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1. Introduction

The history of fractional calculus has more than three hundred years. There are many fractional derivatives, such
as Riemann-Liouville, Caputo, Erdélyi-Kober, Hadamard fractional derivative and so on. The Riemann-Liouville
derivative [1] D¢, (0 <5 < 1), as one of the most classical fractional derivative, is defined by

+f(t)——1(1)+ﬂf() 7 J-o (l_t‘(ls) f(s)ds, t > 0. (1)

It is easy to obtain that D{, f(¢) exists if the derivative of I,," f(¢) exists on interval [0, 7] by the definition. That is
to say, the existence conditions for Riemann-Liouville fractional derivative are weaker than other fractional derivatives
1

such as Caputo derivative. For example, Riemann-Liouville fractional derivative of function ¢ 2 is 0 on interval
1

[0, 1]. But Caputo fractional derivative of function ¢ 2 dosen’t exist at point ¢ = 0. Variable-Order (VO) fractional

operators are the derivatives and integrals whose order are functions of some variables. VO fractional operators are

conceived and mathematically formalized only in recent years and can be seen as a natural analytical extension of
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constant-order fractional operators. The first definition of VO fractional operator was given by Samko and Ross [2]
in 1993. Subsequently, Lorenzo et al. [3] and Coimbra [4] studied VO calculus by discussing its possible applications
in mechanics, which marked the starting point for applications of VO operators to the analysis of different complex
physical problems. After that VO fractional differential equations are widely employed in mechanics and dynamics,
viscoelasticity, the modelling of transport processes, control theory because VO fractional operators can describe
accurately the memory and hereditary properties of many physical phenomena and processes depending on their non-
stationary power-law kernel [5-10].
For Riemann-Liouville VO fractional integral, there are two forms [3, 11] as follows

f—g)1O!

177(1) (
/0= I L(n(s))

———  f(s)ds, t >0 (2)

and

1O f(0) =

n(6)-1
o ())M s f(s)ds, >0, 3

where 0 < 7(f) < 1 is a given nonconstant function. Corresponding to (2) and (3), there are two types of Riemann-
Liouville VO fractional derivative [3, 11]

@ (t S) 7(s)
DI f(6)= dtjo—m oy s @)
and
DY 1(0) = L[ (1)1 f(5)ds. ©
" L(1-7(1)) dt *°

In (3) and (5), the current state #(¢) is used on entire interval [0, 7]. For any fixed ¢, the convolution kernel can be
integrated in a closed form as for the constant-order fractional derivative operator in (1), which greatly facilitates the
analysis. In (2) and (4), the power 7(s) assumes its historical state at the historical time instant s. Hence, the history-
state-based fractional differential equations, which accounts for the influence of the quantity of interest at the historical
time instant s with the historical state 7(s), is probably more physically relevant. However, the convolution kernel in (4)
can’t be integrated in a closed form in mathematics, which highly complicates the mathematical analysis. That is to say,
it is difficult to obtain closed form solutions to history-state-based VO fractional differential equations because the law
of exponents doesn’t hold for VO fractional integral (refer to [2, 12]). Therefore, many authors [13-17] have made use
of the numerical methods to solve VO fractional differential equations. As an important research topic of VO fractional
differential equations, boundary value problems are concerned by many professors. Since the kernel of VO fractional
operators has a variable exponent, there are many difficulties for us to obtain the existence of solutions to VO fractional
boundary value problem. Few authors [18, 19] have attempted to consider the existence, uniqueness and stability of
solutions to VO fractional boundary value problem using standard techniques in analysis.

In [18], authors proved the existence of solutions and presented a generalized Lyapunov-type inequality to the
boundary value problem for VO fractional differential equation

{ng”x(z) = f(t,x), 0<t<T, 0<T <+, ©

x(0) = x(T) =0,
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where 1 < g(#) < 2 is a piecewise constant function, f: (0, 7] x R — R is a continuous function and D{"” is the
Riemann-Liouville type VO fractional derivative defined by

2 _ \lmas)
DIDx(t) = d—z W= T s 1> 0,
dr-0T(2—-¢q(s))

In [19], authors proved the wellposedness and smoothing properties of the Dirichlet boundary value problem of
one dimensional VO linear space-fractional diffusion equation

(7
u(0) = u(l) =0,

{—Dzu =D @) (&1 + (1= 1) Du(x) | = £ (x), x € O,1),

where 0 < a(x) < 1, (1 and 1™ are defined by

!l ya(x),, _ 1 x u(s) rra(x),, _ 1 1 u(S)
of = [(a(x)) jo (x—s5)' 7@ ds, A7 u= I'(a(x)) 'L (s =)'

The authors in [18] proved the existence of solutions to the problem (6) in the space of continuous functions and
the variable order was a piecewise constant function. The authors in [19] proved the wellposedness of the problem (7)
in the Holder space and the order of derivative was two. It is well known that the Holder space is the function space
in which functions are Holder continuous and it is included in the space of continuous functions. Many papers [20-25]
considered the existence of solutions of Fredholm integral equations in the Holder spaces using fixed point theorems.
However, few papers [26, 27] considered the existence of solutions of boundary value problem for fractional differential
equations, where the fractional order is constant order.

In [26], authors proved the existence and uniqueness of solutions for the following fractional boundary value
problem in the Holder space

“Dyu(t) = Af (tut)), te[0,1],
G 8)

O = i) = [, T oy

where Dy, denotes the Caputo fractional derivative [1],0<a<1,0<<1land A,y p € R.
In [27], authors studied the existence of positive solutions to the following fractional differential equation with
infinite-point boundary value conditions

D¢ u(t)+ f(t,u(t),(Hu)t) =0, 0<t <1,
u(0)=u'(0)=---=u""?(0)=0,

W)= au().

