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1. Introduction
The history of fractional calculus has more than three hundred years. There are many fractional derivatives, such 

as Riemann-Liouville, Caputo, Erdélyi-Kober, Hadamard fractional derivative and so on. The Riemann-Liouville 
derivative [1] Dη

0+ (0 < η < 1), as one of the most classical fractional derivative, is defined by
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It is easy to obtain that Dη
0+ f (t) exists if the derivative of I0+

1−η f (t) exists on interval [0, T] by the definition. That is 
to say, the existence conditions for Riemann-Liouville fractional derivative are weaker than other fractional derivatives 

such as Caputo derivative. For example, Riemann-Liouville fractional derivative of function 
1
2t

−
 is 0 on interval 

[0, 1]. But Caputo fractional derivative of function 
1
2t

−
 dosen’t exist at point t = 0. Variable-Order (VO) fractional 

operators are the derivatives and integrals whose order are functions of some variables. VO fractional operators are 
conceived and mathematically formalized only in recent years and can be seen as a natural analytical extension of 
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constant-order fractional operators. The first definition of VO fractional operator was given by Samko and Ross [2] 
in 1993. Subsequently, Lorenzo et al. [3] and Coimbra [4] studied VO calculus by discussing its possible applications 
in mechanics, which marked the starting point for applications of VO operators to the analysis of different complex 
physical problems. After that VO fractional differential equations are widely employed in mechanics and dynamics, 
viscoelasticity, the modelling of transport processes, control theory because VO fractional operators can describe 
accurately the memory and hereditary properties of many physical phenomena and processes depending on their non-
stationary power-law kernel [5-10].

For Riemann-Liouville VO fractional integral, there are two forms [3, 11] as follows
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where 0 < η(t) < 1 is a given nonconstant function. Corresponding to (2) and (3), there are two types of Riemann-
Liouville VO fractional derivative [3, 11]

( )
( )

0 0

( )( ) ( )
(1 ( ))

stt d t sD f t f s ds
dt s

η
η

η

−

+
−

=
Γ −∫

and

( ) ( )
0 0

1( ) ( ) ( ) .
(1 ( ))

tt tdD f t t s f s ds
t dt

η η

η
−

+ = −
Γ − ∫

In (3) and (5), the current state η(t) is used on entire interval [0, t]. For any fixed t, the convolution kernel can be 
integrated in a closed form as for the constant-order fractional derivative operator in (1), which greatly facilitates the 
analysis. In (2) and (4), the power η(s) assumes its historical state at the historical time instant s. Hence, the history-
state-based fractional differential equations, which accounts for the influence of the quantity of interest at the historical 
time instant s with the historical state η(s), is probably more physically relevant. However, the convolution kernel in (4) 
can’t be integrated in a closed form in mathematics, which highly complicates the mathematical analysis. That is to say, 
it is difficult to obtain closed form solutions to history-state-based VO fractional differential equations because the law 
of exponents doesn’t hold for VO fractional integral (refer to [2, 12]). Therefore, many authors [13-17] have made use 
of the numerical methods to solve VO fractional differential equations. As an important research topic of VO fractional 
differential equations, boundary value problems are concerned by many professors. Since the kernel of VO fractional 
operators has a variable exponent, there are many difficulties for us to obtain the existence of solutions to VO fractional 
boundary value problem. Few authors [18, 19] have attempted to consider the existence, uniqueness and stability of 
solutions to VO fractional boundary value problem using standard techniques in analysis.

In [18], authors proved the existence of solutions and presented a generalized Lyapunov-type inequality to the 
boundary value problem for VO fractional differential equation
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where 1 < q(t) < 2 is a piecewise constant function, f : (0, T ] × R → R is a continuous function and D0+
q(t) is the 

Riemann-Liouville type VO fractional derivative defined by
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In [19], authors proved the wellposedness and smoothing properties of the Dirichlet boundary value problem of 
one dimensional VO linear space-fractional diffusion equation
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The authors in [18] proved the existence of solutions to the problem (6) in the space of continuous functions and 
the variable order was a piecewise constant function. The authors in [19] proved the wellposedness of the problem (7) 
in the Hölder space and the order of derivative was two. It is well known that the Hölder space is the function space 
in which functions are Hölder continuous and it is included in the space of continuous functions. Many papers [20-25] 
considered the existence of solutions of Fredholm integral equations in the Hölder spaces using fixed point theorems. 
However, few papers [26, 27] considered the existence of solutions of boundary value problem for fractional differential 
equations, where the fractional order is constant order.

In [26], authors proved the existence and uniqueness of solutions for the following fractional boundary value 
problem in the Hölder space
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where CDα
0+ denotes the Caputo fractional derivative [1], 0 < α ≤ 1, 0 < η < 1 and λ, γ, ρ ∈ R.

