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Abstract: The adaptive identification method developed to evaluate the parameters of the Bouc-Wen hysteresis (BWH). 
The adaptive approach based on the use of adaptive observer. We synthesize adaptive identification algorithms using the 
second Lyapunov method. Requirements for the input of the system which guarantee the identification of parameters 
considered. We propose BWH modifications (BWHM). Adaptive algorithms for estimating BWHM parameters 
developed. The boundedness of adaptive system processes shown in coordinate and parametric spaces. We prove the 
exponential dissipativity of processes in an adaptive system by using the Lyapunov vector function method. Estimating 
method proposed for signaling uncertainty in the system. 
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1. Introduction
Various models [1] apply to the description of the hysteresis. But the Bouc-Wen model (BWM) [2-3] has the 

widest application. Many BWM modifications (BWMM) [4-9] were proposed. Each model considered the features of 
the object [10-15]. The BWM successful application depends on the identification of its parameters [16-21]. Various 
algorithms are used for BWM identification [22-24]. An adaptive parameter identification method [14] was proposed 
for the BW hysteresis model. Identification of BW hysteresis parameters is based on time data consider in [15]. The 
algorithm is based on the least squares method and the sensitivity analysis of the output. 

In [15, 17], adaptive algorithms propose for the BWM parameters estimation with the data forgetting [8]. Paper 
[18] presents an adaptive on-line identification methodology with a variable trace method to adjust the adaptation 
gain matrix. Most BWMM are based on the BWH approximation in some working areas of the object [19-24]. The 
approximation method choice depends on the requirements of the control and the workspace. Parametric identification 
procedures apply to obtain simplified BWH models.

Most proposed approaches use the derivative measurement by the output of the system. This possibility does not 
always exist in practical applications. There are studies [25] which estimates of BWM parameters do not coincide with 
the results obtained for other input data. Explain it with the fact that the BWM should be stable and ensure the adequacy 
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of a physical process [4].
The conditions to be satisfied by the Bouc-Wen model are considered in [26]. The major difficulties of the BWM 

parameters estimation are (i) the ensuring model stability (ii) the input choice. The stability imposes restrictions on the 
ranges of changes in model parameters. The choice of parameters belonging to the stability domain does not always give 
an adequate BWM [26].

So, the set of algorithms and procedures proposed for the Bouc-Wen model parameters identification. The models 
reflect the features of the system under study. As a rule, the change area BWM parameters set a priori. This is also true 
for some system parameters. It is often assumed that all system derivatives are measured. This assumption is not always 
true, which makes the algorithms unrealizable. Most identification procedures are valid only in some areas. Therefore, 
the design of identification algorithms is an urgent problem for BWH under uncertainty.

Below, we propose the adaptive identification based on adaptive observer. It is used for the problem solution 
stability and identification for system (1)-(4). Method are based on the approach proposed in [27-28] and does not 
require measuring derivatives of the system output. We believe that only the input and output of the system can be 
measured. BWH modifications are considered. They reduce the use of the model and remove the stability problem.

The paper has the following structure. Section 2 contains the problem statement. Section 3 considers the proposed 
modifications of the BWH (BWHM). These modifications guarantee the stable solving of the system with BWHM 
and its identification. Section 4 contains requirements on an input that guarantee the structural identifiability of the 
system with BWHM. The adaptive observer and the analysis of its properties are considered in sections 5, 6. We present 
modeling and discussion of results in sections 7, 8. Appendixes contain the stability proof of the adaptive system.

2. Problem statement
Consider the system SBW

(1)( , , ) ( ),+ + = mx cx F x z t f t

( , , ) ( ) (1 ) ( ),F x z t kx t kdz tα α= + - (2)

( )1 ( ) ,n nz d ax x z sign z x zβ γ-= - -   (3)

( ) ( ),y t x t= (4)

where m > 0 is mass, c > 0 is damping, F(x, z, t) is the recovering force, d > 0, n > 0, k > 0, α ∈ (0, 1),  f (t) is exciting 
force, α, β, γ are some numbers. The system (1)-(4) are the basis for the classic BWH presentation. All further studies on 
BWH are based on the modification of this system. Equations (1)-(4) are used for the analysis of nonlinear mechanical 
systems. Adaptation of system SBW to real objects requires BWH modification.

The system (1)-(4) are widely used for the processes analysis in construction mechanics, control of complex 
mechanical systems, modeling the work of damping devices and the like. Equation (1) describes an object that is 
affected by the restoring force F(x, z, t) and the exciting force  f (t). In applications, various approximations F(x, z, t) are 
used, reflecting the specific of the system.

The set of the experimental data

{ }I ( ), ( ), ,o f t y t t J= ∈ (5)

where J ⊂ R is the given time interval. Denote the system parameters vector as A = [m, c, a, k, α, β, γ, n]T.
Problem: design the adaptive observer for vector A estimation to
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(6)ˆlim ( ) ( ) y
t

y t y t π
→∞

- ≤

where ŷ R∈  is the output of the adaptive observer, πy ≥ 0.

