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Abstract: The adaptive identification method is developed to evaluate the parameters of the Bouc-Wen hysteresis (BWH).
The adaptive approach is based on the use of adaptive observer. We synthesize adaptive identification algorithms using
the second Lyapunov method. Requirements for the input of the system which guarantee the identification of parameters
is considered. We propose BWH modifications (BWHM). Adaptive algorithms for estimating BWHM parameters are
developed. The boundedness of adaptive system processes is shown in coordinate and parametric spaces. We prove the
exponential dissipativity of processes in an adaptive system by using the Lyapunov vector function method. Estimating
method is proposed for signaling uncertainty in the system.
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1. Introduction

Various models [1] apply to the description of the hysteresis. But the Bouc-Wen model (BWM) [2-3] has the
widest application. Many BWM modifications (BWMM) [4-9] were proposed. Each model considered the features of
the object [10-15]. The BWM successful application depends on the identification of its parameters [16-21]. Various
algorithms are used for BWM identification [22-24]. An adaptive parameter identification method [14] was proposed
for the BW hysteresis model. Identification of BW hysteresis parameters is based on time data consider in [15]. The
algorithm is based on the least squares method and the sensitivity analysis of the output.

In [15, 17], adaptive algorithms propose for the BWM parameters estimation with the data forgetting [8]. Paper
[18] presents an adaptive on-line identification methodology with a variable trace method to adjust the adaptation
gain matrix. Most BWMM are based on the BWH approximation in some working areas of the object [19-24]. The
approximation method choice depends on the requirements of the control and the workspace. Parametric identification
procedures apply to obtain simplified BWH models.

Most proposed approaches use the derivative measurement by the output of the system. This possibility does not
always exist in practical applications. There are studies [25] which estimates of BWM parameters do not coincide with
the results obtained for other input data. Explain it with the fact that the BWM should be stable and ensure the adequacy
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of a physical process [4].

The conditions to be satisfied by the Bouc-Wen model are considered in [26]. The major difficulties of the BWM
parameters estimation are (i) the ensuring model stability (ii) the input choice. The stability imposes restrictions on the
ranges of changes in model parameters. The choice of parameters belonging to the stability domain does not always give
an adequate BWM [26].

So, the set of algorithms and procedures proposed for the Bouc-Wen model parameters identification. The models
reflect the features of the system under study. As a rule, the change area BWM parameters set a priori. This is also true
for some system parameters. It is often assumed that all system derivatives are measured. This assumption is not always
true, which makes the algorithms unrealizable. Most identification procedures are valid only in some areas. Therefore,
the design of identification algorithms is an urgent problem for BWH under uncertainty.

Below, we propose the adaptive identification based on adaptive observer. It is used for the problem solution
stability and identification for system (1)-(4). Method are based on the approach proposed in [27-28] and does not
require measuring derivatives of the system output. We believe that only the input and output of the system can be
measured. BWH modifications are considered. They reduce the use of the model and remove the stability problem.

The paper has the following structure. Section 2 contains the problem statement. Section 3 considers the proposed
modifications of the BWH (BWHM). These modifications guarantee the stable solving of the system with BWHM
and its identification. Section 4 contains requirements on an input that guarantee the structural identifiability of the
system with BWHM. The adaptive observer and the analysis of its properties are considered in sections 5, 6. We present
modeling and discussion of results in sections 7, 8. Appendixes contain the stability proof of the adaptive system.

2. Problem statement

Consider the system S,

mi +cx+ F(x,z,0) = f(2), (1)
F(x,2.0) = atke(t) + (1 - a)kd= (1), @
t=d™ai= || sign(z)- rill") 3)
y(@) = x(), “)

where m > 0 is mass, ¢ > 0 is damping, F(x, z, f) is the recovering force, d > 0,n >0, k> 0, a € (0, 1), f(¢) is exciting
force, a, f, y are some numbers. The system (1)-(4) are the basis for the classic BWH presentation. All further studies on
BWH are based on the modification of this system. Equations (1)-(4) are used for the analysis of nonlinear mechanical
systems. Adaptation of system Sy, to real objects requires BWH modification.

The system (1)-(4) are widely used for the processes analysis in construction mechanics, control of complex
mechanical systems, modeling the work of damping devices and the like. Equation (1) describes an object that is
affected by the restoring force F(x, z, ) and the exciting force f(¢). In applications, various approximations F(x, z, t) are
used, reflecting the specific of the system.