In [27], authors studied the existence of positive solutions to the following fractional differential equation with 
infinite-point boundary value conditions
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where α > 2, n − 1 < α ≤ n, i ∈ [1, n − 2] is a fixed integer, αj ≥ 0, 0 < ξ1 < ξ2 < ··· < ξ j−1 < ξj < ··· < 1 ( j = 1, 2, ···), 
1

1
0j j

j
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∞
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− >∑△ , where △ = (α − 1)(α − 2) ··· (α − i), H is an operator applying C [0, 1] into itself satisfying certain 

assumptions and Dα
0+ denotes the Riemann-liouville fractional derivative.

To the best of our knowledge, few papers studied the existence of solutions to boundary value problems of history-
state-based VO fractional differential equations in the Hölder space. Inspired by the above excellent work, in this paper, 
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we consider the existence of solution to the following boundary value problem for fractional differential equation 
involving Riemann-Liouville type history-state-based VO fractional derivative
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where 0 < α1 < 1 < α < 2, 0 < p(t) < 1, p, h, f are all given real-valued functions, Dα1
0+ denotes the constant-order Riemann-

Liouville fractional derivative given by (1), Dα
0+ denotes the constant-order Riemann-Liouville fractional derivative [1]
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and I0+
2−α, I0+

1−α1 are both the Riemann-Liouville fractional integrals (refer to [1]). D0+
p(t) denotes the Riemann-Liouville type 

history-state-based VO fractional derivative given by (4).
The paper is organized as follows. In section 2, we present some basic notations, propositions and lemmas, which 

will play an important role in obtaining the existence of solution to the boundary value problem (10). In section 3, main 
results are stated based on our previous analysis, then two examples are given to substantiate the theoretical results.

2. Preliminary
In this section, we introduce some basic notations, propositions and lemmas which are used throughout this paper.
Let [0, b] be a finite interval. I0+

δ , I γ
0+ and Dδ

0+ denote the Riemann-Liouville fractional integral and derivative [1] 
respectively. I0+

1−p(t) is the Riemann-Liouville type history-state-based VO fractional integral given by (2).
Proposition 2.1 ([1] Lemma 2.9). If γ > 0, δ > 0, then the equality I γ
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point of t ∈ [0, b] for f ∈ C[0, b].

Proposition 2.2 ([1] Lemma 2.9). If γ > 0, f ∈ C[0, b], then the equality D0+
δ I0+

δ f(t) = f(t) holds at any point of t ∈ [0, 
b].

Proposition 2.3 ([1] Lemma 2.9). If  f ∈ C[0, b] and D0+
δ f ∈ C[0, b], then
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where n − 1 < δ ≤ n, ci ∈ R, i = 1, 2, ···, n.
Let Hη[0, T ](0 < η < 1) be the space of functions x(t) such that x(t) is Hölder continuous with index η on the 

interval [0, T ] with respect to the norm
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In [28], (Hη[0, T ], || · ||η) is a Banach space.
Lemma 2.1 ([28]). For x ∈ Hη[0, T], the following inequality is satisfied
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Lemma 2.2 ([28]). For 0 < γ < η < 1, we have
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Moreover, for x ∈ Hγ[0, T ], the following inequality is satisfied

 max{1, }  .x T xη γ
γ η
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Lemma 2.3 ([27]). Suppose that 0 < γ < η < 1 and that Ωη is a bounded subset in Hη[0, T ] (this means that ||x ||η ≤ 
M for certain constant M > 0, for any x ∈ Ωη), then Ωη is a relatively compact subset of Hγ[0, T ].

We assume that
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Proof. We take α(t) = 1 − p(t). Since 
0
min (1 ( ))

t T
p t

≤ ≤
−  = 1 − p*, then β + 1 − p* > 1 from β > p*. According to Lemma 2.2 
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a varying constant and is related to Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, ||x ||β, β and p*.
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( ( )) ( ( ))

t p t sx t s x t s ds
p t s p t

− − − −
− − Γ − − Γ − 
∫

1 ( ) 1 ( )
0

( ) ( ) ( )
( ( )) ( ( ))

t p t s p t sx t s x t s h s ds
p t s p t

− − − − − − −  = − + −   Γ − − Γ − 
∫

1 ( )
0

( ) ( ) ( )
( ( )) ( ( ))

t p t sx t x t h s h ds
p t p t h

− − − +
+ − + Γ − Γ − + 
∫

0 1 ( )( ) ( ) ( )
( ( )) ( ( ))

p t s
h

x t s x t h s h ds
p t s p t h

− − −

−

 − +
+ − + Γ − − Γ − + 
∫

31 32 33I I I= + +

31 32 33 | | | | | | .I I I≤ + +

In (28), since

1 ( ) 1 ( )( ) p t s p t ss h s− − − − − −+ −

1 ( ) 1 ( )( )p t s p t ss s h− − − − − −= − +

(27)