3. System SBW modifications
Various modifications of BWH have been proposed (see, for example, [9, 11, 26]). They consider features and 

properties of the system. System (1)-(3) are the basis for modifications. The analysis shows that the last term in (3) 
guarantees “fine-tuning” the BW hysteresis in the saturation or switching areas. If this is not critical for the system, 
then by selecting parameters of the S1-system, this term in the equation (3) can be compensated. In addition, some 
modifications are simplified and increase the system (1)-(3) stability. The main purpose of making structural changes is 
to simplify the system and improve its properties. We propose the following modifications of the Bouc-Wen model (3) 
[28]

: ( ) ( ),n
n z z x x sign x x z sign zω µ υ

ρωµυβ ρ π β= - + -   M (7)

( ): ( ),n
n z x sign x x z sign zµ

µβ π β= -  M (8)

( ): ( ).n
n z x sign x x z sign zµ υ

µυβ π β= -  M (9)

The linear component on z in (7) increases the feasibility model, and stability of the system. As the system is 
nonlinear, the function | ( ) |x t ω

  is introduced to ensure the required hysteresis state. It guarantees a change z in the 
specified boundaries. Parameters ρ > 0, ω > 0 are some numbers.

We have not tried to due reproduce BWH (3) using modifications (7)-(9). A detailed analysis of the models (7)-(9) 
parameters effect of on hysteresis is given in [28]. 

4. About influence  f (t) on BWH parameters identifiability
The input choice is an important stage in the nonlinear systems identification. These issues are discussed in [28-29]. 

The input  f (t) of the system must be constantly excited and have the property of S-synchronizability. These conditions 
are the basis for the structural identifiability of the system (1)-(3). They guarantee the system parameters evaluation 
using adaptive algorithms. 

5. Design of adaptive observer
5.1 System SBW

Let d = 1, a = 1. Substitute F(x, z, t) in (1) and write it as

(10)( )2
1 2 3 ,s a s a x a z bf+ + + =

where
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1 2 3
(1 ) 1,  ,  ,  ,  .d c k ks a a a b

dt m m m m
α α-

= = = = =

Reduce (10) to an identification form on x· . Divide the left and right parts (10) into s + μ, where μ > 0 does not 
coincide with roots of the polynomial s2 + a1s + a2. Then (10)

(11)1 2 3 ,x z fx a x a p a p bp= + + +

,x xp p xµ= - +

,f fp p fµ= - +

(12),z zp p zµ= - +

where

1 2 3
( ) (1 ),  ,  .c m k c m ka a a

m m m
µ α µ µ α- - - -

= - = - = -

Variables pi, i = x, f, z obtained from equations pi = i/(s + μ). Equations (11), (12) contain only measurable variables 
except z. It complicates the identification of the system SBW parameters. 

Remark 1. Simplifications d = 1 and a = 1 do not affect the parameters (11) identification. Consideration d, a 
increases the number of estimated parameters. The system (10)-(12) are used to guarantee the system (1)-(4) parameters 
identification on the set (5). It excludes the use of the non-measurable derivative x·  in parametric identification.

Apply the model for parameters estimate of equation (11)

(13)1 2 3
ˆˆ ˆ ˆ ˆ ˆ( ) ,x x z fx k x x a x a p a p bp= - - + + + +

where kx > 0 is specified number, ˆ ( )ia t , i = 1, 2, 3 and ˆ( )b t  are adjusted parameters.
Designate ˆe x x= -  and obtain the equation for the identification error from (11), (13)

(14)1 2 3 ,x x z fe k e a x a p a p bp= - + ∆ + ∆ + ∆ + ∆

1 1 1 2 2 2 3 3 3
ˆˆ ˆ ˆ( ) ,  ( )where ,  ( ) ,  ( ) .a a t a a a t a a a t a b b t b∆ = - ∆ = - ∆ = - ∆ = -

The (14) is not solvable as the variable z is unknown in (12). Receive the current estimate for z. Consider the model

(15)1 2
ˆˆ ˆ ˆ ˆ( ) .z x z x fx k x x a x a p bp= - - + + +

Determine the residual ˆε = -z zx x  and use it for the variable z estimation. Apply the model

(16)( ) ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ,n n
z zz k z x x z sign z x zε β γ= - - + - -

  

  

where ( )( ) ( )x x t x tτ τ= + -

 ; kz > 0 is specified number; β̂ , γ̂  are the hysteresis (3) parameters estimations; τ is the 
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integration step. 
Introduce the residual ˆ zzε ε= -  and obtain the equation for ε

(17)( )ˆ ˆ ˆ ,n n
zk x x z sign z x zβ γε ε β βη γ γη= - + ∆ + ∆ + + ∆ + 

   

(18)( ) ( )ˆ ˆ ,n nx z sign z x z sign zβη = - 

 

(19)ˆ ,n nx z x zγη = -  

ˆ ˆ,  ,wher  e .x x x β β β γ γ γ∆ = - ∆ = - ∆ = -

  

Then the equation (13)

(20)ˆ1 2 3
ˆˆ ˆ ˆ ˆ ˆ( ) ,x x z fx k x x a x a p a p bp= - - + + + +

where

(21)ˆ ˆ ˆ.z zp p zµ= - +

Then (15)