The set of the experimental data

L, ={/@), y(@),teJ}, )

where J C R is the given time interval. Denote the system parameters vector as 4 = [m, ¢, a, k, a, 5, 7, n]T.
Problem: design the adaptive observer for vector 4 estimation to
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lim |50 = y(0)] < 7, (6)

where J € R is the output of the adaptive observer, m, > 0.

3. System S, modifications

Various modifications of BWH have been proposed (see, for example, [9, 11, 26]). They consider features and
properties of the system. System (1)-(3) are the basis for modifications. The analysis shows that the last term in (3)
guarantees “fine-tuning” the BW hysteresis in the saturation or switching areas. If this is not critical for the system,
then by selecting parameters of the S1-system, this term in the equation (3) can be compensated. In addition, some
modifications are simplified and increase the system (1)-(3) stability. The main purpose of making structural changes is
to simplify the system and improve its propertics. We propose the following modifications of the Bouc-Wen model (3)
[28]

M popuopn - 2 = —pz|5c|a) + 7T|5c|ﬂ sign(x)— ,B|x|u |z|n sign(z), (7)
Mypp 2= 7Z|)'c|'u Sign()'c) —/)’|)'c||z|n sign(z), ®)
Mg+ 2 = 7| 5" sign(x) = B|x|" |2|" sign(2). ©)

The linear component on z in (7) increases the feasibility model, and stability of the system. As the system is
nonlinear, the function | x(¢)|” is introduced to ensure the required hysteresis state. It guarantees a change z in the
specified boundaries. Parameters p > 0, w > 0 are some numbers.

We have not tried to due reproduce BWH (3) using modifications (7)-(9). A detailed analysis of the models (7)-(9)
parameters effect of on hysteresis is given in [28].

4. About influence f(f) on BWH parameters identifiability

The input choice is an important stage in the nonlinear systems identification. These issues are discussed in [28-29].
The input /() of the system must be constantly excited and have the property of S-synchronizability. These conditions
are the basis for the structural identifiability of the system (1)-(3). They guarantee the system parameters evaluation
using adaptive algorithms.

5. Design of adaptive observer
5.1 System S,

Letd =1, a=1. Substitute F(x, z, ) in (1) and write it as
(s2 +c_11s+572)x+c7322bf, (10)

where
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, @y :a_k’ @ :—(l—a)k, b:l.
m m m

d _ ¢
s=—, a4 =—
dt m

Reduce (10) to an identification form on x. Divide the left and right parts (10) into s + x, where ¢ > 0 does not
coincide with roots of the polynomial s* + a,s + a,. Then (10)

)'c=a1x+a2px+a3pz+bpf, (11)
px:_/upx"'xa
Pr=—mpr+f,
Py =—up; +2z, (12)
where
- - - 1—
al:_c ,um’azz_ak H(c /Jm)’a3=_( a)k.
m m m

Variables p,, i = x, f, z obtained from equations p; = i/(s + u). Equations (11), (12) contain only measurable variables
except z. It complicates the identification of the system S, parameters.

Remark 1. Simplifications d = 1 and @ = 1 do not affect the parameters (11) identification. Consideration d, a
increases the number of estimated parameters. The system (10)-(12) are used to guarantee the system (1)-(4) parameters
identification on the set (5). It excludes the use of the non-measurable derivative X in parametric identification.

Apply the model for parameters estimate of equation (11)

)é=—kx()?—x)+&1x+&2px+&3pz+5pf, (13)

where k> 0 is specified number, 4,(¢), i =1, 2, 3 and E(t) are adjusted parameters.

Designate e = x —x and obtain the equation for the identification error from (11), (13)

é=—kee+Aax+Aayp, +Aayp, +Abpy, (14)

where Aal =d1(t)—a1, A(lz :dz(t)—az, A(l3 =é3(t)—a3, Ab 25(1)—b.

