inequality (Eq. (59) will be performed, by choosing Φσ1

 (normalized with Eq. (12)), as Φσ1
 = ϕgs(x)

f(φ), ϕgs(x) = 2 1/4 2 2
, , , , ,1 ,  ( ) [ / ] exp[ ( /2 ) ],  with ( ) 1gs i gs i i o i ii o i ii i l l gs i ii x A A x d dx xφ φ ω π ω φ

+∞
= −∞

= − =∏ ∫   and ∫[dΩ]2 f *f  = 

1. One has:

(82)
2 1

2, 0, 2, 2,
, 11

( ) ( )
2

N ij
l l gs fjv gs v i j

i ji ji

A
d dx x H x E

d d
φ φ

−+∞

−∞
==

= + ∑∏∫ e e
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(83)
2

0, 0, ,1 0, ,2 0, ,1
1

, ( ) ( )v v v v l l gs fjv gs
i

E E E E d dx x U xφ φ
+∞

−∞
=

= + = ∏∫

(84)
2 1

0, ,2
, 11

1( ) [ ] [ ] ( )
2

N

v l l gs ij i j gs
i ji ji

E d dx x A i i x
x x

φ φ
−+∞

−∞
==

∂ ∂
= − × −

∂ ∂∑∏∫ u u 

Notice that no integration over angles, with ∫[dΩ]2, is carried out. Crossed integrands of the type ϕgs(x)ei 

( ) [ ] ( )gs i j gs
j

x i x
x

φ φ∂
−

∂
e u  for any i and j in the integrations 2

1 ,l li d dx
+∞

=−∞ ∏∫  have given vanishing results, by symmetric 

integrations. The same holds for the contributions in Eq. (84) for i /= j. Gaussian integrations yield: E0,v,1 = E0,v,2 = 
1

1
N
i
−
=∑ ω0,i /4. Thus, Eq. (82) equals the total zero-point energy (E0,v = 

1
1

N
i
−
=∑ ω0,i /2) (the largest contribution) 

plus 1
2, 2,1, 2

ijN
i ji j

i j

A
d d

−
=∑ e e  (the smaller one, of order 2/d2 divided by an average atomic mass). This establishes the 

consistency of Subsection 3.1. The consistency of the new 3D model in Subsection 4.1 is similar and will be omitted.

E Comparison with other models for freely-jointed chains: 3D and 2D

Different computations [29, 31], using Peierls variational inequality (Eq. (59)) and without employing the 

approximations in Subsection 4.1, have been carried out based directly in  H̃ in Eq. (1) (with U(y) = 
1

1
N
i
−
=∑ Vj, Vj = 

(2Ajj)
−1ω2

0, j(yj − dj)
2) and with Φσ1

 = ϕnn(y)ψ, ϕnn(y) = 1 0, 0,1 1/4 2
1 ,  [ ] exp[ ( ) ]

2
N l l

l l l l ll
ll ll

d y d
A A

ω ω
φ φ

π
− −
= = − −∏

 

 and ψ = 

ψ(θ, φ) being a generic complex wavefunction. The analysis, as all ω0, j are larger than KBT, has led to (ψ, ( H̃3, fj + 

E0,v)ψ)3, fj.  H̃3, fj and Eo,v are, respectively, the approximate (freely-jointed) Hamiltonian with constrained distances 
between neighbour atoms along the molecular chain given in (34) and the upper bound for the ground state energy of   H̃ 

appearing in (83): E0,v = 
11

12
N
i
−
=∑ ω0, j. The counterpart of the 3D developments just summarized also hold for 2D, with 

the corresponding replacements.

F 2D freely-rotating chain with vibrations: N = 3, M1 = M3, d1 = d2 = d, ω0,1 = ω0,2 = ω0

Several formulae for triatomic molecules, omitted from Subsection 3.3, will be given in this Appendix. Eq. (28), 
recalling Eq. (26), yields:

(0) 22 2 2 22
1,2(2) (2) 11

2, , , 2, , ,2, ,1 2 2 2 2
, 1 1 2 1,2

2( )
[ ]

2 2
ij

frv v i frv v j fjvfrv frv
i j

aA A
H U U

x x d b=

∂ ∂ ∂
= + + = − − −

∂ ∂ ∂
∑ π π 



(0) (0) (0)2 22 2 2
12 1,2 1,2(0) (2)12

12 2 2
1 2 1,2 1 21,2

2 ( ) 2( )2
[ ( )]

2 fjv frv
a aA

U U
x x d b x xd b

β
β ∂ ∂ ∂ ∂ ∂

+ − + − + + +
∂ ∂ ∂ ∂ ∂∂

 (85)

(0)2
12 12

2, ,2
1 0 2 0

2
[ ]

