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Abstract: We generalize the tail Doob’s inequality, concerning two non-negative random variables, arising in the 
martingale theory, in three directions: on the more general source data, on the random variables belonging to the so-
called Grand Lebesgue Spaces, as well as on the multidimensional variables. We also provide several examples. 
Moreover we show the exactness of the estimates obtained in the particular case of positive random variables having 
exponential distribution.
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1. Introduction
Let (Ω = {ω}, B, P) be a non-trivial probability space with expectation E. The classical Doob’s inequality ([1, 

2], see also [3]) states that if the non-negative numerical valued random variables (r.v-s) ξ, X are such that, for some 
positive constants β, C,

( ) [ ( )],  0,t t C XI t tξ β ξ> ≤ > ≥P E

then

1/|| || [ ] || || ,  1,
1

 p p p
p p

pC X p
p

ξ ξ β= ≤ >
−

E

where henceforth I(A) denotes the indicator function of the random event A, and ||η||p denotes, as usually, the classical 
Lebesgue-Riesz norm of the r.v. η:
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( )1/1/
|| || : | | | ( ) | ( ) ,  1.
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 = = ≥  ∫E P

The inequality (2) plays a very important role, in particular, in the martingale theory (see [4, 5]).
Our aim is a generalization of the Doob’s inequality in three directions: on the more general source data, on the 

random variables belonging to the Grand Lebesgue Spaces and on the multidimensional random vectors.

1.1 Statement of the problem

Let us assume the following generalization of inequality (1)

( ) ( ) [ ( )],  0,h t t C XI t tξ β ξ> ≤ > ≥P E

where h = h(t) is a non-negative continuous strictly increasing deterministic function and, as before, X and ξ are non-
negative random variables.

We establish a generalization of the estimate (2). Moreover we provide some examples in order to show the 
exactness of the obtained estimates, in the particular case of positive random variables having exponential distribution.

2. Main result
Theorem 2.1 Let (Ω = {ω}, B, P) be a non-trivial probability space with expectation E and let ξ, X be non-

negative numerical valued random variables. Let h = h(t) be a non-negative continuous strictly increasing deterministic 
function. Let us assume that, for some positive constants β, C, the following inequality is satisfied:

( ) ( ) [ ( )],  0.h t t C XI t tξ β ξ> ≤ > ≥P E

Let p > 1 and define the random variable (measurable function):

1

0
( ) ,

( )

pdef

p
t dt
h t

ξ
κ ξ

−

= ∫

if there exists. Assume that there exists θ > 1 such that Kp(θ) := ||κp(ξ )||θ < ∞.
Suppose that  ( , ) [1, ),   ( , , )r r p p v v p rθ θ∃ = ∈ ∃ = < ∞  such that

( )  || ( ) ||    ( , , ) || || .r
p p pK v p rθθ κ ξ θ ξ= ≤

Then

1/( ) 1/( )|| || ( , , ) || || ,  (1, ) 
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Of course,
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where
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( , ) : { [1, ) : ( ) ,}pR R p r p Kθ θ= = ∈ < ∞

( )[ , ] : { 1: ( ) }.pp h Kξ θ θΘ = Θ = > < ∞

Proof. By (3) we have

( / ) [ ( )],  0,
( )
Ct XI t t

h t
ξ β ξ> ≤ > ≥P E

hence

1
1

0 0
( / ) [ ( )] ,  1.

( )

p
p C p tpt t dt XI t dt p

h t
ξ β ξ

−∞ ∞− > ≤ > >∫ ∫P E

The left-hand side of (7) is equal to | / |   || ||p p p
pξ β ξ β −=E . Let us investigate the right-hand side of (7). We 

deduce, by virtue of Fubini’s theorem,

1 1

0 0
[ ( )] .

( ) ( )

p pCpt tXI t dt Cp X dt
h t h t

ξ
ξ

− −∞  
> =  

 
∫ ∫E E

Then inequality (7) yields

|| || [ ( )].p p
p pCp Xξ β κ ξ− ≤ E

By Hölder’s inequality with conjugate exponents θ and θ' we get

|| || || ( ) || || || ,p p
p pCp Xθ θξ β κ ξ ′≤

and by assumption (4) we deduce

|| || ( , , ) || || || || ,p p r
p pCp v p r X θξ β θ ξ ′≤

which implies (5).
Example 2.1 If h(t) = t, inequality (3) reduces to (1): 

( ) ( ( )), , , 0,t t C XI t t Xξ β ξ ξ> ≤ > ≥P E

and (5) reduces to (2):

|| || || || ,  1,
1

p
p p

pC X p
p

ξ β≤ >
−

choosing  1( , , ) , 1 and 
1 1

pv p r r p
p p

θ θ= = − =
− −

, that is θ' = p. 