The (14) is not solvable as the variable z is unknown in (12). Receive the current estimate for z. Consider the model
Xz =~k (b —x)+ax+dyp, +bp;. (15)
Determine the residual &, = x — x_ and use it for the variable z estimation. Apply the model

", (16)

Z= —k, (2-¢&.)+ x —B|);||2|n sign(z)— ;7);|2
where x = (x(t+r)—x(t))/r; k., > 0 is specified number; ﬁ, y are the hysteresis (3) parameters estimations; 7 is the
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integration step.
Introduce the residual ¢ = Z — ¢_ and obtain the equation for ¢

&=—ke+ A)'C+Aﬂ|fc||2|" sign(2)+png +Ayx|” + 715 (17)
np = |x||z|n sign(z)—|)7c||2|n sign(f), (18)
ny =&z 2|, (19)

where Ax =% —x%, AB=B-5, Ay=y—7.
Then the equation (13)

);c:—kx(i—x)+&1x+d2px+&3p2+5pf, (20)
where
Pz =—pup;+2Z. 2D
Then (15)
e=—ke+Aax+Aayp, +Aazp; +Abp . (22)

Synthesize algorithms for tuning parameters of adaptive models. Consider the Lyapunov function (LF) V,(¢) =
0.5¢(¢) and obtain for V.,
&

Ve :—kxe2 +e(Aa1x+Aa2px +Aazp; +Abpf). (23)

Obtain adaptive algorithms from the condition Ve <0

Ady ==y,

Ady ==y pys

Ady =—y3eps,

Ab=-ypepy, (24)

where y,>0,i=1,2,3;y,>0.
Synthesize algorithms for tuning model (16) parameters. Consider V(¢) = 0.582(t) and equation (17). Then Vg

V, =eé=—k,e* + E(Aic+ A,B|)7c||2|" sign(2)+ g +Ay)7c|2|” + 7/777), (25)
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where ¢ satisfies equation (17).
We receive from (25)

AB = —;(/;8|)7c||2|" sign(2),

A

z

" (26)

>

Ay = —;(},gfc

where y;,> 0, x, > 0 are parameters that ensure the algorithms convergence.
Several algorithms are used to estimate the indicator # in (11). Their effectiveness depends on several factors. A
simple algorithm has the form

S {E G A S P

&
&

z

@7

S>-
Il

0, if—E[Uo,Ul],

z

where v, v, are set positive numbers, y, > 0.
So, equations (12), (17), (21), (22), (24), (26), (27) describe the adaptive identification system for the S, -system.
Denote this system as A4Sy,

5.2 System (1), (2) with hysteresis Mpwﬂvﬂn, Wl”pn, M/w/}n

1. Model M Equations (16)-(19) have the form in this case

powuvpn’
E=k. (2-e.)-pEld” + 2|4 sign(%)- BIF[" [2" sign(2), (28)
é=—k.e— Ap2|§c|“’ + M|§c|" sign (%) - Aﬂ|§c|“ 2" sign(2)+ piT,, + 277, + Bilg, (29)
7, =4 z=|3" 2, (30)
i =|§c|” sign (%) —| " sign (), (31)
g =|x" |2|" sign(z) |3 [&]" sign(2). (32)

Consider 7,
V,=—k.c*+e (—Apﬁ [ +az|&f sign(%)-ap[F[" 2" sign(2)+ pi, + 77, + /Jﬁﬁj (33)

and obtain algorithms
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A = ;(ﬁg|)7¢||2|n sign(é),

A =—yel3]" sign(),

8p=-7,82[3", (34)
where y,> 0, x, > 0, , > 0 are parameters guaranteed convergence of algorithms, Ap = p(1) - p, Az = 7(t) - 7.
The structure of algorithms for estimating , e,  coincides with (27).
2. Model M,,,. Equations (16)-(19) have the form
E=k, (2-e,)+#[%]" sign(%)- BIF|[" sign(2), (16.2)
é=—k,e-Ap3||" sign(2)+A;z|§c|“ sign(X)+ Brig + 7. (17.2)
iip = ||| sign(z) - [||2" sign(2), (18.2)
iz =[] sign ()~ |§]" sign(%). (192)
3. Model 91, . Equations (16)-(19) have the form
Pk, (2-6,)+ ;z|x|“ sign(%)— B3] |2[" sign(2), (16.3)
&=—k.e— M| |2[" sign(2)+ Ax |3 sign(%)+ Brig + 7, (17.3)
7 = 5" |2|" sign(z) |3 [2]" sign(2), (18.3)
e =" sign (%)~ |7 sign(%). (19.3)

Algorithms structurally coincide with (34) for (16.2) and (16.3).