(28)
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* * * *( ) 1 ( ) 1( ) ( )p p t s p p p t s ps s s h s h− − − − − − − −= − + +

* * *( ) 1 1 ( ( ) )p p t s p ps s s h− − − − − −≤ − +

* *1 1( ( ) )p pQ s s h− − − −≤ − +

and

* *1 1
0

( ( ) )
t p pQ s s s h dsβ − − − −− +∫

* * *1 1
0

( ( 1) )
t

p p phQh dβ βτ τ τ τ− − − − −= − +∫

* * *1 1
0

( ( 1) )p p pQh dβ βτ τ τ τ
∞− − − − −≤ − +∫

*
,pQhβ −≤

where the last ‘‘≤” is obtained by Lemma 2.5, then

1 ( ) 1 ( )
31 0

( ) ( )| | ( )
( ( )) ( ( ))

t p t s p t sx t s x tI s h s ds
p t s p t

− − − − − −−
≤ − + −

Γ − − Γ −∫

0

( ) ( ) ( ) ( )
( ( )) ( ( )) ( ( )) ( ( ))

t x t s x t x t x tQ
p t s p t s p t s p t

 −
≤ − + − Γ − − Γ − − Γ − − Γ − 

∫

* *1 1( ( ) )p ps s h ds− − − −− +

* *1 1
0

( ( ) )
t p pQ s s s h dsβ − − − −≤ − +∫

*
,pQhβ −≤

32 0

( ) ( ) ( ) ( )| | 
( ( )) ( ( )) ( ( )) ( ( ))

t x t x t h x t h x t hI
p t p t p t p t h

 + + +
≤ − + − Γ − Γ − Γ − Γ − + 

∫

* *( ) 1( ) ( )p p t s ps h s h ds− − − −+ +

*1
0
( )( )

t pQ h h s h dsβ − −≤ + +∫

(29)
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*1
0

( ) pQh s h dsβ ∞ − −≤ +∫

*pQhβ −≤

and

0
33

( ) ( ) ( ) ( )| | 
( ( )) ( ( )) ( ( )) ( ( ))h

x t s x t h x t h x t hI
p t s p t s p t s p t h−

 − + + +
≤ − + − Γ − − Γ − − Γ − − Γ − + 

∫

* *( ) 1( ) ( )p p t s ps h s h ds− − − −+ +

*0 1( ) ( ) ( ) p
h

Q h s h s s h dsβ − −

−
 ≤ + + + + ∫

*0 1( ) p
h

Q s h dsβ − −

−
≤ +∫

*
.pQhβ −≤

From (28), (29), (30) and (31), we have

3 3( ) ( ) 0 ( 0).t h t hψ ψ+ − → →

For 0 < t ≤ T, we have

4 4( ) ( )t h tψ ψ+ −

(0) (0)( ) ( )( )
(1 ( )) (1 ( ))

p px t h x tt h t
p t h p t

− −+
= + −

Γ − + Γ −

(0)( ) (0) ( ) (0) ( )
(1 ( )) (1 ( ))

px t h x x t h x t h
p t h p t

−+ − + −
≤ − +

Γ − + Γ −

(0)( ) ( ) ( )
(1 ( )) (1 ( ))

px t h x t t h
p t p t

−+
+ − +

Γ − Γ −

(0) (0)( ) (0) ( )
(1 ( ))

p px t x t h t
p t

− −−
+ + −

Γ −

(0) (0) (0) (0)( ) ( ) ( )p p p pQh t h Qh t h Qt t h tβ β β− − − −≤ + + + + + −

(30)

(31)

(32)
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(0) (0) (0)( )p p pQh Qh Qt t t hβ β− − − ≤ + + − + 

For 0 < t ≤ h, we have

(0) (0) (0) (0)( ) .p p p pt t t h t hβ β β− − − − − + ≤ ≤ 

For t > h, we have

(0) (0)( )p pt t t hβ − − − + 

(0)
(0) 1 1

p
p ht

t
β

−
−

  ≤ − +  
   

2
(0)

21 1 ( (0))p h ht p O
t t

β −
   

≤ − + − +        

(0) 1(0) pp t hβ − −≤

(0)(0) .pp hβ −≤

Form (33), (34) and (35), we have

4 4( ) ( ) 0 ( 0).t h t hψ ψ+ − → →

By (13), (25), (27), (32) and (36), we conclude that ψ(t) ∈ C(0, T ], that is to say I0+
1−p(t)x(t) ∈ C1(0, T].