Example 2.2 A more general case. Suppose

(7)

□

(8)
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( ) ( ( )),  , con, 0,  .t 1st t C XI t t Xξ β ξ ξ∆ > ≤ > ≥ ∆ = >P E

We get, after simple calculations, the following estimate

|| || || || ,  .p
p p

pC X p
p

ξ β≤ > ∆
−∆

Remark 2.1 Let s ∈ [1, p]. By virtue of Lyapunov’s inequality ||ξ || s ≤ ||ξ || p. Therefore, if (9) holds, then by (10) we 
have also

|| || || || ,  ,  [1, ].p
s p

pC X p s p
p

ξ β≤ > ∆ ∀ ∈
−∆

3. Unimprovability of the estimations. Lower bounds
Let us show the exactness of the obtained results (8) and (10) in a particular case. Introduce the following 

functionals, which are involved in the lower estimate.

1

|| ||
[ , , ]( , , ) ,
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def
p
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where all the supremums are calculated over the r.v. - s ξ, X satisfying the condition (9) and when p > ∆, ∆ = const ≥ 1.
Proposition 3.1 Let ξ0, X0 be positive random variables such that X0 = ξ0 and having standard exponential 

distribution

0 0( ) ( ) ,  0.tt X t e tξ −> = > = >P P

Then

[ , , ] 1.K C β ∆ =

Proof. The upper estimate K[C, β, ∆] ≤ 1 is contained in (10). We deduce the lower one in the particular case C = β 
= 1.

So we have to prove

[1, 1, ] 1.K ∆ =

The natural generating function for these r.v.- s has the form

1/
0 0( ) || ||   || || ( 1),  1,

def
p
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where, as usually, Γ(.) is the Euler’s Gamma function, since

( ) ( )1/ 1/
1 1 1/ 1/

0 00 0
|| || ( ) ( ( )) ( 1).

p p
p p t p p

p p t t dt p t e dt p p pξ ξ
∞ ∞− − −== ≥ Γ = Γ= +∫ ∫P

Note on the way that as ( ) ~ /p p p eν→∞⇒ . Note also that the condition (9) is satisfied. We have

0 0[ , , ]( , , ) ,  .pZ C X p p
p

β ξ − ∆
∆ = > ∆

Following,

[1, 1, ] sup .
p

pK
p>∆

 − ∆
∆ ≥  

 

So (13) follows immediately from the fact that

lim 1.
p

p
p→∞

 − ∆
= 

 

Remark 3.1 The cases C, β ≠ 1 may be considered quite analogously.

4. Generalization on the Grand Lebesgue Spaces approach. Examples
We intend in this section to extend the previous results upon the so-called Grand Lebesgue Spaces (GLS) of 

random variables.
Let 1 ≤ a < b ≤ ∞. Let ψ = ψ( p), p ∈ (a, b) be a numerical valued measurable strictly positive function, such that 

( , )
inf ( ) 0

p a b
pψ

∈
> , not necessarily bounded.

We use the following notations:

( ) : { : ( ) }Dom ,p pψ ψ= < ∞

supp( , ) : { : ( ) ( , ) },a b a bψ ψΨ = =

( , )
: ( , ).

a b
a bΨ = Ψ



Definition 4.1 (see e.g. [6, 7]) Let ψ(.) ∈ Ψ(a, b). The Grand Lebesgue Space Gψ is defined as the set of all random 
variables (measurable functions) τ having finite norm:

( )

( , ) ( , )

|| || || ||
|| || sup sup .

( ) ( )
 p

def L p
G

p a b p a bp pψ

τ τ
τ

ψ ψ
Ω

∈ ∈

    = =   
   

The function ψ(.) is named generating function for the space Gψ.
The particular case of these spaces, under some additional restrictions on the generating function ψ = ψ( p), 

(14)

□

(15)
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corresponds to the so-called Yudovich spaces ([8, 9], see also [10, 11]). These spaces was applied at first in the theory of 
Partial Differential Equations (PDEs), see [10, 11].

The Grand Lebesgue spaces Gψ are rearrangement invariant Banach function spaces; they and their particular cases 
were investigated in many works, with applications in probability, interpolation theory, PDEs (see e.g. [6, 7, 12-24]).