)

where a>2,n—1<a<n,i€[l,n—2]isafixed integer, ;, >0,0< ¢ << <& <G<-<1(j=1,2,),

A—Z ajfj‘."*l >0, where A =(a — 1)(a —2) - (a — i), H is an operator applying C[0, 1] into itself satisfying certain
=1
assumptions and Dy, denotes the Riemann-liouville fractional derivative.

To the best of our knowledge, few papers studied the existence of solutions to boundary value problems of history-
state-based VO fractional differential equations in the Holder space. Inspired by the above excellent work, in this paper,
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we consider the existence of solution to the following boundary value problem for fractional differential equation
involving Riemann-Liouville type history-state-based VO fractional derivative

{D&ix(t) +h(0) f (x, D1, D{ %), 0<1<T, 10

x(0)=0, x(T)=0,

where 0 <a, <1 <a<2,0<p(t)<1,p,h, fare all given real-valued functions, Dy! denotes the constant-order Riemann-
Liouville fractional derivative given by (1), Dy, denotes the constant-order Riemann-Liouville fractional derivative [1]

a d 2-a (t S)l “
Dy, x(t) =— 1, = d
pux(0) = =I5, x(1) = jo Ta—ay O "

and I, %, I,,"! are both the Riemann-Liouville fractional integrals (refer to [1]). D2\ denotes the Riemann-Liouville type
history-state-based VO fractional derivative given by (4).

The paper is organized as follows. In section 2, we present some basic notations, propositions and lemmas, which
will play an important role in obtaining the existence of solution to the boundary value problem (10). In section 3, main
results are stated based on our previous analysis, then two examples are given to substantiate the theoretical results.

2. Preliminary

In this section, we introduce some basic notations, propositions and lemmas which are used throughout this paper.

Let [0, 4] be a finite interval. I, I, and D, denote the Riemann-Liouville fractional integral and derivative [1]
respectively. 1,,”” is the Riemann-Liouville type history-state-based VO fractional integral given by (2).

Proposition 2.1 ([1] Lemma 2.9). If y > 0, § > 0, then the equality I.. ) f(¢t) = I I].f(t) = 1..°f(¢) holds at any
point of ¢ € [0, b] for f € C[O, b].

Proposition 2.2 ([1] Lemma 2.9). If y> 0, f € C[0, b], then the equality Dy, I, f(t) = f(t) holds at any point of ¢ € [0,

b].
Proposition 2.3 ([1] Lemma 2.9). If /' € C[0, b] and D_. f € C[0, b], then
DS f()=f(t)+ct’ +et® 4ot ",
wheren—1<d<n,c;eR,i=1,2,"",n

Let H,[0, T](0 < n < 1) be the space of functions x(¢) such that x(¢) is Holder continuous with index # on the
interval [0, T'] with respect to the norm

x(4)—x(¢
lad, =|x(0)]+ sup X TXBI
nneory 4=t [
f#t

H,[0,T].

In [28], (H,[0, T], || - ||,) is a Banach space.
Lemma 2.1 ([28]). For x € H,[0, T], the following inequality is satisfied

max | x(7) [< max {1, 7"}l xI|.

0<t<T

Lemma 2.2 ([28]). For 0 <y <7 < 1, we have
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H,[0,T1< H,[0,T] < C[0,T].
Moreover, for x € H,[0, T'], the following inequality is satisfied
I xll, < max {1,777}l xI|,.

Lemma 2.3 ([27]). Suppose that 0 <y <5 < 1 and that Q, is a bounded subset in /7,[0, T'] (this means that ||x||, <
M for certain constant M > 0, for any x € Q,), then Q, is a relatively compact subset of /[0, T'].
We assume that

(4) 0<a, <a—-1<l<a<2, peC'0,T], p. :gnir;p(t),p* = max p(1) and 0 < p. <p <a.
<t< <t<
Lemma 2.4 ([29]). [f0<y<1and 0 <a < b, then

b —a’ <(b-a) .
Lemma 2.5 ([30,31]). If0 < 8" <y < 1, then

[ [t’l’ﬁ* @+ ]d: <o,

Lemma 2.6 Assume that (4,) holds and x € H,[0, T] (p* << 1) with x(0) = 0, then /,,""x(¢t) € C'(0, T] N C[0, T]
and

%Iélp(t)x(t)_ (x(t)( )).[( )m)[ p'(s)In(t - s)+w}ds

+j[ ) X0 }(t—s)['(s)'ds+—x(t) O (12)
o[ T(=p(s)) T(=p@) rd-p@))

Proof. We take a(¢) = 1 — p(f). Since gnin (1-p@)=1-p-,then f+1—p">1 from p>p". According to Lemma 2.2
<t<T
in [32], 1,,"“x(t) € C[0, T]. According to Theorem 3.3 in [29], we obtain that (12) holds. But in [29], the detailed proof

d
of ;L}f’)(’)x(r) € C(0, T1] is not presented.

d
Next, we prove ;IO PO%(1) € C(0, T1.

For 0 <¢< T, we write

w(t) = I o x(2)

__ X0 o)y )
T rd-p (t))-[( 8) " (=p'(s))In(t — s)ds

x(t) i) )
F(l— (t))J.(t $)" " (p(s) = p(1))ds
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0 - T(1- p(t))

+-[ t{ - - }(t . (“')ds+—x(t) PO
L(=p(s)) T(=p()

_ X(f) 4 —p(t=t) Iy
= —F(l ~ o) .[0 T (-p'(t—7))Inrdr

x(®)

et - ploke

4{[ x(t—1) x(1) }TIW,WT+ X po

0| T(=p(t-7) T(=p(1)) T(1- p(2))

=y, () +y, () +ys () +w, (D). (13)

Since 1 — > 0, there exists O, > 0 such that

|t]’ﬂ1nt|sQl, 0<t<T.