(22)ˆ1 2 3 .x x z fe k e a x a p a p bp= - + ∆ + ∆ + ∆ + ∆

Synthesize algorithms for tuning parameters of adaptive models. Consider the Lyapunov function (LF) Ve(t) = 
0.5e2(t) and obtain for V·ε

(23)( )2
ˆ1 2 3 .e x x z fV k e e a x a p a p bp= - + ∆ + ∆ + ∆ + ∆

Obtain adaptive algorithms from the condition V·e ≤ 0

1 1 ,xa eγ∆ = -

2 2 ,xa pγ∆ = -

ˆ3 3 ,za epγ∆ = -

(24),b fb epγ∆ = -

where γi > 0, i = 1, 2, 3; γb > 0.
Synthesize algorithms for tuning model (16) parameters. Consider Vε(t) = 0.5ε2(t) and equation (17). Then V·ε

(25)( )( )2 ˆ ˆ ˆ ,n n
zV k x x z sign z x zε β γεε ε ε β βη γ γη= = - + ∆ + ∆ + + ∆ +  
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where ε satisfies equation (17).
We receive from (25)

( )ˆ ˆ ,nx z sign zββ χ ε∆ = - 



(26)ˆ ,nx zγγ χ ε∆ = - 

 

where χβ > 0, χγ > 0 are parameters that ensure the algorithms convergence.
Several algorithms are used to estimate the indicator n in (11). Their effectiveness depends on several factors. A 

simple algorithm has the form

(27)
[ ]

[ ]

ˆ 1
0 1

0 1

ˆ ˆ ˆ , if , ,
ˆ

0,   if , ,

n
n

z

z

z zx
n

εγ εβ υ υ
ε

ε υ υ
ε

-
- ∈

= 
 ∉








where υ0, υ1 are set positive numbers, γn > 0.
So, equations (12), (17), (21), (22), (24), (26), (27) describe the adaptive identification system for the SBW -system. 

Denote this system as ASBW.

5.2 System (1), (2) with hysteresis Mρωμυβn, Mμβn, Mμυβn

1. Model Mρωμυβn. Equations (16)-(19) have the form in this case

(28)( ) ( ) ( )ˆ ˆˆ ˆ ˆ ˆ ˆ ,n
z zz k z z x x sign x x z sign z

ω υµε ρ π β= - - - + -
  

   

(29)( ) ( )ˆ ˆ ˆ ,n
zk z x x sign x x z sign z

ω µ υ
ρ π βε ε ρ π β ρη πη βη= - - ∆ + ∆ - ∆ + + +   

    

(30)ˆ,x z x z
ωω

ρη = - 

 

(31)( ) ( ) ,x sign x x sign x
µ µ

πη = - 

   

(32)( ) ( )ˆ ˆ .n nx z sign z x z sign z
υυ

βη = - 

 

Consider V·ε

(33)( ) ( )2 ˆ ˆ ˆn
zV k z x x sign x x z sign z

ω µ υ
ε ρ π βε ε ρ π β ρη πη βη = - + -∆ + ∆ - ∆ + + + 

 
    

   

and obtain algorithms
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( )ˆ ˆ ,nx z sign zββ χ ε∆ = 



( ) ,x sign x
µ

ππ χ ε∆ = -  

  

(34)ˆ ,z x
ω

ρρ χ ε∆ = - 

 

where χβ > 0, χρ > 0, χπ > 0 are parameters guaranteed convergence of algorithms, ˆ ˆ( ) ,  ( ) .t tρ ρ ρ π π π∆ = - ∆ = -
The structure of algorithms for estimating n, ω, μ coincides with (27).
2. Model Mμβn. Equations (16)-(19) have the form 

(16.2)( ) ( ) ˆˆˆ ˆ ˆ ˆ( ),n
z zz k z x sign x x z sign z

µ
ε π β= - - + -

  

  

(17.2)( ) ( )ˆ ˆ ,n
zk x z sign z x sign x

µ
β πε ε β π βη πη= - - ∆ + ∆ + +  

    

(18.2)( ) ( )ˆ ˆ ,n nx z sign z x z sign zβη = - 

  

(19.2)( ) ( ).x sign x x sign x
µµ

πη = -  

    

3. Model Mμυβn. Equations (16)-(19) have the form 

(16.3)( ) ( ) ˆˆˆ ˆ ˆ ˆ( ),n
z zz k z x sign x x z sign z

µ υ
ε π β= - - + -

  

  

(17.3)( ) ( )ˆ ˆ ,n
zk x z sign z x sign x

υ µ
β πε ε β π βη πη= - - ∆ + ∆ + + 

  

   

(18.3)( ) ( )ˆ ˆ ,n nx z sign z x z sign z
υυ

βη = -



 

(19.3)( ) ( ).x sign x x sign x
µµ

πη = -

 

   

Algorithms structurally coincide with (34) for (16.2) and (16.3).