It is important in particular to note that there is an exact interrelation, under certain natural conditions on the 
generating function, between the r.v. τ belonging to this space and its tail behavior, of course up to a finite multiplicative 
constant (see e.g. [20, p.5], [25, p.336]). Indeed, assume that τ ∈ Gψ and moreover ||τ ||Gψ = 1; then

*( ) (| | ) exp{ (ln )},  ,T t t h t t eτ τ= > ≤ − ≥P

where

( ) [ ]( ) : ln ( )h p h p p pψ ψ= =

and h*(.) is the Young-Fenchel (Legendre) transform of the function h(.), defined by 

Dom

*

( )
( ) sup ( ( )).

def

p
h u pu h p

ψ∈
= −

Inversely, let the tail function Tτ(t), t ≥ 0, be given. Introduce the following so-called natural function generated by 
τ

1/
1

( )0
( ) ( )  || || ,

p

pdef
p

Lp p t T t dtτ τψ τ
∞ −

Ω
 = =  ∫

if it is finite for some value b ∈ (a, ∞] and consequently, it is finite at least for all the values p ∈ (a, b).
As long as

1
0

| | ( ) ( ),  [1, ),p p pp t T t dt p p bτ ττ ψ
∞ −= = ∈∫E

we conclude that if the last natural function ψτ( p) for the r.v. τ is finite inside some non-trivial segment p ∈ (1, b), 1 < b 
≤ ∞, then

;  || || 1.GG
ττ ψτ ψ τ∈ =

Furthermore, let the estimate (16) be given in the following version:

*( ) exp{ (ln / ) },  ,  [ ] const 0,T t h t K t e K Kτ ψ≤ − ≥ = = >

for some generating function ψ(.) ∈ Ψ(a, b). Assume in addition that ψ = ψ( p), p ∈ Dom(ψ), is continuous and suppose, 
in the case b = ∞,

( )lim 0.
p

p
p

ψ
→∞

=

Then the r.v. τ belongs to the Grand Lebesgue Space Gψ and

(16)

(17)

(18)
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|| || [ ] ,G Kψτ ψ≤ < ∞

(see e.g. [21]).
These conditions on the generating function ψ(.) are satisfied for example for the functions ψm,L( p) of the form

1/
, ( ) ( ),  1,  ,const

def
m

m L p p L p m bψ = = > = ∞

where L = L( p) is some continuous strictly positive slowly varying at infinity function such that

1

( )sup ( ) ,  0.
( )p

L p C
L p

θ

θ θ
≥

 
= < ∞ ∀ > 

 

For instance, L( p) = [ln( p + 1)]r, r ∈ R.
We conclude that under the formulated restrictions the r.v. τ belongs to the space Gψm,L:

1 ,

|| ||
sup ( , )

( )
p

p m L
C m L

p
τ

ψ≥

   = < ∞ 
  

if and only if

( )2 2( , ) 0 : ( ) exp ( , ) / ( ) ,  .mC m L T u C m L u L u u eτ∃ > ≤ − ≥

A very popular example of these spaces forms the so-called subgaussian space Sub = Sub(Ω); it consists on the 
subgaussian random variables, for which ψ( p) = ψ2( p) := p :

2b
1

Su

|| ||
|| || || || sup .

def
p

G
p pψ

τ
τ τ

≥

 
= =  

  

The r.v. τ belongs to the subgaussian space Sub(Ω) if

20 : ( ) exp( ),  0.C T u Cu uτ∃ > ≤ − ≥

Example 4.1 Introduce the following function ν ∈ Ψ:

[ ]( ) ( ) : exp(0.5 c),  1,  on t .s 0p p p pν γ ν γ γ= = ≥ = >

If the r.v. ζ belongs to the space Gν[γ] and has unit norm: ||ζ ||Gν[γ] = 1, then

( )1 2( ) exp 0.5 (ln ) ,  .T t t t eζ γ −≤ − ≥

Conversely, let the estimation (27) holds true for some r.v. ζ; then this r.v. ζ belongs to the Grand Lebesgue Space 
Gν : ||ζ ||Gν[γ] ≤ C1(γ) < ∞.

Remark 4.1 As a rule, on the the r.v. τ from the spaces Gψm,L is imposed the condition of centering: Eτ = 0.
Example 4.2 Suppose that the r.v. τ be such that

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)



Contemporary Mathematics 464 | Maria Rosaria Formica, et al.