. 1 , ~ 1Y 1
We write 0, = max{l, T}, O = max -0 0, =max | p'(t)], Q5 = | ax [_F(a))j » O = max o)
1 ' © I ok . .
Q7 :p*nglgagxp* [mj > Q8 :J.O tﬂ |:t o _(t+1) r :|dt=Q:Q(an QZﬂ wa Q49 QS» QG» Q7n Q8a HXH/}aﬁap)' HereQ1s

a varying constant and is related to O, O, Qs, O, O, Ogy O, Os, |1 x|, fand p.
For any /# € R such that ¢ + & € (0, T'], without loss of generality, we assume that /2 > 0, then

|'//1(t+ h) -y, (t)|

_ ! x(t + h) —p(t+h-1) 1 A x(t) —p(t=1) 1o
= IO[—F(I—p(t+h))T pt+h-1) —F(l—p(t))T p'(t r)}lnrdz’

+r+h Mﬁ””""”p'(f +h-1)Inrdr
t T(A-p(t+h))

t| x(t + h) _ x(t + h) | —p(t+h-1) 1 _
- J.°|1"(1—1D(l+h)) r(l—p(t))||T pt+h T)lnr|dr

+It| xt+h) x|
o|F(1-p(r)) T(-p())

|z'_p(t+h")p'(t +h-7)ln T| dr

x(t)
I'(d-p@)

dr

t
gl
0

|P'(t +h—7)In r| |z'7p(”h’7) _ Pt
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x(t)
(- p()

t
gl
0

|T-P<f'” In r|| plt+h-1)-p't-7)|dr

x(t+h)

_— dt
- p(+h))

P it h—1)Int

t+h
g
t

=1+, + 1+, +1s.
In (14), we have

* *
P *p(Hh*T)Tﬂ*p —1,[1—ﬂ Inz

|z:p(f+1H) In T| — < Qrﬂfp 71, 0<7<t,

| 1 B 1 |_ 1 ' ’
IT(-p(t+h) TA-p@)| |T(o) |p'(&)|h < Oh,

o=1-p(¢)
| x(t+h)—x(t) | <]l xIl ;27 < On”
and

‘(T—p(mh—r) _ P )ln T‘ — |gp plrhee) _p—p(-T)

' T|rﬂ_” -

1-B

* —_— 17ﬂ
L *p(é)p'(g)r 2 Int

=h 2 Ing|c? 7!

SQhrﬁ’p*’l,
wheret<{<t+handt—t<&<t—t+ h Invirtue of (15), (16), (17) and (18), we have

1, <Oh j;rﬁ’p*’ldr < Oh* " < Oh,
Ly <QIP [ cF 7 Tz < QWP < Qi

Iy <0nf! 7 e < On® " < O,

t+h

*

15 <0 -

t

PP g = ; 0 |:(t+ Ry v } <o

According to (19), (20), (21) and (22), we obtain that when # — 0, then
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(19)

(20)
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(22)
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1, —>0,1,—>0,1;,—->0,1;—0. (23)
For 1,,, by p'(¢) € C[0, T], we have

|p't+h=7)=p'(t-7)| >0 (h—>0),

x(1)

P Ing||p'(t+h—-1)— '(t—T)SQTﬁ”’*’l,
- p)] > pt=0)

and
t * *
Q.[Orﬂ’p dr< o

By Lebesgue dominated convergence theorem, we have

I, —>0((h—0). 24)
From (23), (24) and (14), we have
v, (¢ + h) =, (6)] > 0 (h —0). (25)
ForO0<¢<T,
_ X0 L -p(t-r
W, (1) _F(l——p(t))J.OT TP p(t—1) - p(t)ldT
— A ! =p=T)[_ s _
T @) jor [-p'(t—7+60)dr, 0<0<1. (26)

Form (26), we have
|‘/’2(t +h) _‘//2([)|

xR | e )
SI°|F(1—p<r+h>) r(l—p(z))l‘f pt+h=r+00)ds

~

x(t+h)  x() | ety )
+J L(1-p@®) F(l—p(t))||z- p(t+h T+9T)|df

=1

dr

t x(¢) , _ —p(t+h-7) _ _—p(t=7)
+I (1~ p() ke QT)HT i

=]

t x(t) -p(t-1) ' _ NN
+I°—F(1—p(t))r |p'(t+h—7+07)- p'(t—7+0r)|dr
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+J-t+h Mr-p(ﬁh—ﬂp’(t+h—z‘+0T)dT~
¢ |T(1-p(t+h))

In a similar fashion to |y, (¢ + 1) — y,(?)|, we have

|y (£ + )=, (1) = 0 (h — 0).

(27)
For 0 <¢<T, we have
|‘//3(t+h)_‘//3(t)|
_ J"*” x(t+h—7)  x(t+h) 1ophen) g
0 | I(=pt+h-1)) I(-p(t+h))
_ﬂ x(t-1) X }lm,,) dT‘
LT (=pt-7)) T(=p@)
_ I, { x(t-s)  x(t+h) } (s + 1) P09 g
| D(=pt=s)) T(=p(t+h))
—I[ Xt=5) X0 ] ipueay
O L(=p(t=5)) T'(-p()
_ J-z{ x(t—s) _ x() i||:(s+h)—l—p(t—s)_s—l—p(t—s):|ds
O L(=p(t=s)) T'(-p(®)
. I,[ x(t)  x(t+h) } (s + 1) 7D g
LT (=p(1) T(=p(t+h)
N Io { x(t=s)  x(t+h) } (5 + 1) P g
L T(=p(t=s)) T(=p(t+h))
= |131 +1; +I33|
S|y [+ Ly [+ L5 ] (28)

In (28), since
(S +h)717p(t*5) _S—l—p(t—x)