2frv
A a

H
d x xϕ ϕ

∂ ∂ ∂ ∂
= −

∂ ∂ ∂ ∂



 (86)
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(0) 22 22
1211 12

2, ,3 2, , , 2, , , 2 2 2 2
, 1 0 0

1 1 1 1 1[ ] [ ]
2 2 8 2 82 2

fr ij frv r i frv r j
i j

AA
H A

d d

β

ϕ ϕ=

∂ ∂
= = − + + − +

∂ ∂
∑ e e





 (87)

Let ψE,m = exp imφ0. fE,m. Then,   H̃2, fr,3 (describing 2D rotations) decouples from   H̃
 (2)
2, frv,1 +   H̃2, frv,2 which, in turn, 

describes three coupled harmonic oscillators and becomes, by using x1 = Z − (z/2), x2 = Z + (z/2), B12 = M1/2:

(89)

(88)

1,2

(0)2
12(2) (2)12

2, ,2, ,1 2, ,
1 2

2
[ ]

2 z mfrv Z b
A a im

H H H
d x x

∂ ∂
+ − = +

∂ ∂



  

(0) (0)2 2 2 22
11 12 12 012 12

2, , 2
11

( 2 2 ) 2
2 2 4z m

A A A a im z
H

d z Az
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= − +

∂∂

 



1,2

(0) (0) 2 2 (0) (0)2 2 22 2 211 12 12 1,2 11 12 12(2) 12 12
2, , 2 2 2

1,21,2

( 2 2 )( ) ( ) 2 ( )
4 22Z b

A A a A A A a
H

d b Zd b Z

β β− + − −∂ ∂ ∂
= + −
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
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

2 2
(2)0

11
frv

Z
U

A
ω

+ +

2
1 0,12 1,2(2) 2

1
[ ]

4frv
M db

U
ω

ρ
=

 H̃2,z,m (one displaced harmonic oscillator) decouples from   H̃
 (2)
2,Z,b1,2

 (two coupled harmonic oscillators). Then,  fE,m 

= f1(z) f2(Z, b1,2) implements the decoupling. The resulting decoupled Schrodinger equations can be solved by standard 

methods [7].   H̃2,z,m  f1 = E1 f1 gives rise directly to the frequency: ωz = ω0[1 − (A12/A11)β12
(0)]1/2.   H̃

 (2)
2,Z,b1,2  

f2 = E2  f2 yields 

directly a quadratic equation for the squared frequencies ω2
Z,b1,2

, which has two solutions: ω2
Z,b1,2,+

 and ω2
Z,b1,2,−

. From the 
two explicit expressions for ω2

Z,b1,2,+
 and ω2

Z,b1,2,−
, one eliminates ω2

0,12. Then, by using the last equation and the above 
one, providing ωz, one eliminates ω0. That yields Eqs. (29) (30), in which all quantities are measurable and known 
experimentally. Notice that all vibrational frequencies, being independent on m, are given solely by   H̃

 (2)
2, frv,1. 

The counterpart of Eq. (29) with ρ2 replaced by the contribution coming from the model with potential V (1)
j, j+1 = 

2−1Bj, j+1ω
2
0,

 
j, j+1(|yj + yj+1| − dj, j+1)

2 (considered in Appendix G) has also been obtained. It will be omitted, because its 
comparison with experimental values appears somewhat less favourable than that for the potential V (2)

j, j+1.

G Comparison with other models for freely-rotating chains: 3D

Let the potentials between units which are next-to-nearest neighbours be: V (1)
j, j+1 = 2−1Bj, j+1ω2

0,
 
j, j+1(|yj + yj+1| − 

dj, j+1)
2 (instead of V (2)

j, j+1 in Subsections 3.2 and 4.2). ω0,
 
j, j+1 are other frequencies, dj, j+1 are lengths such that |dj − dj+1| 

≤ dj, j+1 ≤ dj + dj+1 and Bj, j+1(Mj
−1 + M 

−1
j+2) = 1. Based upon and Eqs. (1), (19) (with V (2)

j, j+1 replaced by V (1)
j, j+1) and (18), a 

previous variational computation [30] using Eq. (59), has led to a model for an open freely-rotating chain, in which all 
dj and dj, j+1 be given constants. The variational wavefunction Φσ1

 in [30] is chosen as:
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1
( ) ( ) ( ,  ) ,nn nnnyσ σφ φ ψ θ ϕΦ = y (90)

2
0, , 1 , 1 0, , 1 , 11/4 2

, 1 , 1 1 , 1
1

( ) ,  [ ] exp[ (| | ) ] ,
2

N
l l l l l l l l

nnn l l l l l l l l
l

B B
d

ω ω
φ φ φ

π

−
+ + + +

+ + + +
=

= = − + −∏y y y
 

(91)