6. Properties ASBW

Evaluate properties of the ASBW -system. Consider the subsystem ASX described by equations (22), (24). Let 

[ ]1 2 3( ) ( ), ( ), ( ), ( ) TK t a t a t a t b t
∆

∆ = ∆ ∆ ∆ ∆ ,
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(35)1( ) 0,5 ( ) ( ),T
KV t K t K t

∆ -= ∆ Γ ∆

(36)( ) ( ) ( ),e KV t V t V t= +

where Γ = diag(γ1, γ2, γ3, γb).
Assumption 1. The input of the system (1)-(3) is constantly excited and bounded, i.e. the condition 

(37)2 ( ):f f tη η≥PE

is valid for 0η∃ >  and 0t t∀ ≥  on some interval [0, T].
Theorem 1. Let (i) functions Ve(t) = 0.5e2(t), VK(t) are positive definite and satisfy conditions inf ( )ee

V e
→∞

→ ∞, 

inf ( )KK
V K

∆ →∞
∆ → ∞; (ii) assumption 1 for  f (t) satisfied. Then (i) all trajectories of the system ASX bounded, (ii) belong 

area 

( ) ( ){ }0G , : ( ) ,t e K V t V t= ∆ ≤

(a3) the estimation 

(38)
0

02 ( ) ( ) ( )
t

x e
t

k V d V t V tτ τ ≤ -∫

is fair. 
We give the proof of Theorem 1 in Appendix A.
Theorem 1 shows the restriction of adaptive system ASX trajectories. Ensuring of asymptotic stability in the system 

demands to impose additional conditions. Consider these conditions. Let ˆ( ) ( ) ( ) ( ) ( )
T

x z fP t x t p t p t p t∆  =   .
Definition 1. The vector P is constantly excited with a level v or have property PEv if 

(39)4: ( ) ( )TP t P t Iν ν≥PE

fairly for 0ν∃ >  and 0t t∀ ≥  on some interval T > 0, where I4 ∈ R4 is the unity matrix.
If the vector P(t) has property PEv, then we will write P(t) ∈ PEv.
The system SBW is stable, and the input  f (t) is restricted. Therefore, present the property PEv for the matrix BP(t) = 

P(t)PT(t) as

(40), 0: ( )    ,l P lI B t I t tν ν ν ν≤ ≤ ∀ ≥PE

where 0ν >  is some number.
Let the estimate for VK(t) be fair

(41)( ) ( )2 21 1
10.5 ( ) ( ) 0.5 ( ) ,l KK t V t K tβ β- -Γ ∆ ≤ ≤ Γ ∆

where β1(Γ), βl(Γ) are minimal and maximum eigenvalues of the matrix Γ.
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Apply (40), (41) and get estimations for V·e, V
·
K

(42)
( )

,l
e x e K

x
V k V V

k
νβ Γ

≤ - +

(43)( )1
3 8 ,
4 3K K eV V Vϑνβ ϑ≤ - Γ +

where 0ϑ >  is some number. We describe the method of obtaining estimates (42), (43) in [30].
Theorem 2. Let conditions be satisfied (i) positive definite Lyapunov functions Ve(t) = 0.5e2(t) and VK(t) = 0.5ΔKT(t)

Γ-1ΔK(t) allow the indefinitely small highest limit at |e(t)| → 0, ||ΔK(t)|| → 0; (ii) P(t) ∈ PEv,v-; (iii) equality eΔKTP = 

( )2T Te K P K B K eϑ∆ = ∆ ∆ +  is fair in the area Ov(O) with 0 ϑ< , where O = {0, 03m} 2 2
0,{0, 0 }O R R J ∞= ⊂ × × R × R3m × J0, ∞, Ov is some neighborhood 

of the point O; (iv) the function VK(t) satisfies (41); (v) V·ε, V
·
K satisfy the system of inequalities

(44)

( )

( )1
;

38
3 4

l
x

ee x

KK

V

k
VV k
VV

A

ν β

νϑβ
ϑ

 Γ 
-     ≤    Γ     -

 







(vi) the upper solution for [ ], ( ) ( ) ( ) T
e K e KV t V t V t=  satisfies to the comparison equation S· = AVS if

(45)( ) ( ) ( )( )0 0 0( ) ( )     & ,V t s t t t V t s tρ ρ ρ ρ≤ ∀ ≥ ≤

where ρ = e, K, S = [se sK]T, AV ∈ R2×2 is M-matrix [31]. Then the system ASX is exponentially stable with the estimation

(46)( ) [ ]0
, 0 ,( ) ( ),  ,V TA t t

e K e K e KV t e S t V V V-≤ =

if

(47)( )
( )1

240,  .
3

l
x xk k

νβ
νβ

Γ
> ≥

Γ

Theorem 2 shows if P(t) ∈ PEv,v-, then the adaptive system ASX gives accurate estimates of system (11) parameters. 
The system parameters satisfy condition (47). We suppose that the variable ẑp  bounded.