6. Properties AS;,

Evaluate properties of the A4Sy, -system. Consider the subsystem A4S, described by equations (22), (24). Let
AK ()=[Aa, (1), A, (1), Aay (0, A60)]

Contemporary Mathematics 438 | Nikolay Karabutov



Vi (t)i0,5M T(Or'AK (1), (35)
Ve)=V,(@)+Vg (1), (36)

where I' = diag(y,, 75, 73, 7)-
Assumption 1. The input of the system (1)-(3) is constantly excited and bounded, i.e. the condition

Q’ﬂ,{ NROEY (37)

is valid for 377 > 0 and V¢ > ¢, on some interval [0, T].

Theorem 1. Let (i) functions V () = O.Sez(t), V(1) are positive definite and satisfy conditions inf V,(e) — oo,

>0

inf V, (AK) — oo; (ii) assumption 1 for f(¢) satisfied. Then (i) all trajectories of the system AS, bounded, (ii) belong

AR ]
area

G, ={(e.AK) V() <V (1)},

(a3) the estimation

t
[ 267, (2)dr <V (5) -V (2) (38)
fo

is fair.

We give the proof of Theorem 1 in Appendix A.

Theorem 1 shows the restriction of adaptive system A4S trajectories. Ensuring of asymptotic stability in the system
demands to impose additional conditions. Consider these conditions. Let P(t)é[x(t) p.(@®) p:p, (t)JT.
Definition 1. The vector P is constantly excited with a level v or have property PE, if

®E, : P()PT (1) 2 v, (39)

fairly for 3v > 0 and V¢ > t, on some interval > 0, where /, € R* is the unity matrix.

If the vector P(7) has property ®E , then we will write P(¢) € PE,.

The system Sy, is stable, and the input /() is restricted. Therefore, present the property ®E, for the matrix B,(f) =
P(t)PT(t) as

@EV,V:VIISBP(Z‘)SVI[ Vtzto, (40)

where v > 0 is some number.
Let the estimate for V,(¢) be fair

0.5 A7 (D)AK @) < V() <05 g7HT)|AK O, (41)
where ,(I), B(I') are minimal and maximum eigenvalues of the matrix I'.
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Apply (40), (41) and get estimations for Ve, VK

B (T)
k

X

V,<—kJV,+ Vi, (42)

VK < —%SVﬂl (F)VK +§19I/e, (43)

where 8 > 0 is some number. We describe the method of obtaining estimates (42), (43) in [30].
Theorem 2. Let conditions be satisfied (i) positive definite Lyapunov functions V(f) = O.Sez(t) and V(1) = O.SAKT(t)

l“flAK(t) allow the indefinitely small highest limit at |e(r)] — 0, [[AK(#)|| — 0; (ii) P(¢) € PE, ; (iii) equality eAK'P =
S(AKTBAK + ez) is fair in the area O (O) with 0< 9, where O = {0, 0"} € R x R x Jo, > O, is some neighborhood
of the point O; (iv) the function V(7) satisfies (41); (v) Vg, VK satisfy the system of inequalities

o 7AD)
H M
ikl s, wvop(n) |V ] (44)
3 4
Ay

(vi) the upper solution for V, , () = [Ve ®) V() ] " satisfies to the comparison equation S = A,Sif
Vo) <s,() V(t219)&(V,(t0) <5, (1)), (45)

where p =e, K, §=[s,5,] r A, e R*? is M-matrix [31]. Then the system AS is exponentially stable with the estimation

Vo @ <e0s00), Vox <[ i (46)
if
4 [278(T)
ke >0, ky 22 IO (47

Theorem 2 shows if P(f) € ®E, ;, then the adaptive system AS), gives accurate estimates of system (11) parameters.
The system parameters satisfy condition (47). We suppose that the variable P: bounded.

The boundedness of the variable x_ follows from the system stability.

Consider subsystem A4S, described by equations (17), (25) and (26). Introduce Lyapunov functions

Vep, () =V () + Vg, (2), (48)

Vi (0)=0.525 (AB@)) +0.572," (Ay())’. (49)
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Theorem 3. Let (1) functions V(f) = 0.582(1‘), Vi, (1) are positive definite and satisfy condition

inf V(&) — oo, inf Vg, (AB,Ay) —> oo;
| g‘\iw (&) > o [A,B,IAH;/]H—>OO 5.y (AB,Ay) = o

(2) the function Vgﬁy(t) has the form (88); (3) the function

_ e (o) _
&1 (t) = sup————, gy = sup & (1), (50)
ce) Vg (tv ‘9) ce)

exists, where Q is the definition range of the subsystem AS,; (4) |Ax| < J,, 0, >0, |x| < v, v > 0; (5) the assumption 1
holds for the system (1)-(3). Then (i) all trajectories of the system A4S, bounded, (ii) trajectories belong in the area

G, ={(8.0B.87) V5, () <V, (1)}
(ii1) the estimation
t

_[(kz _U(ﬁ+7)g1)Vg(T)dr+ 5
t

1
(k, —v(B+1)g)(t—1

)(5A ) <V (1)~ Vipy (O, (51)

1s fair if
k; >v(B+7)g- (52)

We give the proof of Theorem 1 in Appendix B.