As all frequencies ω0,l and ω0,l,l+1 become suitably large, localized Gaussians approach Dirac delta functions: 

|ϕnn(y)|2 → wrad = 1 2
1[ ( )]N

l l ll d y dδ− −
= −∏  and:

1

2
2

1 , 1
1

| ( ) | [ (| | )] .
l l

N

nnn ang l y l y l l
l

w d d dφ δ
+

−

+ +
=

→ = + −∏y u u (92)

The wavefunctions ψσ(θ, φ) (σ denoting quantum numbers) are arbitrary, except for: i) they are periodic in each φi 
with period 2π and independent of any yl, and ii) they are normalized with respect to the scalar product:

(93)*
1 2 3, 3 1 2( , ) [ ] ( , ) ( , ),fr angwψ ψ ψ θ ϕ ψ θ ϕ≡ ∫ dΩ

One evaluates, as all frequencies ω0,i i = 1, …, N − 1, and ω0,l,l+1 l = 1, …, N − 2, grow large, the quantum 

expectation value: 1 2 *
3 31( , ) [ ] ( ) ( )N

l llH y dy H−
=Φ Φ ≡ Φ Φ∏∫ dΩ y y   (recall Eq. (8)). This variational computation does not 

employ the approximations considered in Appendix D. The analysis in [30] was based, in turn, upon a previous quantum 
mechanical study for a closed-ring 3D freely-jointed molecular chain [28]. One finds, using Eq. (59) [30]:

(94)2
0 3, 3,( , ) ( , ( ( )) ) ,fr fr frH E H Oσ σψ ψΦ Φ = + + 



1
* *

3, 3, 3 3, 3 3, 3,
, 1

( , ) [ ] ( , ) ( , ) [ ] ( ( , )) ( ( , )
2

N ij
fr fr ang fr i ang j

i ji j

A
H w H w

d dσ σ σ σ σ σψ ψ ψ θ ϕ ψ θ ϕ ψ θ ϕ ψ θ ϕ
−

=
= = ⋅∑∫ ∫dΩ dΩ e e  (95)

for any normalized ψσ(θ, φ) fulfilling the above requirements. e3,l is given in Eq. (7). Oang(2) (proportional to 2) 
denotes the set of all remaining contributions which do not depend on ω0,i and ω0,i,i+1 and it does not contain angular 
differential operators acting upon ψσ(θ, φ): it will be disregarded here. Due to certain remarkable exact cancellations, 

E0 (independent on θ, φ) equals the sum of the zero-point energies associated to all Vi and V (1)
j, j+1 E0 = 

1
1

N
i
−
=∑ 2−1

ω0,i 

+ 
1

1
N
i
−
=∑ 2

2−1
ω0,i,i+1. Such a E0 appears to be at least a curious simplifying feature of the above choice V (1)

j, j+1. The 

variational computation for V (1)
j, j+1 summarized above [30] can be extended to V (2)

j, j+1 from Subsection 4.2 (with the 

corresponding replacement of |yl + yl+1| − dl,l+1 by βl,l+1 − β 
(0)
l,l+1 in ϕl,l+1). Then, one also arrives at Eq. (94), with another 

E0 (depending on frequencies and on β 
(0)
l,l+1) and Oang(

2) but, crucially, with the same   H̃3, fr, which is satisfactory.

Anyway, another key property is that the frequency-dependent part of the new (Φ,   H̃Φ) (with V (1)
j, j+1) is independent 

on both angles and angular differential operators. Whether such a frequency-dependent part for the new (Φ,  H̃Φ) (with V (1)
j, 

j+1) depends on the constant β 
(0)
i,i+1 could be not so important, as long as the former is just a variational bound. Physically, 

2 2 1/2
1 1 1 , 1= [ 2| | ]j j j j j j j jy y y y β+ + + ++ + +y y  implies, after small vibrations approximations, that small oscillations of 

|yj + yj+1| about dj, j+1 are due to bj, j+1 only for V (2)
j, j+1, while to xj, xj+1 and bj, j+1 altogether for V (1)

j, j+1.   H̃3, fr and e3,l are 
Hermitian operators (with respect to the scalar product in Eq. (93)) [30]. Using commutation rules (following partly 
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(96)3, 3, , , 3, , ,i frv r i frv v i= +e e e

from Eq. (59)), the total orbital angular momentum L3 = 
1

1
N
i
−
=∑ li can be shown to commute with  H̃3, fr: see Appendix 

B in [30]. Recall that one Hamiltonian for the purely rotational motion of the fr chain was considered briefly in 
Subsections 4.2 and 4.3: recall Eq. (47). On the other hand, the above   H̃3, fr could also be regarded in principle as an 
effective 3D quantum Hamiltonian for the unconstrained angular degrees of freedom of the freely-rotating chain, but the 
Dirac delta functions contained in ωang indicate that further analysis should be undertaken: see Appendix H.