Remark 2.1 In Lemma 2.6, we have

1 ( )
0

0 0
lim ( ) lim ( ) 0.p t

t t

dt I x t
dt

ψ
+ +

−
+

→ →
= =

That is to say t = 0 is a removable discontinuity point of function 
d
dt I0+

1−p(t)x(t).
Proof. The proof of Remark 2.1 is similar to Lemma 2.6.
Remark 2.2 In Lemma 2.6, if p(t) ≡ α1 for t ∈ [0, T], x(t) ∈ Hβ[0, T] (α1 < β < 1) with x(0) = 0, then I0+

1−α1 x(t) ∈ 
C1(0, T] ∩ C [0, T] and

1 1 11 1
0 0

1 1

( ) ( ) ( )( ) ( ) .
( ) (1 )

td x s x t x tI x t t s ds t
dt

α α α

α α
− − − −
+

−
= − +

Γ − Γ −∫

3. Main results
In this section we devote to dealing with the existence and uniqueness of solution to the boundary value problem 

(10).

(33)

(34)

(35)

(36)

(37)
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We assume that
(A2) h ∈ L(0, T);
(A3) h satisfies 11

0
0

|sup ( ) |
t T

I t h tαα −−
+

≤ ≤
< +∞ ;

(A4) f : R × R × R → R is a continuous function;
(A5) there exists positive constants Li (i = 1, 2, 3) such that

1 1 1 2 2 2| ( ( ), ( ), ( )) ( ( ), ( ), ( )) |f x t y t z t f x t y t z t−

1 1 2 2 1 2 3 1 2| | | | | |,  [0, ],  ( ),  ( ),  ( ) ,  1, 2;j j jL x x L y y L z z t T x t y t z t j≤ − + − + − ∈ ∈ =

(A6) there exists constants Mi > 0, 0 < µi < 1 (i = 1, 2, 3) such that

31 2
1 2 3| ( ( ), ( ), ( )) | | ( ) | | ( ) | | ( ) | ,  ( ),  ( ),  ( ) .f x t y t z t M x t M y t M z t x t y t z tµµ µ≤ + + ∈

Lemma 3.1 Assume that (A1), (A2) and (A4) hold. If x ∈ Hβ[0, T] with α1 < β < 1 is a solution of boundary value 
problem (10), then if and only if x(t) must be a solution of the integral equation

3

1 20
1

( ) ( , ) ( ) ( ), ( ( )) ( ( )), ( ( )) ,  0 ,
T

i
i

x t G t s h s f x s g x s g x s x s ds t Tω
=

 
= + ≤ ≤ 

 
∑∫

where

1 1 1 1

1 1 1

( ) ( ) ,   0 ,
( )

( , )
( ) ,                    0 ,
( )

T t T s t s s t T
G t s

T t T s t s T

α α α α

α α α

α

α

− − − −

− − −

 − − −
≤ ≤ ≤ Γ= 

− ≤ ≤ ≤ Γ

( )
1 0

( ) ( ) ( )( ( )) ( ) ( ) ln( ) ,
(1 ( ))

t p sx t p s p tx t t s p s t s ds
p t t s

ω − − ′= − − − + Γ − − ∫

( ) 1
2 0

( ) ( )( ( )) ( ) ,
( ( )) ( ( ))

t p sx s x tx t t s ds
p s p t

ω − − 
= − − Γ − Γ − 

∫

(0)
3

( )( ( )) ,
(1 ( ))

px tx t t
p t

ω −=
Γ −

1 11
1 20

1 1

( ) ( ) ( )( ( )) ( ) ,  ( ( )) .
( ) (1 )

t x s x t x tg x t t s ds g x t tα α

α α
− − −−

= − =
Γ − Γ −∫

Proof. If x ∈ Hβ[0, T] is a solution of boundary value problem (10), then x(t) satisfies x(0) = x(T ) = 0 and

( )1 ( )
0 0 0( ) ( ) ( ), ( ), ( ) 0,  0 .p tD x t h t f x t D x t D x t t Tαα

+ + ++ = < <

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)
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Applying operator I0+
α to both sides of equation (46), from Proposition 2.3, we have

( )11 2 1 ( )
1 2 0 00

1( ) ( ) ( ) ( ), ( ), ( ) .
( )

t p sx t c t c t t s h s f x s D x s D x s dsαα α α

α
− − −

+ += + − −
Γ ∫

As a result of x ∈ Hβ[0, T] ⊂ C[0, T] and x(0) = x(T ) = 0, we get that c2 = 0 and

( )1
1

1 ( )
1 0 00

( ) ( ) ( ), ( ), ( ) .
( )

T p sTc T s h s f x s D x s D x s ds
α

αα

α

−
−

+ += −
Γ ∫

Then we obtain that

( )1
1 1

1 ( )
0 00

( ) ( ) ( ) ( ), ( ), ( )
( )