The boundedness of the variable ˆzx  follows from the system stability.
Consider subsystem ASZ described by equations (17), (25) and (26). Introduce Lyapunov functions

(48),( ) ( ) ( ),V t V t V tεβγ ε β γ= +

(49)( ) ( )2 21 1
, ( ) 0.5 ( ) 0.5 ( ) .V t t tβ γ β γχ β χ γ- -= ∆ + ∆
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Theorem 3. Let (1) functions Vε(t) = 0.5ε2(t), Vβ,γ(t) are positive definite and satisfy condition

[ ]
( ),

,
inf ( ) ,  inf , ;V Vε β γ

ε β γ
ε β γ

→∞ ∆ ∆ →∞
→ ∞ ∆ ∆ → ∞

(2) the function Vεβγ(t) has the form (88); (3) the function

(50)
1

1 1 1
( )

( ) sup ,  sup ( ),
( , )

n t
g t g g t

V tε εε

ε
ε

+

∈Ω ∈Ω
= = 

exists, where Ω is the definition range of the subsystem ASZ; (4) |Δ x· | ≤ δΔ, δΔ ≥ 0, |x· | ≤ υ, υ > 0; (5) the assumption 1 
holds for the system (1)-(3). Then (i) all trajectories of the system ASZ bounded, (ii) trajectories belong in the area

( ) ( ){ }0G , , : ( ) ,V t V tε εβγ εβγε β γ= ∆ ∆ ≤

(iii) the estimation

(51)( ) ( )( ) ( )2
1 0

1 0

1( ) ( ) ( ) ( ),
2 ( )

o

t

z
zt

k g V d V t V t
k g t tε εβγ εβγυ β γ τ τ δ

υ β γ ∆- + + ≤ -
- + -∫

is fair if 

(52)1( ) .zk gυ β γ> +

We give the proof of Theorem 1 in Appendix B.
So, the boundedness of trajectories in the adaptive system ASBW was proved. The trajectories limitation of the 

subsystem ASZ is a more complex problem in the parametric and output spaces. The estimation (51) shows that the 
quality of ASZ -system processes depends on the output derivative of the SBW -system. The guarantee of the ASZ -system 
stability is the fulfillment of the condition (52). This conclusion explains problems in implementing various procedures 
for BWM identifying. The following result gives more exact estimations for ASZ -system.

Theorem 4. Let (i) positive definite Lyapunov functions

(53)( ) ( )2 22 1 1
,( ) 0.5 ( ),  ( ) 0.5 0.5V t t V tε β γ β γε χ β χ γ- -= = ∆ + ∆

allow the indefinitely small highest limit at |ε(t)| → 0, ||[Δβ(t), Δγ(t)]|| → 0; (ii) P(t) ∈ PEv,v-; (iii) c1 > 0, c2 > 0 exist such 
that

( ) ( )22 2
2ˆ ˆ ,n nx z c x zε γ γ ε

 
∆ = ∆ + 

 
 

 

(54)( ) ( ) ( )22 2
1ˆ ˆ ˆn nx z sign z c x zε β β ε

 
∆ = ∆ + 

 
 

 

in area Ov(O), where O = {0, 02} 2 2
0,{0, 0 }O R R J ∞= ⊂ × × R × R2 × J0, ∞, Ov is some neighborhood of a point O; (iv) the inequality (ε - εz)

2n ≥ 
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cz holds for almost all t, where cz ≥ 0; (v) πx ≥ 0 u ω > 0 exist such that 2( ) xx π≥

  and |ε - εz| ≤ ω|ε|; (vi) the function

(55)
2( 1)

2 2 2
( )

( ) sup ,  sup ( ),
( , )

n t
g t g g t

V tε εε

ε
ε

+

∈Ω ∈Ω
= = 

exists, where Ω the definition range of the subsystem; (vii) V·ε, V
·
β,γ satisfy the system of inequalities

(56)

( )
( )

1 2 2

,,

12
2 .
02

z
zs

k g gV V
kd VV с

A B

ε ε

β γβ γ

ε ε

υ ωυ λχωυ
δ∆

 - - -       ≤ +      -          











(viii) the upper solution for Vε,β,γ = [Vε(t)Vβ,γ(t)]
T satisfies to the equation

(57)( )2 ,S A S Bε ε δ∆= +

 

if

(58)( ) ( ) ( )( )0 0 0( ) ( )     & ,V t s t t t V t s tρ ρ ρ ρ≤ ∀ ≥ ≤
   

 

where ,

T
S s sε β γ =  


  , ( , ),ρ ε β γ= , Aε ∈ R2×2 is M-matrix. Then the system ASZ is exponentially dissipative with the 
estimate

(59)( ) ( ) ( )0

0

2
, , 0( ) ( ) ,

T
A t t A t

t
V t e S t e B dε ε τ

ε β γ εδ τ- -
∆≤ + ∫

if

( )1 2 1 22 ,  2 2 ,  0,z z s sk g g k g g d c dυ ωυ υ ωυ λχωυ> - - - > > 

where

( ) ( ) ( )1 2min , ,  min , ,  max , ,  .s x zc c с d ccβ γχ χ χ χ χ χ χπβ γ= = = =

So, the system ASZ is exponentially dissipative. The dissipativity area depends on the informational set Io of the 
SBW -system. 

Get results that show the possibility of using adaptive observers to parameters identification of the SBW -system. 
Properties of system (1) with BWHM supervene from the presented theorems.
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7. Simulation results
Consider the engine control system (1)-(3) with parameters: n = 1.5, c = 2, m = 1, β = 0.5, γ = 0.2, α = 0.7, k = 0.6. 

Let d = a = 1. Exciting force  f (t) = 2 - 2sin(0.15πt). The system is modeled with initial conditions x(0) = 1, x· (0) = 0, 
z(0) = 1. Form the set Io. The system phase portrait and output of the hysteresis shown in Figure 1. 