, ,( ) ( ),  1,  1,  ( ),LT t T t L L tβ γ
τ β γ≤ > > − =

where

, , ( ) (ln ) (ln ),  
def

LT t t t L t t eβ γ β γ−= ≥

and L = L(t), t ≥ e be, as before, slowly varying at infinity positive continuous function. It is known (see [21]) that as p 
∈ [1, β )

( 1)/ 1/
1( )   || ||  ( , , ) ( ) (1/ ( )),pp C L p L pγ β β

τψ τ β γ β β− += ≤ − −

and conversely, if the relation (28) holds, then

, 1,
7( ) ( , , ) ( ).LT t C L T tβ γ

τ β γ +≤

Herewith both this estimations are unimprovable.
Let us return to the problem exposed at the beginning of this Section. Indeed, we assume that the r.v. X belongs to a 

certain Grand Lebesgue Space (GLS) Gψ = Gψ(a, b):

( , )|| ||  || || ;  1 .G G a bX X a bψ ψ= < ∞ ≤ < ≤ ∞

Of course, the generating function ψ(.) can be chosen as natural for the r.v. X : ψ( p) := ||X ||p, if it is finite.
Let ∆ = const ∈ [a, b]; we introduce a new generating function

, ,( ) [ ]( ) ( ),  ,  1.
def

ppp p p p b
pβ βψ ψ ψ β ψ β∆ ∆= = ∆ < ≤ >
− ∆

so that ψ∆,β(.) ∈ Ψ(∆, b)
The next Proposition holds also in the case of general generating function ψ, but we will state and prove it in the 

particular case of the generating functions considered above in (29).
Proposition 4.1 Let (Ω = {ω}, B, P ) be a non-trivial probability space with expectation E and let ξ, X be non-

negative numerical valued random variables. Let ψ and ψ∆,β  the functions introduced above and let X ∈ Gψ(a, b). Under 
condition (9), we have

, ( , ) ( , )|| || || || ,G b G a bC X
βψ ψξ

∆ ∆ ≤

with the corresponding tail estimation (16).
Herewith the estimate (30) is, in the general case, essentially non-improvable.
Proof. One can take, without loss of generality, || X ||Gψ = 1; then

( , ) || || ( ).pp b X pψ∀ ∈ ∆ ⇒ ≤

We apply the estimation (10) for these values p, hence

,|| || ( ) ( ),p
p

pC p C p
p βξ β ψ ψ∆≤ =
− ∆

(28)

(29)

(30)
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or equally by means of the direct definition of the norm in the Grand Lebesgue Space Gψ∆, β

,
|| || || || .G GC C X

βψ ψξ
∆

≤ =

The non-improvability of the last estimate may be ground, as in Proposition 3.1, considering analogously as in the 
Example 4.1:

( )1 2( ) exp 0.5 (ln ) , ,T t t t eξ γ −= − ≥

where γ = 2lnβ, β = const > 1 and X = 1.
In detail, it is easy to verify that the inequality (9) for these variables is satisfied for all the values β > 1. It remains 

to note as before that

,
|| ||

lim 1.
|| ||

G

p GX
βψ

ψ

ξ
∆

→∞
=

See for details the relation (10).

5. Multivariate case
We extend the obtained results on the multidimensional case. We introduce the following notations and restrictions:

dim dim 2,3, con, ;s, t; 0d t Cξ β= = = … ∆ = >




1 2 1 2{ , , , },  { , , , };d dt t t t ξ ξ ξ ξ= … = …




0, 0,  1, 2, , ;  ,j j j jt j d t t jξ ξ ξ≥ ≥ ∀ = … > ⇔ > ∀




1/
2

1 1
| | ,  || || | | || ,  1.

p
d ddef def

p
j p j p

j j
t t pξ ξ

= =

 
= = ≥ 

  
∑ ∑





Proposition 5.1 Let (Ω = {ω}, B, P ) be a non-trivial probability space with expectation E and let X be a non-
negative numerical valued random variable. Let t



, ξ


, β, C, ∆ be the quantities defined above. Assume that

| | ( ) [ ( )].t t C XI tξ β ξ∆ > ≤ >P E
 

  

We state that, for the values p > max(1, ∆),

1/|| || || || .p p
p p

pC d X
p

ξ β≤
− ∆



Proof. We have, for j = 1, 2, ..., d,

(31)

□

(32)

(33)
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( ) [ ( )].j j j j jt t C XI tξ β ξ∆ > ≤ >P E

It follows from the one-dimensional estimates

|| || || || .p
j p p

pC X
p

ξ β≤
− ∆

Further,

2
1/1/

1/

1
|| || || || || || | .| ||

pp pd
p p p p p

p j p p p
j

Cp pd X Cd X
p p

ξ ξ β β
=

    
 = ≤ =   − ∆ − ∆       

∑


Remark 5.1 One can replace the classical Euclidean norm | t


| for the vector t


 with another one, for instance the 
ls-norm

1/

1
| | : | | cons 1.t,  

s
d

s
s j

j
t t s

=

 
= = ≥  
 
∑



6. Concluding remarks
It is interesting, in our opinion, to apply the estimates obtained in the previous Sections, in particular, in the 

martingale theory. We will investigate this problem further, in future projects.
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