— S*I*P(I*S) —(S + h)*lfp(fﬂ)
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— Sp*fp(H)sflfp* _(S+h)p*fp(tfs) (S_,_h)flfp*
< §P PO (TP gy gy
<O —(s+h) )
and
O} 5" —(s+ k)" )ds
P * *
=Qh’? joﬁ PP — (1) )dr

<onr [ " (1) )dr

< Qhﬂ*P* ,

where the last “<” is obtained by Lemma 2.5, then

’| x(t=s)  x(1) | “l=p(t=s) _ ~1-p(t-s5)
R A e MG &
SQIIP x-s) x| | x® x|
o||T(-p(t—5)) T(-p(t—s)| |[C(=p(t-s) T(-p())|

(777 —(s+h)"" )ds
<0fs (7 (s +h)yP )ds

<OonP ", (29)

y ISI,| ) x@rh) | | x@h)  x+h) q
2Dl T(pt) T(=p@)| [T(=p@)) T(-p(+h))|

(s+h)" P (s 4 by " ds

<Of (W +h)(s+ By ds
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<on’ [ (s+ Ry ds

<onP (30)
and
y |<jo| xt=s)  x(t+h) |+| x(t+h)  x(t+h) q
B D(=p(t—5) T(=pt—s)| |T(=pt—s)) T(-p(t+h))|

(s+h)? P (54 By " ds
< Qj_oh () + () s+ ) ds
<0 j"h (s+h)P " "ds

<OonP . G1)
From (28), (29), (30) and (31), we have
w2+ 1) =) > 0 (h > 0). (32)
For 0 <¢<T, we have

|‘//4(t+h)_‘//4(t)|

x(t+h) (t+ h)_p(o) B x(2) PO
L(1=p(+h) L(1-p(@))

X+ m) = x(0) _ x(t+1)-x(0)|

< (t+h)y "
C(-p(t+h)  T(-p@) |

xt+h) x|

(t+h) "
T(1-p(t)) T(1-p@)|

N x(t)—x(0)
(1= p()

|(t+h)‘1"°) —t‘P(°)|

IA

Qh(t_i_h)ﬁ*p(o) + Qhﬂ (t+ h)*P(O) + Qtﬁ |(t+h)7p(0) —_ 70
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c'(o,

<Oh+0h? PO 1 0tf [t—p(O) —(t+ h)—pw)]
For 0 <¢<h, we have

# [t—pw) e+ h)”’(‘”] < (PO < )

For ¢t > h, we have

P [t—pw) —(t+h)"’(°)]

h -p(0)
<t/ PO 1—£1+—j
t
-p(0) h h?
<t 1- 1+(—p(0))7+0 =
t

< p(o)tﬁ—p(o)—lh
< p(O)h’pr(O).
Form (33), (34) and (35), we have

[Wale+) = pu(0] >0 (> 0).

By (13), (25), (27), (32) and (36), we conclude that y(¢) € C(0, T], that is to say /,.”"x(f) € C'(0, T].

Remark 2.1 In Lemma 2.6, we have
. . d 1-p(1)
lim y(¢) = lim — I ”"'x(¢) = 0.
—0" t—0" d

t

d
That is to say ¢ = 0 is a removable discontinuity point of function -1 o Ox(1).
Proof. The proof of Remark 2.1 is similar to Lemma 2.6.

(33)

(34

(35)

(36)

(37

O

Remark 2.2 In Lemma 2.6, if p(7) = a, for ¢ € [0, T], x(¢) € H/[0, T] (a; < B < 1) with x(0) = 0, then I x(t) €

7] N C[0, T] and

i I-o _ tx(s)—x(t) ol x(t) -a)
i x(t) = IO—F(—al) (t—s) ds+—r(1_al)t .

3. Main results

(10).

Contemporary Mathematics
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We assume that
(42) h € L(0, T);

(4;) h satisfies sup I&" | “h(t) |< +o0;
0<t<T

(4) f: R xR xR — R is a continuous function;
(4;) there exists positive constants L, (i = 1, 2, 3) such that

| /G (0, (1), 2,(D)) = f (%, (1), (1), 2, (1)) |

SLix =x |+Ly |y =y |+Ls |2y =2, |, 1 €[0,T], x;(0), ¥, (1), z;() e R, j =125 (38)
(4,) there exists constants M, > 0,0 <y, <1 (i=1, 2, 3) such that

|/ (x(0), (@), (D) | < My [ x(0) [ +M, [ () 2 +M5 120 [, x(1), y(1), z(1) € R. (39)
Lemma 3.1 Assume that (4,), (4,) and (4,) hold. If x € H[0, T'] with a; < < 1 is a solution of boundary value

problem (10), then if and only if x(¢) must be a solution of the integral equation

i=1

x0 = G(t,s)h(s)f(x(s),gl (x(5)+ & (<)), 2@, <x<s)>st, 0<r<T, (40)

where

Tl—ata—l (T _ S)a71 _ (t _ S)a71

. <
9= Tl“’t“’l(T—s()il “
, 0<t<s<T,
I@)
) = s )””[ P(s)Ini - s)+Lsp“)} 3 “2)
_ t X(S) _ x(t) _ oyl
”2(x(’))_10{r(—p<s>) r(—p(t»}(’ DI @)
A0 =, (44)
ORI "g’)( s, gz(x(r)>—m+’))f“l. (45)

Proof. If x € H,[0, T] is a solution of boundary value problem (10), then x(¢) satisfies x(0) = x(7) = 0 and

DZ x(t) + h(t) f(x(t) D& x(t), ng”x(t)) 0,0<t<T. (46)
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Applying operator I, to both sides of equation (46), from Proposition 2.3, we have

_ a— 1 t a— a p(s
x(t)=ct® " + oyt _@IO (t—5)""h(s) f(x(s),DO " x(s), DL )x(s))ds.