H D = 3 freely-rotating chains: effective Hamiltonian from Eq. (95) for N = 3

The Hamiltonian in Eq. (95), due to the Dirac delta functions contained in ωang, poses an interesting problem. It 
will be analyzed here for N = 3, for simplicity. It will be convenient to change variables (θ, φ) → (θ, φ0, β1,2). Then (with 

β1,2 = β 
(0)
1,2):

e3, frv,r,i and e3, frv,v,i are given in Eqs. (42) and (43), here with b1,2 replaced by β1,2 (which is harmless). For N = 3: 

e3, frv,v,i = (0)
1,2

1,2
( ) .l i ii β

β≠
∂

− −
∂

u u  Then, making use here of the corresponding changes of variables in Subsection 4.2, 

Eq. (95) becomes, for ψ1 = ψ2 = ψ:
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i ji jl

A
d d J
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β1,2 can be safely replaced by β(0)
1,2 in Eq. (97), due to δ(β1,2 − β(0)

1,2). J3, fr is given in Eq. (65). (ψ, ψ)−1 appears in Eq. 

(97) because ψ is now taken as unnormalized, for convenience while it was normalized in Appendix G. (ψ,  H̃3, frψ)3, fr

in Eq. (97) is an integral over φ0 and θl, l = 1, 2, containing ψ(φ0, θ, β(0)
1,2) ≡ ψ |β(0)

1,2
 and (∂ψ(φ0, θ, β1,2)/∂β1,2) |β1,2 = β(0)

1,2
 ≡ 

∂ψ/∂β1,2|β(0)
1,2

. The latter function is independent on and cannot be obtained from ψ(φ0, θ, β(0)
1,2) and so the problem of a 

proper understanding of (ψ,   H̃3, frψ)3, fr and of the associated Schrodinger equation arises. One direct possibility consists 

in assuming ∂ψ/∂β1,2 |β(0)
1,2

 = 0: then, one gets   H̃3, fr,3 (Eq. (47)) as an effective Hamiltonian for 3D rotational motions of 
the fr chain. However, the question still arises whether there are other possible effective Hamiltonians for the purely 
rotational motions of the D = 3 fr chain. In order to analyze them further, the well known variational approach [4] will 
be invoked. Let the functional E[ψ |β(0)

1,2
; ∂ψ/∂β1,2 |β(0)

1,2
] equal the complete right-hand-side in Eq. (97), which indicates 

how the variational approach should be interpreted and applied in order to arrive at an (eventually different) effective 
Schrodinger equation in the actual 3D situation. The functional E[ψ |β(0)

1,2
; ∂ψ/∂β1,2 |β(0)

1,2
] should be stationary for any small 

variation δψ |β(0)
1,2

 about the eigenfunction ψ |β(0)
1,2

 and any small variation δ∂ψ/∂β1,2 |β(0)
1,2

 about the associated independent 

function ∂ψ/∂β1,2 |β(0)
1,2

. A standard variational calculation, extending directly the one in [4], gives:
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(0) (0) (0) (0)
1,2 1,2 1,2 1,2

2
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3, , 3, , , 3, 3, , , 1,21,2
3, , 1

1| ( [( | ( )( / ) | ]) |
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ij
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fr i ji j

A
H J i E

J d dβ β β β
ψ ψ β ψ β ψ+

≠
=

≡ − − ∂ ∂ =∑ e e u u

 (98)
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d d β β
β ψ β ψ β≠ ≠

=
− − − ∂ ∂ =∑ u u e u u (99)

Eq. (99) is a consequence of the fact that (ψ, ψ) does not depend on ∂ψ/∂β1,2 |β(0)
1,2

, upon performing the variational 

copmputation. By eliminating the variational-approach-based (in general, non-vanishing) ∂ψ/∂β1,2 |β(0)
1,2

 in terms of ψ |ββ(0)
1,2

 
by using Eq. (99), Eq. (98) becomes

2
(0) (0)

3, , ,1,2 1,22
, 1
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d d

β β
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=
≠ ≠

=

− −

= −

− −

∑
∑

∑

u u u u e

e e
u u u u



 (100)

which yields an alternative effective Schrodinger equation for internal rotations in the 3D fr chain, for eigenfunc-
tions ψ |β(0)

1,2
 with eigenvalues E( H̃3, fr,eff ψ |β(0)

1,2
 = Eψ |β(0)

1,2
). Upon recalling Eq. (47), one sees in it the structure 

3, , , 3, , ,
3, 3,,

2
1/2 ,)(1 frv r i frv r j

fr ij fri j
i j

J A J
d d

+

=∑
e e

 which appears in the right-hand-side of Eq. (100). For D = 2, similar (and 

simpler) developments also yield alternative effective Hamiltonians. For D = 2 and N = 3, the alternative effective 

Hamiltonian has the common structure 
(0) 2 2

11 12 12
2 2

0

( )) 1[ ]
22

A A

d

β

ϕ
∂

−
∂



 plus a constant, depending on the choice of 

∂ψ/∂β1,2 |β(0)
1,2

. That structure coincides with that in Eq. (87) (which contains such constant).