So, the boundedness of trajectories in the adaptive system A4Sy, was proved. The trajectories limitation of the
subsystem A4S, is a more complex problem in the parametric and output spaces. The estimation (51) shows that the
quality of A4S, -system processes depends on the output derivative of the Sy, -system. The guarantee of the A4S, -system
stability is the fulfillment of the condition (52). This conclusion explains problems in implementing various procedures
for BWM identifying. The following result gives more exact estimations for A4S, -system.

Theorem 4. Let (i) positive definite Lyapunov functions

Vo) =0.562(1), Vg, (1) =0.525' (AB) +0.57," (A7) (53)

allow the indefinitely small highest limit at [e(7)] — 0, [[[AB(2), Ay(D)]|| — 0; (i1) P(7) € PE, ;; (iii) ¢; > 0, ¢, > 0 exist such
that

AL 2( =10 2 2
eAyx|2]" =y | (Ay) (x|z| ) +e° |,

z

AB[FJ2[" sign(2) = {(Aﬂ)z ( ")2 +52} (54)

in area O,(0), where O = {0, 02} c RxR*x Jo, » O, is some neighborhood of a point O; (iv) the inequality (¢ — 82)2" >
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¢, holds for almost all £, where ¢, > 0; (v) 7, > 0 u @ > 0 exist such that (x)?* > 7, and |e — ¢ | < wlel; (vi) the function

|g|2(n+l) (t)
g (1) =sup » & =sup g (1), (55)
g€ Vg (t,g) ceQ)

exists, where Q the definition range of the subsystem; (vii) VE, Vﬂ’y satisfy the system of inequalities

% ~(k. —20g, ~wvgy) Axov|ry, e
[‘9 } {VS } 2k, |(8,)-

2k dg 56
Vﬁ',}/ c —7 By 0 ( )
A, B,
(viii) the upper solution for V,_ by = [V.() Vﬂ,y(t)]T satisfies to the equation
S=4,5+B,(5,), (57)
if
Vo) <550 V(t219)&(V5(t0) <55 (1)), (58)

where S = [55 Sy, JT, p=¢c(B.y),4, € R*? is M-matrix. Then the system AS,, is exponentially dissipative with the
estimate

T

Vepy = eAg(tito)g(fo) +(Sa )2 IeAg(t_T)Bng, (59)
X
if
k. >20g —wvg,, (k,—20g —wvg,)d; > 2ciywv, d; >0,
where

;?=min(;c/;,zy), ¢ =min(c;,¢;), 1 =maX(;c/g,;(7), dy = ymycc,.

So, the system A4S, is exponentially dissipative. The dissipativity area depends on the informational set I of the
Sy -system.

Get results that show the possibility of using adaptive observers to parameters identification of the Sy, -system.
Properties of system (1) with BWHM supervene from the presented theorems.
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7. Simulation results

Consider the engine control system (1)-(3) with parameters: n=1.5,c=2,m=1,=0.5,y=0.2,2a=0.7, k= 0.6.
Let d = a = 1. Exciting force f(f) =2 — 2sin(0.157z¢). The system is modeled with initial conditions x(0) = 1, x(0) = 0
z(0) = 1. Form the set I . The system phase portrait and output of the hysteresis shown in Figure 1.

Estimate the structural 1dent1ﬁab111ty of the system (1)-(3). Construct the structure S, (Figure 2) using the method
[32]. Avariable e Rise = x— xh xh is an estimation of the steady state (process) in the SBW—system for Vt > 9.85s, and

e is the nonlinearity estimation in the corresponding space.

2.5

2.0 H

Figure 1. System phase portrait and hysteresis change

0.08

0.04 +

é 0.00 +

-0.04

-0.08 T T T T T T T T

Figure 2. Structure S for assessing possibility of solving identification problem
g ay g P y
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As follows from Figures 1, 2, definition areas z and € coincide. Analysis §;, shows that the system S, is

structurally identifiable, and input f(¢) is S-stabilizing.