Estimate the structural identifiability of the system (1)-(3). Construct the structure eyS  (Figure 2) using the method 
[32]. A variable ˆ ˆ is . h he R e x x x∈ = -      is an estimation of the steady state (process) in the SBW -system for 9.85t∀ ≥ s, and 
e is the nonlinearity estimation in the corresponding space.
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Figure 1. System phase portrait and hysteresis change
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 for assessing possibility of solving identification problem
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As follows from Figures 1, 2, definition areas z and e coincide. Analysis eyS  shows that the system SBW is 
structurally identifiable, and input  f (t) is S-stabilizing. 

Consider the system parameters identification. Determine the parameter μ of the system (13) using the transient 
process analysis for e and t < 9.85s. Calculate Lyapunov exponents (LE) [33]. The estimation for the maximum LE is 
–0.9. Therefore, we set μ = 0.8. Initial conditions in (12) are equal to zero.

Adaptive system work results are presented in Figures 3-5. Parameters kx, kz equal to 2.5 and 0.75. The tuning 
process of ASX -systems parameters (the model (12)) is shown in Figure 3. Figure 4 showed the model (16) parameters 
tuning.
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2â

3â
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Figure 3. Tuning of model (13) parameters
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Show the modification of identification errors e, ε in Figure 5. We see that the accuracy of obtained estimations 
depends on the numbers of tuned parameters, and the level x· and properties  f (t). Obtained results confirm statements 
of theorems 3 and 4. The ASZ -system work results influence the tuning processes in the ASX -system. Gain coefficients 
in (25), (26) and (27) are χβ = 0.0000002, χγ = 0.0000002, γ4 = 0.00005, γ1 = 0.0002, γ2 = 0.00001, γ3 = 0.00002. The 
parameter n is 1.5 in (16).

Remark 2. Modeling results of the system ASBW with the algorithm (27) showed that the algorithm is sensitive to 
various perturbations, increases the adaptation time and requires further study. 

The hysteresis output estimation is shown in Figure 6. Comparison of determination coefficients rxz = 0.864 for the 
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reference BWH in (Figure 1) and the resulting BWH (Figure 6) ˆˆ 0.764xzr =  confirms the effectiveness of the proposed 
approach.

Figure 7 presents comparing results estimates ẑ and zε , obtaining in subsystems ASX and ASZ on the interval [25; 
70]s. We analyze the dependence ˆ ˆ( )z zε  and show the approach effectiveness as the coefficient of determination is 

ˆ, 0.91
zzr ε = . In Figure 7, we represent the secant ˆ ˆ( )z zε . Results confirm the adequacy of the obtained estimate ẑ.
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Figure 7. Comparison of estimates ẑ and uncertainty εz

Figures 8-12 represent the work of the adaptive system with (8), π = 1. Tuning of models (20) and (16.2) 
parameters shows in Figures 8, 9. 
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Figure 10. Outputs modification of systems ASX, ASZ

Figure 10 shows the change in errors e, ε. The accuracy of obtained parameter estimates is shown in Figure 11, 
where Nβ,μ,n(t) = ||(Δβ(t))2 + (Δμ(t))2 + (Δn(t))2||, ||.|| is the Euclidean norm.

Figure 12 demonstrates the adaptive system work with Mμβn in (ε, Nβ,μ,n) and (ε, ( )ˆ,ε β ) spaces. We see that the tuning 
process is nonlinear. It depends on the main circuit ASX work of the adaptive system and the uncertainty estimation.

So, simulation results confirm the exponential dissipativity of the designed system. The obtained results are 
applicable to the analysis of robotic and macaronis systems.
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8. Conclusion
We propose the adaptive identification method of system parameters with the Bouc-Wen hysteresis. We relate 

the fundamental problem of the BWH identification to ensuring the stability of the assessment system. The proposed 
identification method is based on the use of adaptive observers. Algorithms for the adaptive observer are designed 
and the trajectories limitation in the adaptive system is shown. An approach is proposed to estimate the uncertainty 
about the hysteresis state. This estimation is used to adjust the parameters of the hysteresis model. We consider 
BWH modifications and propose adaptive algorithms for estimating their parameters. The Lyapunov vector function 
method are used to evaluate the identification system quality in coordinate and parametric spaces. We prove processes 



Contemporary MathematicsVolume 3 Issue 4|2022| 449

exponential dissipativity of in an adaptive system. It shows that the exponential dissipation domain of the system 
determines by the level of derivative output. We study the influence of input on BWH parameters identification.
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Appendix A
A.1 Proof of Theorem 1

Consider the Lyapunov function V(t) (36). Then V·(t)

(A.1)2 2 .x K K x eV k e V V k V= - + - ≤ -  

Apply the condition (i) theorem 1. As V·(t) < 0, the ASX -system is stable. Integrate V·(t) on the time and obtain

(A.2)
0

0( ) 2 ( ) ( ).
t

x e
t

V t k V d V tτ τ- ≥∫

Get from (A.2) to all trajectories of the system ASX belong to the area Gt = {(e, ΔK) : V(t) ≤ V(t0)}. We get an 
estimate for the ASX -system

(A.3)( )
0

02 ( ) ( ).
t

x e
t

k V d V t V tτ τ ≤ -∫
                                                                                                                                                                                      □