I 3D: total orbital angular momentum

L3 (given in Section 2) is recast, in terms of θ1, …, θN−1, φ0 and βj, j+1 as:

(101)
1 1

3
01 1

1[ ] [ |]
sin 1

i
i

N N

i ii i
i i

N
θ

ϕθ ϕ θ

− −

= =

∂ ∂
= −

− ∂ ∂∑ ∑
u

L u 

|
iθ

∂
∂

 means differentiation for fixed φ0, all θj (except θi) and all βj, j+1. Several crucial cancellations implied that 

L3 is independent on all ∂/∂βj, j+1. The cartesian components of L3 do fulfill the standard commutation relations. A 
comparison of commutation rules involving L3 in Appendix B in [49] with Eq. (101) implies that e3, frv,r,i and, hence, 
e3, frv,i behave as vectors under rotations (as so does e3, frv,v,i). The same holds for π3, frv,i, so that π3, frv,i.π3, frv,i is a scalar 
and, hence, rotational invariant. This and Eq. (44) imply that:

1 1
2 * *

3, 3, 3, 3, 3, , 3, , 1 2
, 11

1( , ) [ ] [ ( ) ( ) ]
2

N N

frv frv l l fr fr ij frv i frv j fjv frv
i jl

H d dx J A U Uψ ψ ψ ψ ψ ψ
− −

==
= + +∑∏∫ dΩ π π (102)
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is rotational invariant under a rotation ψ → [exp iαL3.n]ψ of angle α about the unit vector n, as so is [dΩ]3, fr J3, fr. The 
same holds for   H̃3, fr,3 (Eq. (47)).

J 3D single-unit polymerization by classical fj chain at equilibrium: outline of computations

 f2 =  f2(π3,c,1) = ∫[dΩ]3,L  feq,2 will be studied here, by extending [32], [29]. First, the Gaussian integrations over 
1

2
N
i
−
=∏ dφidπφ,c,i in [dΩ]3,L are performed, by generazing directly the rotational invariant methods in [32]. The result is, 

with 1
3,2 2 sin[ ] N

l l ll d dϕ θ θ−
=≡∏dΩ :

2 1 2
12 2 22 3, ,1 3,2 3,21

2 1/2 1/2
2 2

( ) [ ] [ ]
exp[ ][ ]

2 ( ) )(
c

B

A A
f

K T det det

π−
−=

∆ ∆
∫ ∫dΩ dΩ

1
1 1 112

12 2 2 3, ,1 2,1 12 2 2 3, ,1
, 2

exp[ ( ( ) )( )(( ) ) ( ( ) ( )]
2

N

i c i ij j c j
B i j

A A A A A
K T

π π
−

− − −

=
× − ∆∑ u u (103)

The (N − 2) × (N − 2) matrix A2 with non-vanishing elements Aij, i, j = 2, …, N − 1 is symmetric, tridiagonal and 
has positive eigenvalues. A2

−1 and detA2 are the inverse and the determinant of A2. The (N − 2) × (N − 2) matrices ∆2 and 
∆2,1 have elements: (∆2)ij = (A2

−1)ij uiuj and (∆2,1)ij = A12(A2
−1)ijuiuj, respectively. The integral in Eq. (103), with (∆2,1)

−1 
= 0 has been studied in [32] and [29]: it was found that the dominant contributions are equal to one another and come 
from all tiny domains with (uiuj)

2 close to + 1. One finds:

(104)
2 1 2 2 1 2

2 212 2 22 3, ,1 12 2 22 2 3, ,11
2 2 2 2 2 2 20 0 0 0

( ) ( ) ( )
exp[ ][ sin ] sin exp[ ]

2 2
c c

B B

A A A A
f d d d d

K T K T
π π π π

ϕ θ θ ϕ θ θ
− −

− −∫ ∫ ∫ ∫
π u π



A12 and (A2
−1)22 account, respectively, for the influences of unit 2 and of all units 2, …, N − 1 on the dynamics of 

unit 1.  f2 is a dimensionless function of 
2 1 2
12 2 22 3, ,1( )

.
2

c

B

A A
K T

− π
 Eq. (49) yields directly probability flux conservation (W = 

 f1  f2):