Consider the system parameters identification. Determine the parameter x of the system (13) using the transient
process analysis for e and ¢ < 9.85s. Calculate Lyapunov exponents (LE) [33]. The estimation for the maximum LE is
—0.9. Therefore, we set u = 0.8. Initial conditions in (12) are equal to zero.

Adaptive system work results are presented in Figures 3-5. Parameters k,, k, equal to 2.5 and 0.75. The tuning
process of A4S, -systems parameters (the model (12)) is shown in Figure 3. Figure 4 showed the model (16) parameters
tuning.

-4 T T T T T T T
0 50 100 150 200

Figure 3. Tuning of model (13) parameters

0.55

0.50

0.45

040

0.35

>

0.30

0.25

0.20 T T T T
0 50 100 150 200
t

Figure 4. Tuning of model (16) parameters: 1 is tuning /? , 2 is tuning 7
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50

40

30

20 ¢

0 50 100 150 200
t

Figure 5. Outputs modification of systems A4S, A4S,

2 -

=

Figure 6. Hysteresis estimation at adaptation of 4S,,,-system

Show the modification of identification errors e, ¢ in Figure 5. We see that the accuracy of obtained estimations
depends on the numbers of tuned parameters, and the level x and properties f(#). Obtained results confirm statements
of theorems 3 and 4. The A4S, -system work results influence the tuning processes in the AS, -system. Gain coefficients
in (25), (26) and (27) are x, = 0.0000002, y, = 0.0000002, y, = 0.00005, y, = 0.0002, y, = 0.00001, y; = 0.00002. The
parameter n is 1.5 in (16).

Remark 2. Modeling results of the system A4Sy, with the algorithm (27) showed that the algorithm is sensitive to
various perturbations, increases the adaptation time and requires further study.

The hysteresis output estimation is shown in Figure 6. Comparison of determination coefficients » = 0.864 for the
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reference BWH in (Figure 1) and the resulting BWH (Figure 6) 7., = 0.764 confirms the effectiveness of the proposed

approach.

Figure 7 presents comparing results estimates Z and ¢_, obtaining in subsystems A4S, and A4S, on the interval [25;
70]s. We analyze the dependence &,(Z) and show the approach effectiveness as the coefficient of determination is

r;, =091 In Figure 7, we represent the secant £.(2). Results confirm the adequacy of the obtained estimate Z.

(:»

Figure 7. Comparison of estimates Z and uncertainty ¢_

Figures 8-12 represent the work of the adaptive system with (8), # = 1. Tuning of models (20) and (16.2)

parameters shows in Figures §, 9.

3

-4 T T T T T T T T
0 50 100 150 200

t

Figure 8. Tuning of model (13) parameters
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/

250

2.0

1.0

0.5

0.0

446 | Nikolay Karabutov



2.0 1,450

1.6 a ]
p

12 - 1425 "
a

0.8

0.4 T T 1,400

0 50 100 150 200 250
t
Figure 9. Tuning of model (16) parameters

60

e &

0 50 100 150 200 250

Figure 10. Outputs modification of systems 4S,, AS,

Figure 10 shows the change in errors e, ¢. The accuracy of obtained parameter estimates is shown in Figure 11,
where I, (1) = [(AB(®)° + (Au(t))’ + (An(2))*], || is the Euclidean norm.

Figure 12 demonstrates the adaptive system work with Mz, 0 (e, N, ) and (e, B) spaces. We see that the tuning
process is nonlinear. It depends on the main circuit AS, work of the adaptive system and the uncertainty estimation.

So, simulation results confirm the exponential dissipativity of the designed system. The obtained results are

applicable to the analysis of robotic and macaronis systems.

ST
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NN

8. Conclusion

We propose the adaptive identification method of system parameters with the Bouc-Wen hysteresis. We relate
the fundamental problem of the BWH identification to ensuring the stability of the assessment system. The proposed
identification method is based on the use of adaptive observers. Algorithms for the adaptive observer are designed
and the trajectories limitation in the adaptive system is shown. An approach is proposed to estimate the uncertainty
about the hysteresis state. This estimation is used to adjust the parameters of the hysteresis model. We consider
BWH modifications and propose adaptive algorithms for estimating their parameters. The Lyapunov vector function
method are used to evaluate the identification system quality in coordinate and parametric spaces. We prove processes
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exponential dissipativity of in an adaptive system. It shows that the exponential dissipation domain of the system
determines by the level of derivative output. We study the influence of input on BWH parameters identification.
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Appendix A
A.1 Proof of Theorem 1