T p sT tx t T s h s f x s D x s D x s ds
α α

αα

α

− −
−

+ += −
Γ ∫

( )11 ( )
0 00

1 ( ) ( ) ( ), ( ), ( ) ,
( )

t p st s h s f x s D x s D x s dsαα

α
−

+ +− −
Γ ∫

( )1 ( )
0 00

( , ) ( ) ( ), ( ), ( ) ,  0 ,
T p sG t s h s f x s D x s D x s ds t Tα

+ += ≤ ≤∫

where G(t, s) is defined by (41). From Lemma 2.6 and Remark 2.2, it holds that

1
3

( )
0 1 2 0

1
( ) ( ( )) ( ( )),  ( ) ( ( )),  0 .p s

i
i

D x s g x s g x s D x s x s s Tα ω+ +
=

= + = ≤ ≤∑

Therefore, we have

3

1 20
1

( ) ( , ) ( ) ( ), ( ( )) ( ( )), ( ( )) ,  0 ,
T

i
i

x t G t s h s f x s g x s g x s x s ds t Tω
=

 
= + ≤ ≤ 

 
∑∫

which implies that x(t) is a solution of integral equation (40).
Conversely, if x ∈ Hβ[0, T] is a solution of integral equation (40), then

3

1 20
1

( ) ( , ) ( ) ( ), ( ( )) ( ( )), ( ( )) ,  0 .
T

i
i

x t G t s h s f x s g x s g x s x s ds t Tω
=

 
= + ≤ ≤ 

 
∑∫

Obviously, x(0) = 0 and x(T) = 0. From Lemma 2.6 and Remark 2.2, we have

1
3

( )
1 2 0 0

1
( ( )) ( ( )) ( ),  ( ( )) ( ),  0 .p s

i
i

g x s g x s D x s x s D x s s Tα ω+ +
=

+ = = ≤ ≤∑

Therefore

( )1 ( )
0 00

( ) ( , ) ( ) ( ), ( ), ( )
T p sx t G t s h s f x s D x s D x s dsα

+ += ∫
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( )1
1 1

1 ( )
0 00

( ) ( ) ( ), ( ), ( )
( )

T p sT t T s h s f x s D x s D x s ds
α α

αα

α

− −
−

+ += −
Γ ∫

( )( )1 ( )
0 0 0( ) ( ), ( ), ( ) ,  0 .p tI h t f x t D x t D x t t Tαα

+ + +− ≤ ≤

Applying D α
0+ to both sides of (47), by Proposition 2.2, we get

( )1 ( )
0 0 0( ) ( ) ( ), ( ), ( ) 0,  0 ,p tD x t h t f x t D x t D x t t Tαα

+ + ++ = < <

together with x(0) = x(T ) = 0, which implies x ∈ Hβ[0, T ] is a solution of boundary value problem (10).
In the following analysis, for convenience, we let

1 2 30 0 0

1 1max ,  max | ( ) |,  max ,
(1 ( )) ( ( ))t T t T t T

a a p t a
p t p t≤ ≤ ≤ ≤ ≤ ≤

′= = =
Γ − Γ −

*
*

4 5
1max ,  max{1, },
( )p w p

a a T
w

β

− ≤ ≤−

′ 
= = Γ 

*
*

*
1 1

1 1 2 5 *max{1, } ,
1 1

p
p p KT TB a a a T

p

β

β

− −
−

 
 = +
 − − 

* *
*

*
1

3 2 4 5
2 * *max{1, } ,

1

p p
p p a T a a a T

B T
p p

β

β

− −
−

 
 = +

− −  

1
2 52

1 5 3 1 2 3 1 5
1 1 1

max ( ),  ,  ,
( ) | ( ) | (1 )

L aL TL L a L B B L a a
β α

β α α α

−  = + + + 
− Γ − Γ −  

1 (0)
0 0 0

1,

| ( ) | | ( ) | | ( ) |
max ,  ,  ,

( ) ( ) ( )

T T T p

h

h s ds s h s ds s h s ds
L

α

α α α

− − 
 =  

Γ Γ Γ  

∫ ∫ ∫

{ }11 1 1 (0)
2, 0 0 0

0 0 0
max sup | ( ) |,  sup ( ) ,  sup ( ) ,p

h
t T t T t T

L I h t I t h t I t h tαα α α−− − − −
+ + +

≤ ≤ ≤ ≤ ≤ ≤
=

where p* < α1 < β < 1, K > 0 is a constant satisfying

*
| ln | ,  0 .pt t K t Tβ − < < ≤

Theorem 3.1 Suppose (A1), (A2), (A3), (A4) and (A5) hold. Then the boundary value problem (10) exists a unique 
solution x ∈ Hβ[0, T] with α1 < β < α − 1 provided if

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)
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1 1
1, 2,3 3 1.h hLL T LL Tα β β− − −+ <