As aresult of x € Hy[0, T] < C[0, T] and x(0) = x(T') = 0, we get that ¢, = 0 and

¢ = i(a) [T =5 hs) f (x(5). Dt x(s), D{x(s)) ds.
Then we obtain that
x(1) = IF:Z)] IOT (T —5)“"h(s) f(x(s), D x(s), ng”x(s)) ds
1

‘mﬁf (t=5)""h(s)f (x(). D§x(s). DY x(s) ) s,

- IOT G(t,5)h(s) f(x(s), D& x(s), D(f’f)x(s))ds, 0<t<T,

where G(¢, s) is defined by (41). From Lemma 2.6 and Remark 2.2, it holds that

Dix(s) = g, (x(s)) + g, (x(s), Df"x(s) = 23160[ (x(s)), 0<s<T.

i=1

Therefore, we have

x(t) = Jj G(f,S)h(S)f(x(S),gl (x()) + g, (x()), ) @, (x(S))sta 0<z<T,

i=1

which implies that x(¢) is a solution of integral equation (40).
Conversely, if x € H,[0, T] is a solution of integral equation (40), then

x0 =] G(m)h(s)f(x(s),gl (x(5)+ g2 (x(), D <x<s)>st, 0<e<T.

i=1

Obviously, x(0) = 0 and x(7") = 0. From Lemma 2.6 and Remark 2.2, we have

3
g1 (x(s)) + g, (x(5)) = Dy x(s), D, (x(s)) = D§x(s), 0<s<T.

i=1

Therefore
x(t) = jOT G(t,5)h(s) f(x(s),Dgix(s),Dgf”x(s))ds
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Tl—ata—l
T T(e)

[T =5y h(s) f (x(5). Dgtx(s), DI x(5)) ds

~15. (o) £ (x(0), DELx(0), D{Ox(r))), 0< 1 <T.
Applying Dy, to both sides of (47), by Proposition 2.2, we get

D x(t)+ k(o) f (x(0), D5 x(0), D x()) =0, 0 < <T,

together with x(0) = x(7') = 0, which implies x € H,[0, T] is a solution of boundary value problem (10).

In the following analysis, for convenience, we let

1
—— |, a, =max | p'(t)|, a, = max
F(l—p(t)) 2 0£t£T|p()| 3 osisr

>

| = max
0<t<T

1
I'(=p(®)

1 ’
a, = max ( ],aszmax{l,Tﬂ},

—p Sw<—px F(W)

+
1-8 1-p

* KT P Tlfp*
B, = aqja,a; max{l,T" ~" }[ ,

* - o
B, =max{l,T* _p*}[a3T ’ +a2a4a5T ’ ],

B-r 1-p

L, TP L
L = max {Llas + 2 +Ly(B, +B,), 2—“5) L3a1a5},

(B-a) | ()] (-

IOT h(s) | ds jOTs'“l | h(s)| ds joTs*P(O) | h(s) | ds
@) I(a) I(a)

L, = max , ,

h(t)|, sup I

0<t<T

L, = max{ sup I3 [ h(1) |, sup I

0<t<T 0<t<T

t”(o)h(t)”,
where p* <a, < <1, K> 0 is a constant satisfying

157 <K, 0<t<T.

(47

(4%)

(49)

(50)

(51)

(52)

(33)

(54

(35)

Theorem 3.1 Suppose (4,), (4,), (43), (4,) and (45) hold. Then the boundary value problem (10) exists a unique

solution x € H,[0, T] with a; < < a — 1 provided if
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3LL,, 77 +3LL,, T <1. (56)

Proof. According to Lemma 3.1, it is sufficient to consider the existence of fixed point of operator A defined by

3
axy = G(r,s>h<s>f(x(s>,gl (x(5))+ &, (x5 2 (x(s))jds, 0<i<T. (57)

i=1

Firstly, we show that 4 : Hy[0, T'] — H,[0, T] with o, < < a — 1. In fact, for x € Hy[0, T'], from (48)-(51) and (55),
we have

max | x(¢) |

| @ (x(2)) |S—°F§5T_ -0 X [(t —s) PP PO ps) || (t=5)P P In(t—s) |

H=s)" | p(©) | ]as

< ayayas| ol max (1,77 }[Kfol (t=s)Pds+ ! (e~ s)*/dS}

* Kt'F 1-p
= aayagl Al max (1,77 | AL L
1I-8 1-p

o (krF T
< aja,as]l Xl ; max {1,777 p*}{ 5 +1—p*}
=Bllxl,, 0<s<&<r<T, (58)
0,1, I o) Ter® I(t e

< L2 a0 || 0 w0 I}(t_s),,w i

o| [T(=p(s)) T(=p(s)| |[T(=p(s) T(=p())|
<al xl j’(r—s)ﬂ'l’@"dsm I xl j’(z—s)"’“) ) | p'(0) | ds
= U3 s 5 Bl F(a)) .,

t N t _
<all )c||ﬁj.0 (t—95) "9 ds + aya,asl x|\ﬁjo(t—s) P g

t * * t * *
= a,ll xll t—5)” PO =) Vds+a,a,alll 1l t—s)? PO(r—s5)"P ds
31 xlg | 244511 Xllg |
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< xdl ; max {1,77 ~#*} asj.;(f—s)ﬂfp*flds+a2a4a5J.(:(t—s)”’*ds}

[ b 1-p'
i a,.T a,a,aT
<[ lly max {1,777 73| = N e }

B-p 1-p

=B,llAly, —p <o<-p., 0<s<O<t<T,

|y (x(0) k< r('lf(—z('t))tw < aagl 177,
EORRQ -
(o)< [ SR e s
Ere
L
T/
<,
(B-a) | T(-a)|
and
ast™™
&)< Sl