(105)
1 3, ,1

3 3
3, ,1 3, ,1 11 3, ,1 2[ ( )( ln )] )

cc c c Bd W d A K T f W
t
∂

= −∇ − ∇
∂ ∫ ∫y ππ π π

3 3
1 3, ,1 0cd d W

t
∂

=
∂ ∫ ∫y π (106)

At this stage, after some numerical analysis, one approximates: −(KBT)(∇π3,c,1
ln f2)  A12σπ3,c,1, σ = −A12(A2

−1)22σ1, 
with another constant σ1 (eventually, not strongly dependent on temperature): for the purposes of this work, 0 < σ1 < 1 
suffices. A more detailed numerical assesment of σ1 would follow from the analysis of
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2 1 2
2 12 2 22 2 3, ,1

2 2 20 0

( ) ( )
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2
c

B

A A
d d

K T
π π

ϕ θ θ
−

−∫ ∫
u π

to be omitted here.
Eq. (49) refers to the non-standard quantum Hamiltonian   H̃n−s,1. The direct counterpart of Eq. (49) for the standard 

quantum Hamiltonian  H̃eff,1 = −(2/2)(A11 + A12σ)∇2
y1

 +U1(|y1|), namely Eq. (50), will now be considered in outline 
in order to account for irreversibility in polymerization (say, unit 1 moving freely initially in the fluid will become 
attached for long time to unit 2 in the fj chain at equilibrium). The analysis of the quantum-mechanical evolution of a 
system towards thermal equilibrium is a difficult, multifarious and important problem in Non-equilibrium Quantum 
Statistical Mechanics, which has attracted and will continue to attract research activity. See for instance [50-55], [41] 
and references therein. Here, the procedure in [41] to approach approximately thermal equilibrium for long t will be 
followed, which will now be summarized.

Let Weq(y1, π3,c,1) be the equilibrium Wigner function (∂Weq/∂t = 0) of Eq. (50) for the standard quantum 

Hamiltonian  H̃eff,1. Let H[n](π3,c,1) ([n] = (n1, n2, n3), n1, n2, n3 being non-negative integers) be the family of orthogonal 
polynomials determined by the (in general non-Gaussian) weight function Weq by integrating over π3,c,1, for given y1 
(H[n](π3,c,1) depend parametrically on y1). By introducing the non-equilibrium moments W[n] = W[n](y1, t) = ∫d3π3,c,1H[n]

(π3,c,1)W(y1, π3,c,1, t), an infinite linear recurrence is obtained from Eq. (50) for moments W[n]. The infinite linear 
recurrence is formally solved in terms of generalized operator continued fractions. Let: W[0] = W[0](y1, t) = ∫d3π3,c,1W(y1, 
π3,c,1, t) be the lowest moment. The long t approximation is implemented upon discarding moments higher than W[0] 
and performing long t approximations in the continued fractions, in physical conditions ressembling the regime of time 
and spatial distances adequate for polymerization. This procedure generalizes an analogous one in Classical Statistical 
Mechanics for the Liouville equation (see [41]). Then, the application of the long-time approximations in [41] to Eq. (50) 
for   H̃eff,1 leads to the following irreversible Schmolukowski equation (y1 = (y1,1, y1,2, y1,3)):

3[0]
11 12 [1 ],[0] [0]

1,1
( )eq

W
q A A DM W

t y α
αα

σ
=

∂ ∂
= +

∂ ∂∑ (107)

1
[1 ],[0] [0] 11 12 [2],[0] [0] [0]

1, 1,

1( ) ( )eq
eq

UM W q A A W W
y q yα
α α

σ
∂∂

= − + +
∂ ∂

 (108)

D = D(y1) being a diffusion coefficient. The equilibrium distribution is: W[0],eq = Σjexp(−Ej/(KBT))(ϕj(y1)
*ϕj(y1). 

φj(y1) and Ej are, for all possible values of the set of subindices j, the continuum and bound-state eigenfunctions and 
energies of   H̃eff,1( H̃eff,1ϕj (y1) = Ejϕj(y1)). W[0],eq is seen to depend on y2

1, π
2
3,c,1 and (y1π3,c,1)

2. The operator M[1α],[0] and 
[2],[0] appear naturally in the derivation of the linear recurrence for moments referred to above [41]. One has:

3 2 2 3
[2],[0] 3, ,1 [0], 3, ,1 3, ,1 [0],)( ) /( )( 0)c eq c eq c eqd W q d Wα= − <∫ ∫π π π

which is seen to be independent on α = 1, 2, 3. U1 depends only on y1 and the same can be shown to hold for [2],[0]. 
Consequently and consistently, W[0],eq also fulfills: M[1α],[0]W[0],eq = 0, a set of three partial differential equations. The 
latter are compatible with one another and explicitly solvable for W[0],eq, yielding an alternative representation for it, 
consistent with the above one as a sum over all eigenfunctions. Here, it suffices to infer approximate values of [2],[0] (< 
0), by using W[0],eq as the above sum over eigenfunctions. See [41]. For large y1, the equilibrium distribution determined 
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by W is approximated by the classical Boltzmann distribution, proportional to exp[−(KBT)−1(2−1(A11 + A12σ)π2
3,c,1 + U1)], 

which yields: [2],[0]  −1/2. For very small y1 (where U1 can be expected physically to be repulsive), the contribution of 
[2],[0] plays very little role and is disregarded. For medium and small y1, one takes only the contributions of the bound 
states. If there is only one physically relevant bound state (to be assumed for simplicity), one can approximate [2],[0]  
−(/qeq)

2(δy1)
−2, where δy1 is a length scale characterizing approximately the smallest scale of appreciable variation of 

U1. In the cases of physical interest, /qeq is adequately smaller than δy1, so that |[2],[0]| is also adequately smaller than 
1/2. For qualitative studies, it may well suffice to accept that |[2],[0]| is < 0 and is continuous and bounded.

D = D(y1) has been analyzed in [41]. From the latter, the following approximations follow. Let δU1 be the average 
variation of U1 (within its range, where U1 /= 0) in a scale δy1. Let |U1,0| be the magnitude of |U1|, averaged over the 
region where U1 < 0. Then, δU1 can be estimated to be about one order of magnitude smaller than |U1,0|. Then, for large 
y1, D(y1)  (21/2(A11 +A12σ)qeq)

−1δy1, while for or medium and small y1, D(y1)  [(δU1(A11 +A12σ))−1]1/2δy1.

K 3D freely-rotating linear chains with torsion constraints and vibrations

For an energy scale somewhat smaller than those considered thus far, forces not only between pairs of nearest 
neighbours and pairs of next-to-nearest-neighbour units, but also between pairs of units located at positions j-th and 
( j + 4)-th are supposed strong enough to constraint the corresponding scalar products βj, j+2 = ujuj+2 = cosθj cosθj+2 + 
sinθj sinθj+2 cos(φj+2 − φj)) to approximately fixed values β(0)

j, j+2. This amounts to constrain torsions as well leading to a 
freely-rotating chain with constrained torsions (τ), with allowance for small oscillations. A short analysis for the latter 
will be outlined here, by omitting some minor direct details. The corresponding potentials V 

(2)
j, j+2, i = 1, 2, generalize 

directly those in Subsection 3.2 and 4.2. Thus: V 
(2)

j, j+2 = 2−1Bj, j+2 ω
2
0, j, j+2(dj dj+2/dj, j+2)

2(βj, j+2 − β(0)
j, j+2)

2. ω0, j, j+2 are other 

frequencies (Bj, j+2 being positive constants). For suitably large (22 )
0, , 2 , 21,  j j j j

N
j Vω = +
−

+ ∑  hinders the angles between uj 

and uj+2,  j = 1, …, N − 2 and, so, further internal rotations in the chain (namely, those which remained unconstrained in 

a fr chain). Then, one approximates: βj, j+2  β(0)
j, j+2 + bj, j+2, with small bj, j+2. V 

(2)
j, j+2 → V 

(2)
frτv, j, j+2 = 2−1Bj, j+2ω

2
0, j, j+2(dj dj+2/

dj, j+2)bj, j+2)2. One defines: 3(2) (2)
, , 21

N
fr v fr v j jjU Vτ τ

−
+== ∑ . x, bnn and φ0 will be the same as before and bnnn = (b1,3, …, 

bN−3,N−1). Variables are changed as: (x, θ, φ) → (x, θ1, θN−1, φ0, bnn, bnnn). Then 1 1 2 32 2
3 3, 3, 3, 1 1 0 , 1 , 21 1 1 1[ ] [ ] ,  [ ] ,N N N N

l l l l fr fr fr N j j j jl l l ld dx d dx J d d d db dbτ τ τ θ θ ϕ− − − −
− + += = = =→ =∏ ∏ ∏ ∏dΩ dΩ dΩ

1 1 2 32 2
3 3, 3, 3, 1 1 0 , 1 , 21 1 1 1[ ] [ ] ,  [ ] ,N N N N

l l l l fr fr fr N j j j jl l l ld dx d dx J d d d db dbτ τ τ θ θ ϕ− − − −
− + += = = =→ =∏ ∏ ∏ ∏dΩ dΩ dΩ  with a new Jacobian  J3, frτ.