Proof. According to Lemma 3.1, it is sufficient to consider the existence of fixed point of operator A defined by

3

1 20
1

( ) ( , ) ( ) ( ), ( ( )) ( ( )), ( ( )) ,  0 .
T

i
i

Ax t G t s h s f x s g x s g x s x s ds t Tω
=

 
= + ≤ ≤ 

 
∑∫

Firstly, we show that A : Hβ[0, T ] → Hβ[0, T] with α1 < β < α − 1. In fact, for x ∈ Hβ[0, T ], from (48)-(51) and (55), 
we have

* *( ) ( )0
1 0

max | ( ) |
| ( ( )) |  ( ) | ( ) || ( ) ln( ) |

(1 ( ))
t p p s pt T

x t
x t t s p s t s t s

p t
β βω − − − −≤ ≤  ′≤ − − −Γ − ∫

( ) ( ) | ( ) |p st s p dsξ− ′+ − 

* *
*

1 2 5 0 0
max{1, } ( ) ( )

t tp p pa a a x T K t s ds t s dsβ
β

− − − ≤ − + −  ∫ ∫‖‖

*
*

*
1 1

1 2 5 *max{1, }
1 1

p
p p Kt ta a a x T

p

β

β β

− −
−

 
 = +
 − − 

‖‖

*
*

*
1 1

1 2 5 *max{1, }
1 1

p
p p KT Ta a a x T

p

β

β β

− −
−

 
 ≤ +
 − − 

‖‖

1 ,  0 ,B x s t Tβ ξ= ≤ < < ≤‖‖

( ) 1
2 0

( ) ( )| ( ( )) |  ( )
( ( )) ( ( ))

t p sx s x tx t t s ds
p s p t

ω − −≤ − −
Γ − Γ −∫

( ) 1
0

( ) ( ) ( ) ( ) ( )
( ( )) ( ( )) ( ( )) ( ( ))

t p sx s x t x t x t t s ds
p s p s p s p t

− − 
≤ − + − − Γ − Γ − Γ − Γ − 

∫

( ) 1 ( )
3 50 0

1( ) ( ) | ( ) |
( )

t tp s p sa x t s ds a x t s p dsβ
β β

ω

θ
ω

− − −
′  ′≤ − + −  Γ 

∫ ∫‖‖ ‖‖

( ) 1 ( )
3 2 4 50 0

( ) ( )
t tp s p sa x t s ds a a a x t s dsβ

β β
− − −≤ − + −∫ ∫‖‖ ‖‖

* * * *( ) 1 ( )
3 2 4 50 0

( ) ( ) ( ) ( )
t tp p s p p p s pa x t s t s ds a a a x t s t s dsβ

β β
− − − − −= − − + − −∫ ∫‖‖ ‖‖

(56)

(57)

(58)
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* * *
* 1

3 2 4 50 0
max{1, } ( ) ( )

t tp p p px T a t s ds a a a t s dsβ
β

− − − − ≤ − + −  ∫ ∫‖‖

* *
*

*
1

3 2 4 5
* *max{1, }

1

p p
p p a T a a a T

x T
p p

β

β β

− −
−

 
 ≤ +

− −  
‖‖

*
2 *,  ,  0 ,B x p p s t Tβ ω θ= − ≤ ≤ − ≤ < < ≤‖‖

(0) (0)
3 1 5

| ( ) || ( ( )) | ,
(1 ( ))

p px tx t t a a x t
p t βω − −≤ ≤

Γ −
‖‖

1 1
1 0

1

| ( ) ( ) || ( ( )) | ( )
| ( ) |

t x s x tg x t t s dsα

α
− −−

≤ −
Γ −∫

1 1
0

1
( )

| ( ) |
tx

t s dsβ β α

α
− −≤ −

Γ − ∫
‖‖

1

1 1
,

( ) | ( ) |
T x

β α

ββ α α

−

≤
− Γ −

‖‖

and

1
5

2
1

| ( ( )) | .
(1 )
a t

g x t x
α

βα

−

≤
Γ −

‖‖

From (38), (52) and (58)-(62), we have

3

1 2
1

( ), ( ( )) ( ( )), ( ( ))i
i

f x t g x t g x t x tω
=

 
+ 

 
∑

3

1 2
1

( ), ( ( )) ( ( )), ( ( )) (0,0,0) (0,0,0)i
i

f x t g x t g x t x t f fω
=

 
= + − + 

 
∑

3

1 2 1 2 3
1

| ( ) | | ( ( )) ( ( )) | ( ( )) | (0,0,0) |i
i

L x t L g x t g x t L x t fω
=

≤ + + + +∑

1 1
2 2 5

1 5 3 1 2
1 1 1

( )
( ) | ( ) | (1 )