From (38), (52) and (58)-(62), we have

i=1

3
‘f {X(t), g (x(0)+ g, (x(0), ) o, (X(t))]‘

3
= ‘f (X(t), () +g,(x(0), ) o, (X(t))) - /(0,0,0)+£(0,0,0)

i=1

+[/(0,0,0)]

3
> @,(x(1))

i=1

<L | x(@) [ +Ly | & (x(0) + &, (x(0) | +L;

LT, Lag ™«
+

B
Goan Tyl Ta—ay Bl

< Lagl o, +

+L3a1a5t7p(0)|| X||/;+ | f(Oa Oa 0) |

S(L+L + L") x5+ £(0,0,0)|.
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(60)

(61)

(62)

(63)
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From (41), (57) and Proposition 2.1 , we have

l—ata—l

Ax(t) = o

3
N (T—s)‘“h<s)f(x(s),gl (x(s))+g2<x(s)>,2w,«(x(s»st

i=1

15, {h(t)f (X(t), & (x(0) + &, (x(1), 2o, (X(t))ﬂ

i=1

_r lr‘:;a; J'OT (T =) h(s)f (x(s)sgl (x(s)) + g, (x(s)),lZ::a)l. (x(S))) ds

3
~Iy 15" {h(t )f [X(t ), & (X)) + &, (x(1)), D @, (x(t ))H
i=1

= T;:;“)‘ J-OT (T =) h(s) f (x(s)a g, (x(s)) + g, (x(s)), IZ:: o, (x(s))j ds

¢ 3
[ {h(S)f(x(S), & (x() + &, (X)), Y @, (x(s))ﬂ ds. (64)
i=1

Forx € Hy[0, T1, t,, t, € [0, T] with ¢, # ¢, (without loss of generality, we assume that 0 <#, <, <T), in view of (53),
(54), (63) and (64) together with £ — ¢/ < (t, — t,)’ for t, > #,> 0 and 0 <6 < 1, we have

|A4x(1,) — Ax(1,)|

T o @ 1

T )IOT(T—s)“1h(s)f{x(s>,g1(x(s))+g2<x(s>),;w,-<x(s))jds

%) _ 3
—Ll I {h(S)f (X(S), & () + g, (x()), ), (X(S))ﬂ ds

i=1

< T]—a (t2 _tl)a—l
['(a)

T
[ @=s)"h(s)] ds

3
f (X(S), & () +g,(x(5)), Do (X(S))J

i=1

ds

3
I {h(S)f [X(S), & (x() + &, (x(9). 2@, (x(S))H

i=1

)
g
|

(l —t)a_l T -0 -P
s—zr(;) J, W I[(L+Ls™ +Ls ")l x5+ £(0,0,0) [ Jds

+ er 15! [| h(s) | ((L+Ls™ +Ls™" ) xll,+ | £(0,0,0) |)]ds
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< (3LL1,h” x”ﬂ+ | £(0,0,0)| L, ,)(#, —¢, )+ (3LLz,hH x”ﬁ'+ | £(0,0,0)[ L, , )&, —1,)

<[BLL, T/ +3LL, , T ")l xll, + (L, , T + L, , 77| £(0,0,0) [1(t, —1,)" . (65)
The inequality (65) implies that Ax(¢) € Hy[0, T]. Then, 4 : Hy[0, T] — H,[0, T].

Secondly, we prove that 4 : H,[0, T] — H,[0, T] is a contractive operator. For x, y € Hy[0, T], by the similar way
as the first step, we get

| (x(£)) = o, (¥(0)) | < Byll x =)l 5,

| @, (x(t)) = @, (Y(E) [|< Byll x = yll5,

| @, (x(1) — s (YO | < ayast™" Nl x =yl .,

B-a

T
L (x(0) - g, <———— | x-)ll
| & (x(0) - & (¥(D)] Ga) Tay]

and

—a

|2 (x(0) - &, (¥(1) | < ;%@H x= il

From (38) and the obtained above inequalities, we obtain

3 3
‘f(x(t),gl (xX(0) + g, (x(1), ). o, (x(r))]—f[y(r), g () +g, (y(r»,Zw,(y(t))J‘

i=1 i=1

<L x(@) = y(@) | +L, [ g (x(2) = g () + &, (x(1)) = &, (VD)) |

+L,

3 3
D o, (x(6) = Y, (y(1))
i=1 i=1

S(LALE + L") x =yl . (66)
From (66), we have
| (Ax = Ay)(t,) = (Ax— Ay)(1,) |

t, =) M x—
S(2 D47 x =yl

s (T —a —p(0)
o jo h(s)| (L +Ls™ ™ +Ls"©)ds

=yl [2 17 [ThGs) | L+ L™+ L7 ©) ] ds
1
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<(3LLy, 77 +3LL, TP )l x = Ml (1 - 1), (67)

Obviously, Ax(0) = 0 and 4y(0) = 0. Therefore, from (67), we have

| Ax— Ayl =] (Ax— A)(©0) |+ sup |(Ax_Ay)(tz)_(‘ix_Ay)(W
4 ,z?i[to,r] |t —t, |
172

<(3LL,, TP +3LL, , T )l x =yl

We obtain that 4 : H,[0, T] — H[0, T] is a contractive operator together with (56). Then 4 exists a unique fixed
point x* € H,[0, T] according to Banach fixed point theorem. Lemma 3.1 indicates that the obtained unique fixed
pointed x € H,[0, T] is the solution of the boundary value problem (10). O

Theorem 3.2 Suppose that (4,), (4,), (4;), (4,) and (4;) hold. Then the boundary value problem (10) exists a
solution x € H,[0, T] witha; <y <f<a—1.