The new 3D scalar product of two wavefunctions ψj = ψj (x, θ1, θN−1, φ0, bnn, bnnn),  j = 1, 2: is:

1 22 *
1 2 3, 3, 3, 1 20 0

1
( , ) [ ] ,

N

frv l l fr fr
l

d dx J
π π

τ τ τψ ψ ψ ψ
−+∞ +∞

−∞ −∞
=

≡ ∏∫ ∫ ∫ ∫ dΩ (109)

The molecular chain with those small radial and angular vibrations is described, by wavefunctions: ψ = ψj (x, θ1, 
θN−1, φ0, bnn, bnnn) (independent on θj,  j = 2, …, N − 2). The actual 3D counterpart of Eq. (39) is:

(110)3, ,
3, ,

frv i
frv i i

i i
i

x d
τ

τ
∂

= − +
∂

e
π u

(111)3, , 3, , , 3, , ,frv i frv r i frv v iτ τ τ= +e e e
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δ1,i δN−1,i are Kronecker delta symbols (δ1,1 = 1, δ1,i = 0 for i /= 1). δ1,i δN−1,i |
iθ

∂
∂

 means differentiation with respect 

to θi for fixed φ0, any bi, i+1, any bi, i+2 and any θj, j  /= i and with the peculiarity that all such differentials for i  /= 1, N − 1 

do not contribute: that is, only 
1 1

|  and |
Nθ θ −

∂ ∂
∂ ∂

 contribute. The approximate 3D Hamiltonian describing small “radial” 

vibrations about constrained distances between neighbours, next-to-near neighbours and next-to-next-to-near neighbours 
atoms along the molecular chain is assumed to be:

1
(2) (2) (2)

3, , 3, 3, ,3,
3, , 1

1
2

N

ij frv i fr frv j fjvfrv frv fr v
fr i j

H A J U U U
J τ τ ττ τ

τ

−
+

=
= + + +∑ π π (114)

π+
3, frvτ,i is the operator adjoint of π3, frvτ,i, with respect to the scalar product (109).   H̃ 

(2)
3, frvτ is Hermitean under Eq. (109). 

Eq. (115) describes a 3D vibrating quantum “rigid body”. The “rigid body” orientation in 3D is described by θ1, θN−1, 
φ0, while (x, bnn, bnnn) account for the small vibrations. The corresponding vibrational frequencies, by using standard 
methods [7], are the solutions of algebraic equations of higher order requiring, in general numerical techniques. Simpler 
approximate Hamiltonians describing small “radial” vibrations about constrained distances between neighbours, next-
to-near neighbours and next-to-next-to-near neighbours atoms along the molecular chain, omitting the complicated 
angular dependences in Eq. (115), are given in [11] (for DNA).

L Branched chains and decoupling of branches

Only one case will be outlined, extensions to other branched chains being direct. Let a D = 3 freely-jointed 
(fj) chain with small vibrations be formed by 8 units with masses mi, at positions Ri, i = 1…8, with the following 
configuration. Unit 1 is fj to 2, 3 and 4, while unit 5 is fj to 4, 6, 7 and 8. First, the center-of mass is factored out like in 
all previous cases. For j < i, |Rj − Ri| is approximately fixed at dij, with a small displacement xij. By extending Eq. (32) 

directly, one introduces: 3,
3, , .ij

fjvbc ij ij
ij ij

i
x d
∂

= − +
∂

e
π u  By extending directly Ufjv in subsection 4.1 and Eq. (33), the 

approximate Hamiltonian for the branched chain (bc) is:

2 2
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By following Eq. (31), a scalar product can be introduced here. Then, π3, fjvbc,ij and   H̃3, fjvbc are Hermitean under it. 

Next, let the units 2 and 3 be in the ground state of   H̃3, fjv,23 = Σi, j=2,3 2
ijA

π3, fjvbc,i π3, fjv, j + Σj=2,3Vfjv, j with energy larger 

than KBT. Then, the dynamics of the remaining units (1, 4, 5, 6, 7, 8) (prior to additional information on their energies) 
can be approximately decoupled from that of units 2 and 3. In fact, one can undertake another variational computation 
(say, a la Peierls), with Φσ1

 = ϕ2,3ψσ(x, θ, φ). ϕ2,3 is a variational normalized ground state wavefunction for   H̃3, fjv,23. ψσ(x, 
θ, φ) is a normalized generic wavefunction for units (1, 4, 5, 6, 7, 8). Upon evaluating

(116)
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crossed terms due to (π3, fjvbc,12 + π3, fjvbc,13) times π3, fjvbc,14 give a vanishing contribution, by symmetric integration. 
The remaining terms give a variational upper bound for the ground state energy of   H̃3, fjv,23, Evar,23. What remains is an 
effective Hamiltonian for the units (1, 4, 5, 6, 7, 8):
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