Consider the Lyapunov function V(7) (36). Then V(t)
V:—kxez +VK —VK S—Qkae (Al)

Apply the condition (i) theorem 1. As V(t) <0, the AS, -system is stable. Integrate V(t) on the time and obtain

t
V(ty) -2k, j V,(0)dz = V(). (A.2)

fo

Get from (A.2) to all trajectories of the system A4S, belong to the area G, = {(e, AK) : V(¥) < W(t,)}. We get an
estimate for the 45, -system

t
j 2V, (x)dr <V (15) =V (2). (A.3)
1o

Appendix B
B.1 Proof of Theorem 3

Determine V, ,,
_— ) N .
Vgﬂ}/ = —kZS + E(ﬂf]ﬂ + ]/7]}, + AX) + Vﬂ,}/ - V,B,}/
_ 2 :
=—k,&” +&(Bng +ym, +Ax). (B.1)
Since, x is function x, x = o, where ¢ ~ 1. We have showed that g, is the estimation z. Therefore, present UPEN

" (B.2)

B

ng = |x||z|n sign(z) —|)Tc||2|n sign (2) = |x||5
for V¢ > ¢ . Similarly

n (B.3)

B

ng = |x||z|n sign(z)—|)7c||2|n sign(f) = |x||g

Considering the assumption 1 and the boundedness of trajectories A4S, -system, we obtain | x| < v for V¢ > ¢, where
v>0. Then
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Vapy <=kee” + Blellnp|+ 7 el | +[el A

n+l

< —kzgz +/5’z)|g|n+1 + }/U|8| +|g||Ax|
< —k &* +u(ﬂ’+;/)|g|n+1 +55 ¢ (B.4)
where [Ax[<d,, d, = 0.
Let
AN O R B.5
&)= P e & T . (B.5)

Then |e\"+l(t) < glaz(t) and transform (B.4) to the form

Vepy <~k +u(B+y) e’ +6, le|

=—(k, ~v(B+7)g1)&” + 5, el (B.6)
where k, — v(f +y)g, > 0.
Apply the inequality
2
2 a » b
—aq” +bg<——q° +—. (B.7)
q q > q 2a
Then (B.6)

Veg, <—(k, ~u(B+y)g) e’ + 3,

< _kmvBrne o 1 (6, )
2 2(k, —v(f+1)g1)

1
(k. —v(B+7)g1)

S=(kz~u(B+N@)Ve + (55 ) (B.8)

Integrate (B.8) and obtain the estimation

t

1
P %
,{( L —0(B+7)g) s(T)+2(kz—u(ﬂ+7)g1)(f_10)

(0a )2 <V, (tg) =V, (0). (B.9)

The left part (B.9) is nonnegative and V(f) satisfies conditions of theorem 3. Therefore, all trajectories A4S, -system
is limited. =
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B.2 Proof of Theorem 4

Consider VL
V, =—k,e* + g(ﬁnﬂ +y1, +M)+5(Aﬁ|)7c||2|" sign(2)+Ayx|2[" ) (C.1)

Evaluate the second and third summands on the right side (C.1).
Lemma C1. The estimation

|77ﬂ| < u|3|n
is fair for 17, = |x||2|" sign(z)—|||2[" sign(2).

Lemma C1 proof.
As |x| <o, then

|77ﬂ| =0 |z|n sign(z)—0'|2|" sign(é)

<oflz=2" +[2" - |2") < o]z 2" =olel". 0

Similarly, the estimation has the form |777| < U|€|n for n, = )'c|z|n —)7c|2|" . It is based on the proof of the lemma CI.
Then

l2(Bng +1m, +85) < 5(B+7)|el "™ + 84 Jel, (C2)

where 5=v(B+7).
Consider the last item in the right member (C.1).
Lemma C2. The estimation

< wvlel" {|ap]+|ar], (C3)

8(Aﬁ|)~c||2|n sign(2)+ A7)7c|2|" )

is fair for 5(Aﬂ|)7c||2|" sign(z)+ Ayfc|2|" ), where @ > 0 is such that |¢ — ¢,| < wle|.