L T x L a t x
L a x L B B x

β α α
β β

β ββ α α α

− −

≤ + + + +
− Γ − Γ −

‖‖ ‖‖
‖‖ ‖‖

(0)
3 1 5 | (0,0,0) |pL a a t x fβ

−+ +‖‖

1 (0)( ) | (0,0,0) | .pL Lt Lt x fα
β

− −≤ + + +‖‖

(59)

(60)

(61)

(62)

(63)
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From (41), (57) and Proposition 2.1 , we have

1 1 3
1

1 20
1

( ) ( ) ( ) ( ), ( ( )) ( ( )), ( ( ))
( )

T
i

i

T tAx t T s h s f x s g x s g x s x s ds
α α

α ω
α

− −
−

=

 
= − + Γ  

∑∫

3

0 1 2
1

( ) ( ), ( ( )) ( ( )), ( ( ))i
i

I h t f x t g x t g x t x tα ω+
=

  
− +  

  
∑

1 1 3
1

1 20
1

( ) ( ) ( ), ( ( )) ( ( )), ( ( ))
( )

T
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For x ∈ Hβ[0, T], t1, t2 ∈ [0, T] with t1 ≠ t2 (without loss of generality, we assume that 0 ≤ t1 < t2 ≤ T), in view of (53), 
(54), (63) and (64) together with t2

δ − t1
δ ≤ (t2 − t1)

δ for t2 > t1 ≥ 0 and 0 < δ ≤ 1, we have
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The inequality (65) implies that Ax(t) ∈ Hβ[0, T ]. Then, A : Hβ[0, T] → Hβ[0, T].
Secondly, we prove that A : Hβ[0, T] → Hβ[0, T] is a contractive operator. For x, y ∈ Hβ[0, T ], by the similar way 

as the first step, we get
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From (38) and the obtained above inequalities, we obtain
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From (66), we have
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1, 2, 2 13 3 ( ) .h hLL T LL T x y t tα β β β

β
− − −≤ + − −‖ ‖

Obviously, Ax(0) = 0 and Ay(0) = 0. Therefore, from (67), we have
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We obtain that A : Hβ[0, T] → Hβ[0, T] is a contractive operator together with (56). Then A exists a unique fixed 
point x* ∈ Hβ[0, T] according to Banach fixed point theorem. Lemma 3.1 indicates that the obtained unique fixed 
pointed x ∈ Hβ[0, T] is the solution of the boundary value problem (10).

Theorem 3.2 Suppose that (A1), (A2), (A3), (A4) and (A6) hold. Then the boundary value problem (10) exists a 
solution x ∈ Hγ[0, T ] with α1 < γ < β < α − 1.

Proof. According to Lemma 3.1, it is sufficient to consider the existence of fixed point of operator A defined by
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In the next analysis, we let
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where a1, a5 and B1 are the constants given by (48)-(50).
Firstly, we show that A : Hβ[0, T] → Hβ[0, T] with α1 < γ < β < α − 1. In fact, for x ∈ Hβ[0, T], we obtain the same 

estimation of ω1(x(t)), ω2(x(t)), ω3(x(t)), g1(x(t)) and g2(x(t)) as the Theorem 3.1.

(67)

(68)

(69)

(70)

(71)



Contemporary MathematicsVolume 3 Issue 4|2022| 545

From (58)-(62), (39) and (68) together with the inequality (a + b)δ ≤ aδ + bδ for 0 < δ < 1, a, b ≥ 0, we have
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For x ∈ Hβ[0, T], t1, t2 ∈ [0, T] with t1 ≠ t2 (without loss of generality, we assume that 0 ≤ t1 < t2 ≤ T), in a similar 
fashion to (65) and together with (68)-(72), we have
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The inequality (73) implies that Ax(t) ∈ Hβ[0, T]. Then, A : Hβ[0, T] → Hβ[0, T].
Let the ball Ωρ in Hβ[0, T] be Ωρ = {x ∈ Hβ; ||x ||β ≤ ρ}, where

3 3 31 2 1 1 2 2

1 11 1 1 1
1 11 1 1 1

5 5 5max (3 ) , (6 )  (6 ) , (3 ) , (6 ) , (6 ., )M M M Ma Ma Maµ µ µµ µ µ µ µ µρ − −− − − −
  ≥  
  

Secondly, we prove A : Ωρ → Ωρ in the space Hβ[0, T]. For x ∈ Ωρ, by (73) together with Ax(0) = 0, we have
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.
3 3 3
ρ ρ ρ ρ≤ + + ≤

Hence A(Ωρ) is a bounded subset in Hβ[0, T]. Then we obtain that A(Ωρ) is relatively compact in Hγ[0, T] by Lemma 
2.3 for α1 < γ < β. According to Lemma 2.2, the ball Ωρ is contained in the space Hγ[0, T] for α1 < γ < β.