Appendix B
B.1 Proof of Theorem 3

Determine V·ε,β,γ

( )2
, ,zV k x V Vεβγ β γ β γ β γε ε βη γη= - + + + ∆ + -  



(B.1)( )2 .zk xβ γε ε βη γη= - + + + ∆

Since, x is function x, x xσ= , where σ ≈ 1. We have showed that εz is the estimation z. Therefore, present ηβ as

(B.2)( ) ( )ˆ ˆ ,n n nx z sign z x z sign z xβη ε= - ≅

  

for 0t t∀ > > tε. Similarly

(B.3)( ) ( )ˆ ˆ ,n n nx z sign z x z sign z xβη ε= - ≅

  

Considering the assumption 1 and the boundedness of trajectories ASX -system, we obtain | x· | ≤ υ for 0t t∀ > > t0, where 
υ > 0. Then
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(B.4)

2
zV k xεβγ β γε β ε η γ ε η ε≤ - + + + ∆



1 12 n n
zk xε βυ ε γυ ε ε+ +≤ - + + + ∆

12 ( ) n
zk ε υ β γ ε δ ε+

∆≤ - + + +

where |Δx· | ≤ δΔ, δΔ ≥ 0.
Let

(B.5)
1

1 1 1
( )

( ) sup ,  max ( ).
( , )

n

t

t
g t g g t

V tε ε

ε
ε

+

∈Ω
= = 

Then |ε|n+1(t) ≤ g1ε
2(t) and transform (B.4) to the form

( )2 2
1zV k gεβγ ε υ β γ ε δ ε∆≤ - + + +

(B.6)( ) 2
1( ) ,zk gυ β γ ε δ ε∆= - - + +

where kz - υ(β + γ)g1 > 0.
Apply the inequality

(B.7)
2

2 2 .
2 2
a baq bq q

a
- + ≤ - +

Then (B.6)

( ) 2
1( )zV k gεβγ υ β γ ε δ ε∆≤ - - + +

( ) ( )221

1

( ) 1
2 2 ( )

z

z

k g
k g

υ β γ
ε δ

υ β γ ∆
- +

≤ - +
- +

(B.8)( ) ( ) ( )2
1

1

1( ) .
2 ( )z

z
k g V

k gευ β γ δ
υ β γ ∆≤ - - + +

- +

Integrate (B.8) and obtain the estimation

(B.9)( ) ( )( ) ( )2
1 0

1 0

1( ) ( ) ( ) ( ).
2 ( )

o

t

z
zt

k g V V t V t
k g t tε εβγ εβγυ β γ τ δ

υ β γ ∆- + + ≤ -
- + -∫

The left part (B.9) is nonnegative and Vε(t) satisfies conditions of theorem 3. Therefore, all trajectories ASZ -system 
is limited.                                                                                                                                                                              □
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B.2 Proof of Theorem 4

Consider V·ε

(C.1)( ) ( )( )2 ˆ ˆ ˆ .n n
zV k x x z sign z x zε β γε ε βη γη ε β γ= - + + + ∆ + ∆ + ∆  

  

Evaluate the second and third summands on the right side (C.1).
Lemma C1. The estimation 

n
βη υ ε≤

is fair for ˆ ˆ( ) ( ).n nx z sign z x z sign zβη = - 

 

Lemma C1 proof. 
As | x· | ≤ υ, then

□

( ) ( )ˆ ˆn nz sign z z sign zβη υ σ≅ -

( )ˆ ˆ ˆ ˆ .n n n n nz z z z z zυ υ υ ε≤ - + - ≤ - =

Similarly, the estimation has the form  for ˆ .n n nx z x zγ γη υ ε η≤ = -    It is based on the proof of the lemma C1. 
Then

(C.2)( ) ( ) 1 ,nxβ γε βη γη υ β γ ε δ ε+
∆+ + ∆ ≤ + +

where ( )υ υ β γ= + .
Consider the last item in the right member (C.1).
Lemma C2. The estimation

(C.3)( )( ) { }1ˆ ˆ ˆ ,n n nx z sign z x zε β γ ωυ ε β γ+∆ + ∆ ≤ ∆ + ∆ 

 

is fair for ˆ ˆ ˆ( ( ) ),n nx z sign z x zε β γ∆ + ∆ 

   where ω > 0 is such that |ε - εz| ≤ ω|ε|.
Lemma C2 proof. Transform (C.3) to the form

(C.4)( )( ) ( ) ( )( )
ˆ

ˆ ˆ ˆ .
z

n n n
z z

z
x z sign z x z x sign sign x

ε ε
ε β ε γ ε ε ε β ε ε γ

= -
∆ + ∆ = - ∆ - + ∆   

   

Let ω > 0 exist such that |ε - εz| ≤ ω|ε|. Then (C.4)
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(C.5)

( ) ( )n
z zx sign sign xε ε ε β ε ε γ- ∆ - + ∆ 

 

( ) ( )1n
zsign sign xωυ ε β ε ε γ+≤ ∆ - + ∆ 



{ }1 .nωυ ε β γ+≤ ∆ + ∆

(C.3) is result (C.5).                                                                                                                                                      □
Consider (C.5) and transform ωυ|ε|n+1{|Δβ| + |Δγ|} into the form