Proof. According to Lemma 3.1, it is sufficient to consider the existence of fixed point of operator 4 defined by

Ax(t) = J.OT G(t,s)h(s)f[x(s),g1 (x(s)+ g, (x(s)),Zwi (x(s))st, 0<¢<T.

i=1

In the next analysis, we let

B-p" r-r 1-p"
— *_ a,T a,T a,a,asT
B, =max{l,T* 7} max{ 3 , = }+ 27475

B-p  r-pr 1-p"

M Ma . M [ e o r- :
=max4Mas", M, (ﬂ_al)u"(—al)J ’ 2[(7_a1)|r(_al)|j ’

M,as® B\ 3 b
Ty My(B, +B,)", Mya®as® (68)

[Thesyds [ s () lds [ 57O | h(s)| ds

M, , =max , , , (69)
’ I'(a) [(a) [(a)
M,, = max{ sup 187V h(t) |, sup IE7 |2 h(t)|, sup 17" ¢ 7O h(r) |}, (70)
0<t<T 0<t<T 0<t<T
M = max {M(T*" M, , + T M, ), M(T*7 M, , + T M, )}, (71)

where a,, as; and B, are the constants given by (48)-(50).
Firstly, we show that 4 : H,[0, T] — H,[0, T] with a; <y < < a — 1. In fact, for x € H,[0, T], we obtain the same
estimation of @, (x(¢)), w,(x(?)), w4(x(?)), g,(x(¢)) and g,(x(¢)) as the Theorem 3.1.
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From (58)-(62), (39) and (68) together with the inequality (a + b)’ <&’ + b’ for 0 <9< 1, a, b > 0, we have
3
f [x(t), g (X)) + g, (x(1)), ) o, (X(t))]
i1

3

3
> @,(x(1))

i=1

<M [ x(0) [ +M, | g (x(2) + g, (x(0)) [? +M,

< Myaftl| ) + M, (| g () P2+, | ) 2

M (|0 (O) P 40, | (R0 [+, | (x(0) )

Tﬁ*m 2 M. al2 At
< Mya'll 2l + M, | —————— | Il 25 | e
(B-a)|I'(-a,)] [T -]

M (B, + Byl 2l + Moals ator || oo

5
<Ml + 1l + 1l + 9l + 7O k). (72)

For x € Hy[0, T], t,, t, € [0, T] with ¢, # ¢, (without loss of generality, we assume that 0 < ¢, <, < T), in a similar
fashion to (65) and together with (68)-(72), we have

| Ax(t,)— Ax(t) |

- Tl—a (t2 _tl )a—l

ds
I'(a)

r a-1
[J@=s) " h(s)]

3
f (X(S), g (x() + g, (x()), ) o, (X(S))j
i=1

5]
+
it

3
Iy {h(S)f (X(S), g (x(9) + g, (x(), 2, (X(S))H}JS

i=1

< M(’z - )OH
I'(e)

T _ _

) L gl g+l 7t 4577 % )|l )
7 [2 7ot - -p(0)

[ 1 [ ) Ll 572 2 77Ol s

< MM, (2l + 200 xll2 + 20 i7" (1, — 1)

+ MM, , (I g+ 20l iz + 20l lgHT 7 (1, = 1)

< M (Il + 20 2+ 211 2l (e, —1,)7 . (73)
4 B s
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The inequality (73) implies that Ax(f) € H,[0, T']. Then, 4 : H [0, T] — H,[0, T].
Let the ball , in Hy[0, T] be Qp = {x € Hy; ||x||, < p}, where

1 1 1 1 1 1
p > max {(31\4)1'”1 L(6M) 72 (6M)™*5 , (BMat" ) ™, (6Mal?)' ™2 , (6Mal® )™ } (74)

Secondly, we prove 4 : Q, — Q, in the space H[0, T]. For x € Q,, by (73) together with Ax(0) = 0, we have

Ax(t,)— Ax(t
| Axl, =] Ax(©)]+ sup A= AG)]
B
1,12 €[0,T] |t —t, |
1#ty

< M1 +20 b2 + 20 5l

<M p" +2M p*? +2M p**

<P,
3

Lo, 75)

WD
WD

Hence 4(Q,) is a bounded subset in /[0, 7]. Then we obtain that 4(€2,) is relatively compact in H,[0, 7] by Lemma
2.3 for o, <y < f. According to Lemma 2.2, the ball €, is contained in the space H,[0, 7] for o, <y <j.

Thirdly, we prove the operator 4 : Q, — €, according to the norm || - ||, in the space H,[0, T]. Forx € Q, < H [0, T,
in a similar fashion to Theorem 3.1, we have

|, (x(0) | < Bl xll,, | @, (x(0)) |< Byl Al | 03 (x(0)) | < ayasll Al g7 (76)
and
77 agt™
|g1(x(t))|sm“ XH}/, ‘gz(X(l))‘Sr(Tal)”X”}/ (77)

Form (76), (77) and (68), in similar fashion to (72), we have
i=l1

3
‘f (x(t), & (x(0) + g, (x(1), 2o, (x(t))J‘

v —a —p(0)
<R+ 1l 41 ] 2 PO | s ), (78)
Form (78) and (71), in similar fashion to (73), we have
| Ax(ty) = Ax(t,) | < M xll + 20 2152 + 211 <82 ) (2, — 1) (79)

Form (79) and (74) together with Ax(0) = 0, in similar fashion to (75), we have
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Ax(t,)— Ax(t
I Axll, =| Ax(0)|+ sup [ Ax(t) = Ax(1,) |
Y
zl,ttze[to,r] [t —t, |
170

<Ml AP +20 2l 20 )
< M (a1 + 2221 52 +2a25 ] )

< M(at p™ +2al2 p*2 +2al" p**)

P. PP
<L L Py (80)
3 3 3 P
which indicates that the operator 4 : €, — €, according to the norm || - ||,. Hence, as a result, we obtain that the operator