Thirdly, we prove the operator A : Ωρ → Ωρ according to the norm || · ||γ in the space Hγ[0, T]. For x ∈ Ωρ ⊂ Hγ[0, T], 
in a similar fashion to Theorem 3.1, we have
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and

11
5

1 2
1 1 1

| ( ( )) | ,  | ( ( )) | .
( ) | ( ) | (1 )

a tTg x t x g x t x
αγ α

γ γγ α α α

−−

≤ ≤
− Γ − Γ −

‖‖ ‖‖

Form (76), (77) and (68), in similar fashion to (72), we have
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Form (78) and (71), in similar fashion to (73), we have

31 2
2 1 2 1| ( ) ( ) | ( 2 2 )( ) .Ax t Ax t M x x x t tµµ µ γ

γ γ γ− ≤ + + −‖‖ ‖‖ ‖‖

Form (79) and (74) together with Ax(0) = 0, in similar fashion to (75), we have
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which indicates that the operator A : Ωρ → Ωρ according to the norm || · ||γ. Hence, as a result, we obtain that the operator 
A maps Ωρ into itself for the norm || · ||γ and A(Ωρ) is relatively compact in Hγ[0, T].

In the end, we prove that the operator A : Ωρ → Ωρ is continuous according to the norm || · ||γ. Consider any xn ∈ Ωρ 
such that xn → x in Ωρ. By virtue of the continuity of function f(x, y, z), then ∀ε > 0, ∃ N > 0, for n > N, we have
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From (81), in a similar fashion to (73), for n > N, we have
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Since (Axn − Ax)(0) = 0, by (82), for n > N, we have
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which indicates that A is continuous at the any point x ∈ Ωρ with the norm || · ||γ.
Hence, A : Ωρ → Ωρ is completely continuous in Hγ[0, T]. Then we deduce that the boundary value problem (10) 

exists a solution x ∈ Hγ[0, T] (α1 < γ < β < α − 1) according to Schauder fixed point theorem.
Example 3.1 We consider the following boundary value problem

(80)

(81)

(82)

(83)
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then we claim that the boundary value problem (84) exists a unique nontrivial solution x ∈ H0.8[0, 1].

Proof. Let α = 1.9, α1 = 0.7, p(t) = 0.6 − 0.3t, β = 0.8, h(t) = t −0.1, 
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Obviously, p* = 0.6, p* = 0.3 and p* < α1 < β < α − 1. Since h(t) ∈ L(0, 1),
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then p(t), α, α1, h(t) and f satisfy the assumptions (A1), (A2), (A3) and (A4).
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Then, we have
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which implies that f satisfies the assumption (A5) of Theorem 3.1 with 1 2
1 1,  

200 300
L L= =  and 3

1
300

L = . By 
calculation, we have
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which implies that the condition (56) is satisfied. According to Theorem 3.1, the boundary value problem (84) exists a 
unique nontrivial solution in H0.8[0, 1].

Example 3.2 We consider the following boundary value problem

1 24
0.5 0.4 0.23 33

1.8 0.2 0 0
0 2 0.5 2 0.4 0.2 2

0 0

( ) ( )(sin )( ) ,  0 1,
1 1 ( ) ( )

(0) (1) 0.

t

t

D x D xxD x t t t
x x D x D x

x x

−
− + +

+ −
+ +

  
  + + + < <  + + +  

 
 = =

Then we claim that the boundary value problem (85) exists a nontrivial solution x ∈ H0.6[0, 1].

Proof. Let α = 1.8, p(t) = 0.4 − 0.2t, α1 = 0.5, β = 0.7, γ = 0.6, 

4 1 2
3 3 3

2 2 2
(sin )( , , )     

1 1
x y zf x y z

x x y z
= + +

+ + +
. 

Obviously, p* = 0.4, p* = 0.2 and p* < α1 < γ < β < α − 1. Then, p(t), α, α1, h(t) and f satisfy the assumptions (A1), (A2), (A3) 
and (A4).

Since

4 4
13 3
3(sin ) | |  | | ,

| |
x x x

x x
≤ =

then

1 1 2
3 3 3| ( , , ) |  | | | | | | ,  , , ,f x y z x y z x y z≤ + + ∈

which implies that f satisfies the assumption (A6) of Theorem 3.2 with M1 = M2 = M3 = 1, 1 2 3
1 1 2,   and 
3 3 3

µ µ µ= = = . 

(85)
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According to Theorem 3.2, we obtain that the boundary value problem (85) exists a nontrivial solution x ∈ H0.6[0, 1].
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in Hölder spaces. Symmetry. 2018; 10(10): 522.
[21]	Caballero J, Darwish MA, Sadarangani K. Solvability of a quadratic integral equation of Fredholm type in Hölder 
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Mathematics. 2018; 15(3): 98.
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