(C.6){ } ( )1 2( 1) 2 20.5 0.5 ,n nωυ ε β γ ε λ β γ+ +∆ + ∆ ≤ + ∆ + ∆

where λ > 1.
As

( ) ( ) ( ) ( )2 2 2 21 1
,2 0.5 2 ,Vβ β γ γ β γβ γ χ χ β χ χ γ χ- - ∆ + ∆ = ⋅ ∆ + ∆ ≤  

where χ = max( χβ, χγ), then (C.6) receives the form

(C.7){ }1 2( 1)
,0.5 .n n Vβ γωυ ε β γ ωυε λχωυ+ +∆ + ∆ ≤ +

As

(C.8)( )22 21 1 ,
2 2z z

z
k k

k
ε δ ε ε δ∆ ∆- + ≤ - +

then (C.1), considering lemmas C1 and C2, and inequalities (C.7) and (C.8), we present as

(C.9)( )1 22 2( 1)
,

1 10.5 .
2 2

n n
z

z
k V

kβ γε υ ε ωυε λχωυ δ+ +
∆≤ - + + + +

12 2( 1)
,0.5n n

zV k Vε β γε υ ε δ ε ωυε λχωυ+ +
∆≤ - + + + +



Consider functions 1( )g t  (B.5) and

2( 1)

2 2 2
( )

( ) sup ,  max ( ).
( , )

n

t

t
g t g g t

V tε ε

ε
ε

+

∈Ω
= = 

Then (C.9)

(C.10)( ) ( )2
1 2 ,

1 12 .
2 2z

z
V k g g V V

kε ε β γυ ωυ λχωυ δ∆≤ - - - + +
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Obtain the estimation for the derivative 1 2 1 2
, ( ) 0.5 ( ) 0.5 ( ) :V tβ γ β γχ β χ γ- -= ∆ + ∆

(C.11)( ), ˆ ˆ ˆ .n nV x z sign z x zβ γ ε β ε γ= - ∆ - ∆  

 

Let c1 > 0, c2 > 0 exist such that

(C.12)( ) ( )22 2
2ˆ ˆ ,n nx z c x zε γ γ ε

 
∆ = ∆ + 

 
 

 

(C.13)( ) ( ) ( )22 2
1ˆ ˆ ˆ .n nx z sign z c x zε β β ε

 
∆ = ∆ + 

 
 

 

Then (C.11)

(C.14)( ) ( ) ( )( )2 2 22
, 1 2ˆ ,nV c x z c cβ γ ε β γ= - - ∆ + ∆ 



where c = c1 + c2.
Let c- = min(c1, c2). Then

(C.15)( ) ( ) ( ) ( )( )2 2 2 2
1 2 ,2 .c c c c Vβ γβ γ β γ χ∆ + ∆ ≥ ∆ + ∆ ≥

where χ- = min( χβ, χγ). 
Apply (C.14) and (C.15) write as

(C.16)( )22
, ,ˆ2 .nV c c x z Vβ γ β γε χ≤ - - 



2bounded ( ) 0,xx x π≥ ≥ 

   therefore,

( )2 22 2
, , ,ˆ ˆ2 2 ,n n

xV c c x z V c c z Vβ γ β γ β γε χ ε χπ≤ - - ≤ - - 



(C.17)( )22
, ,2 .n

x zV c c Vβ γ β γε χπ ε ε≤ - - -

The variable ε boundedness follows from theorem 3, and the boundedness εz is the boundedness result ε. Therefore, 
( )2 wh, e 0e .rn

z z zс сε ε- ≥ ≥  So

(C.18)2
, ,2 .x zV c cc Vβ γ β γε χπ≤ - -

Let .s x zd ccχπ  Then (C.14) write as

(C.19), , ,2 .s sV d V cd Vβ γ β γ β γε≤ - +
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Use the inequality (B.7) and obtain the estimation for V·β,γ

(C.20), , .
2
sd

V V cVβ γ β γ ε≤ - +

So, the following system of inequalities is fair for the ASZ -system

(C.21)

( )
( )

1 2 2

,,

12
2 .
02

z
zs

k g gV V
kd VV с

A B

ε ε

β γβ γ

ε ε

υ ωυ λχωυ
δ∆

 - - -       ≤ +      -          











Let 0 0 0 ,( ) ( ),  ( ) & ( ( ) ( )),  ( ) [, , an  ] .d TV t s t t t V t s t S s sρ ρ ρ ρ ε β γρ ε β γ≤ ∀ ≥ ≤ = =
   



     The comparison system for (C.17) 
has the form

(C.22)( )2 .S A S Bε ε δ∆= +

 

We have the estimation for the system ASZ from (C.22)

(C.23)( ) ( ) ( )0

0

2
, , 0( ) ( ) ,

T
A t t A t

t
V t e S t e B dε ε τ

ε β γ εδ τ- -
∆≤ + ∫

where , , ,[ ]TV V Vε β γ ε β γ=  if

□( )1 2 1 22 , 2 2 , 0.z z s sk g g k g g d c dυ ωυ υ ωυ λχωυ> - - - > > 