A maps €, into itself for the norm || - ||, and 4(£2,) is relatively compact in H,[0, T].
In the end, we prove that the operator 4 : Q, — €, is continuous according to the norm || - ||,. Consider any x, € Q,
such that x, — x in Q,. By virtue of the continuity of function f{(x, y, z), then V&> 0, 3N > 0, for n > N, we have

3 3
‘f[xn (5), 21 (%, () + 2 (x, (), 2@y (x, (s))j—f[x(s), g(x(s)+ g (x(s»,Zw,»(x(s»j <e. 81

i=1

From (81), in a similar fashion to (73), for n > N, we have

| (A, = Ax)(2,) = (Ax, = Ax)(4) |

-1
< e(t,—4)”

r 2 ra-1
@ X |h(s)|ars+gLI I | s) | ds

<eM,, T "7 +M,, T )t,—-1,), 0<t, <t, <T. (82)

Since (4x, — Ax)(0) = 0, by (82), for n > N, we have

I Ax, (6)— Ax(O)l, =| (Ax, - Ax)O) |+ sup L= AG) (A%, ~A0@)]

/4
1,1 €[0,T] | L= |
n#t

<M, T +M,,T'), (83)

which indicates that 4 is continuous at the any point x € €, with the norm || - ||..
Hence, 4 : Q, — Q, is completely continuous in H,[0, T]. Then we deduce that the boundary value problem (10)
exists a solution x € A [0, 7] (&, <y < < a — 1) according to Schauder fixed point theorem. O
Example 3.1 We consider the following boundary value problem
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1 (D(())+7x)2 (D(())-.*670.3tx)2
2 + 0.7 .\2 0.6-0.37 _\2
20001+ x%) | 600(1+(DX7x)%) | 6001+ (DLS " x)?)

Dy x(t)+¢7"! [ (84)

]:O, 0<z<l,

x(0)=x(1) =0,

then we claim that the boundary value problem (84) exists a unique nontrivial solution x € H, 40, 1].

2 2
z

_ 1 y
Proof. Let a = 1.9, ¢, = 0.7, p(t) = 0.6 — 0.31, S = 0.8, h(t) =t ', f(x,y,2) = + + .
. . ‘ . . S0 D) = i) 600(1+ %) 600(1+27)
Obviously, p"=0.6, ps =03 and p" < a, <f <a — 1. Since h(¢) € L(0, 1),

j;|h(s) ds j(:s*‘”1 hs)lds j(:s*f](‘” hs)lds
F@)  09r(1.9)° I'(a) S 02r(1.9)° I'(a) 0.31(1.9)

and

'(0.9) 0.2

sup 127 | () | = ~1.1474, sup I&7 |77 h(r) | = ~ 4.8256,
sup Lo [ 1O)] r'(1.8) sup Lo |£AM)] r(L.1)

sup I [ 7%h(t) | = T3 3.2582,

0<t<1 r'(1.2)

then p(f), a, a,, h(t) and f satisfy the assumptions (4,), (4,), (45) and (4,).
Since

(R . B
400(1+x2)  400(1+x2))|

_ | X+, || x —x, |
400(1+ x})(1+x3)

| % | | x, | |x —x
= 2 2 1 2
400(1+x2)  400(1+x2)

| X —x, |

200

IA

by the same token, we have

| J’12 _ J’22 |S In=»
|600(1+y12) 600(1+y§)| 300

Then, we have

X, — X - zZ,—z
| X, 2|+|J’1 .V2|+|1 ) |

, X, ¥,z€R,
200 300 300

| f (s 0152) = f (%535, 2,) | €
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which implies that f satisfies the assumption (4;) of Theorem 3.1 with L, :2—00, L, :m and L, :LO. By

calculation, we have

~0.2821,

1
~0.7704, a, =0.3, a; = max|————
I'(=0.6+0.3t)

ax
0<¢<1

a, = max ;
o=t<1 | T(0.4 +0.3¢)

a,= max | —||~04884, a;=1,K :5, B, ~2.7034, B, ~1.7768,
-0.6<1<-0.3 1“(;) e

L=~0.0277, L, = RN 5.1988, L, , ~ 4.8256,

then

301y, + L, ,) = 0.833 <1,

which implies that the condition (56) is satisfied. According to Theorem 3.1, the boundary value problem (84) exists a
|

unique nontrivial solution in H,4[0, 1].
Example 3.2 We consider the following boundary value problem

4 l 2
X 0. (sin x)3 (D045x)3 (D044—0.2tx)3
D(])-f-x(t) +t 02 X + ljerZ 1+ (DO'S)C;; + (D0,470,2tx)2 5 O<t< 1’ (85)
0+ 0+
x(0) = x(1) = 0.
Then we claim that the boundary value problem (85) exists a nontrivial solution x € H,4[0, 1].
4 1 2
3 ] :
Proof. Let o = 1.8, p(t) = 0.4 — 0.2¢, ¢, = 0.5, = 0.7, y = 0.6, f(x,y,2)= (sin x) LY . Zz y
X 1+ X 1+ y +z

Obviously, p*=0.4, p=0.2 and p* < a, <y < B < o — 1. Then, p(?), a, a,, h(¢) and fsatisfy the assumptions (4,), (4,), (4;)

and (4,).
Since
4 4
.3 < 1
sin x)3 x|? <
Gin?|_|xP
x | x|
then

1 1 2
|Gy |<[xP +]yP +]zF, x,y,z€R,

which implies that f'satisfies the assumption (4;) of Theorem 3.2 with M, =M, =M; =1, u, = 7 My = 3 and g, =—
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According to Theorem 3.2, we obtain that the boundary value problem (85) exists a nontrivial solution x € H, [0, 1]. O
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