Lemma C2 proof. Transform (C.3) to the form

(8A,B|§||2|n sign(2)+eAyx|2[" )

) :5|)7c||5—£z|n (Aﬁsign(e—£Z)+Aysign(§)). (C.4)
Z=£—-&

z

Let @ > 0 exist such that |¢ — ¢_| < w|e|. Then (C.4)
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|5||)~c||5 -, |n ‘A,Bsign(g -, ) + A)/sign(;c)‘
< a)u|g|n+1 ‘Aﬁsign (e—&.)+Aysign (i)‘

<alef"™ {Jag]+|ar).

(C.3) is result (C.5).
Consider (C.5) and transform a)z)|;3|"+1 {|AB| + |Ay|} into the form

a)u|g|"+1 {|A,B| +|A7/|} <0.55201*D +0.5/1(Aﬂ2 +Ap? ),

where A > 1.
As

(88) + ()" =203 2325 (88) + 272, (87 | <227,

where y = max( Xp ){y), then (C.6) receives the form

a)u|g|nJr1 {|A,B| +|A7|} < 0.500e2 D 4 AyovVy .

1

2
or) ",

1
—kz<92 + ) |5| < —Ekzgz +
then (C.1), considering lemmas C1 and C2, and inequalities (C.7) and (C.8), we present as

2(n+1)

v, < —k,&* +13|<9|"+1 + 3, |g|+0.5wug + AoV,

< —%kzgz + 0!

Consider functions g, (¢) (B.5) and

|8|2(n+1) (t)
g (7) = sup

, 8y =max g, (?).
seq Vo(1,6) t

Then (C.9)

. 1 . 1 2
v, < _E(kz -20g; —wvg, )V, +AyouVy., +E(5A) )

, .
iporary Mat, tics

2n+l) 1 2
+0.5mve +AyooVys, +—(04 ).
4 By 2kz ( A)

(C.5)

(C.6)

(C.7)

(C.8)

(C.9)

(C.10)
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Obtain the estimation for the derivative Vy , (¢) = 0.5 ;(/}1 (AB)? +0.5 Xy "(ap)*:

Vg, =—anB|3||2]" sign(2)-eryx|Z[". (C.11)
Let ¢, >0, ¢, > 0 exist such that
AN 2 (A0 2 2
eAyx|Z" =cy| (Ay) (x|z| ) +&° |, (C.12)
A . A\ YEATINT 2 2
8A,B|x||z| sign(2)=c | (AB) (|x||z| ) +& . (C.13)
Then (C.11)
; 2 (z1am ) 2 2
Vg, =—ce —(x|z| ) (cl (AB) +cy(Ay) ), (C.14)
where c=c, +c,.
Let ¢ = min(c,, c¢,). Then
2 2 = 2 2 J—
& (ABY +ey (A7) 22((AB) +(ar)’ )2 267V, (C.15)
where y = min( Xp X,)-
Apply (C.14) and (C.15) write as
S < —cg? 2—_7‘"2 (C.106)
Vg, <—ce” - c;((x|z ) Vg .

x bounded (x)* > 7, >0, therefore,

vV, <-_ 2_2_ N 2 2 A= A12n
By S—CE c;((x|z| Vg, <—ce 2c;(7rx|z| Vs

Vg, <—ce® ~2xm@(s—,)" Vg, (C.17)

The variable ¢ boundedness follows from theorem 3, and the boundedness ¢, is the boundedness result . Therefore,

(e-e. )2" >c,, where ¢, > 0. So
Vg, <—ce’ —2ymacVy,. (C.18)
Let d, £ yx cc,. Then (C.14) write as

Vg, <-dVp,+2\cde Vs, (C.19)
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Use the inequality (B.7) and obtain the estimation for V.ﬁ,y

; d
Vpy == Vpy Ve (C.20)

So, the following system of inequalities is fair for the AS,-system

; —(k, —20g, —wv Ayov 1
A (k: —20g —0vgy) Axov |y | o
v, 1S d |1y, |+ e |(9) (C21)
By ¢ S By 0 .
/ —
A, B,

Let V5 (6) <55(1), V(t 218)) & (V;(ty) < 55(8y)), p=&(p, 7), and S= [§g§ﬁ’},]T. The comparison system for (C.17)
has the form

S=4,5+B,(5,) . (C.22)
We have the estimation for the system A4S, from (C.22)

T

Ve py 0 T050) +(5, ) [ 7)B,ar, (C.23)
lo
where V, 5, =[V,V, 1 if
k, >20g) —wvg,, (k, —20g; —wvgy )ds >2cAywv, d; > 0. O
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