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Abstract: A study on interaction of surface water waves by thin vertical rigid barrier over a step type bottom 
topography is analysed. The associated mixed boundary value problem is solved using the eigenfunction expansion of 
the velocity potential. The resulting system of equations, avoiding the traditional approach of employing application of 
orthogonality relations, is solved using algebraic least squares method giving rise the numerical values of the reflection 
and transmission coefficients by the barrier over step. The energy balance relation for the given problem is derived 
and verified numerically ensuring the correctness of the present results. The present results are also compared with the 
data available in the literature for the validation purpose. The effect of step height, length of the barrier and angle of 
incidence on the reflection coefficient and the non-dimensional horizontal force on the barrier have been investigated 
through different plots. It is observed that barrier along with step works as an effective barrier to reflect more incident 
waves causing calm zone along the leeside.

Keywords: scattering of waves, eigenfunction expansion, least-squares method, reflection and transmission coefficients, 
force on the barrier over step
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1. Introduction
Over the years, many researchers are drawing great attention to the study of problems involving propagation of 

water waves in the presence of barrier over uniform finite depth of water due to their applications in ocean engineering 
to create tranquillity zones by reflecting and dissipating maximum incident wave energy to ensure the safety of coastal 
structures like ports, bays and harbours. For this purpose either floating or submerged breakwaters are usually installed 
in the coastal area worldwide. In this context, the problems of diffraction of obliquely incident water waves by a vertical 
plate, a horizontal plate and rectangular cylinder are studied using finite element technique by Bai [1]. The finite element 
method was used to represent the velocity potential where the variation principle was used to determine the unknowns 
such as reflection and transmission coefficients and the diffraction forces and moments. Evans [2] studied the diffraction 
of water waves by a submerged thin vertical plate where the linearized boundary value problem was solved in closed 
form for the velocity potential everywhere in the fluid and on the plate. The expressions for the first-order and second-
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order forces and moments on the plate are also derived. An eigenfunction expansion method was used to investigate 
the scattering of obliquely incident surface waves by thin vertical barrier with three different configurations namely 
descending from the free surface, bottom standing and submerged slit by Losada et al. [3]. A method of approximation 
based on Galerkin approximation was used to analyse the scattering of oblique incident water waves by a vertical 
barrier in finite depth of the water by Porter [4] where the zeros of reflection and transmission curves against the spacing 
between the barriers were also investigated. Gayen and Mondal [5] studied wave scattering by a thin inclined porous 
plate by using hypersingular integral equation approach.

Often the ocean floor is rough rather than uniform. This makes, it significant to consider the problems of 
propagation of water waves over an uneven sea bed, which are also interesting due to their importance in coastal 
and marine engineering. The problem of water wave scattering by a rectangular submarine trench was analyzed 
assuming linearized theory of water waves by Chakraborty and Mandal [6-7], where the boundary value problem was 
split into two separate problems involving the symmetric and antisymmetric potential functions and the reflection 
and transmission coefficients were calculated using a multi-term Galerkin approximation involving ultra-spherical 
Gegenbauer polynomials. Further, the problem of surface-piercing structures and the bottom profiles, where the 
bottom profiles were sliced into shelves separated by abrupt steps, was investigated by Tseng [8]. For each shelf, the 
Bragg reflection of oblique waves was analyzed using the eigenfunction matching method based on small amplitude 
wave theory. Tran et al. [9] investigated the scattering of oblique water waves by multiple thin barriers over undulated 
bottom using matched eigenfunction expansion method after slicing the bottom topography into shelves separated by 
steps. Borah and Hassan [10] studied the problem of diffraction of water waves by partially submerged floating hollow 
cylinder placed over a fixed coaxial bottom-mounted obstacle and solved it with the help of matched eigenfunction 
expansion to obtain analytical expressions of potentials. Koley et al. [11] investigated the oblique wave trapping 
by bottom-standing and surface-piercing porous structures of finite width placed at a finite distance from a vertical 
rigid wall using the Sollitt and Cross Model. Panduranga et al. [12] investigated the effectiveness of multiple slatted 
screens placed in front of a caissons porous breakwater in the presence of seabed undulation to dissipate the incident 
wave energy using an iterative multi-domain boundary element method. In a similar manner, the problem involving 
step type bottom topographies was also studied by many researchers by different methods. Das and Bora [13] studied 
the reflection of oblique ocean water waves by a vertical porous structure placed on an elevated impermeable seabed 
consisting of a number of horizontal steps by employing the matched eigenfunction expansion method. The impact of 
a porous rectangular barrier placed over the seabed with the dynamic characteristics of gravity waves was analyzed by 
Meng and Lu [14] by employing the method of matched eigenfunction expansions. A problem of oblique interaction 
between water waves and a partially submerged rectangular floating breakwater in water of uneven depth was analyzed 
by Kaligatla et al. [15] whereas the problem of water wave propagation over a rectangular submarine trench in the 
presence of a thin vertical partially immersed barrier was investigated by employing Galerkin approximation method 
by Ray et al. [16]. Liu et al. [17] constructed an analytical solution in terms of Taylor series to the modified mild-slope 
equation (MMSE) for surface waves propagating over a finite array of trapezoidal artificial bars from deep water to 
shallow water. The study of water waves propagating over a permeable sea bottom was constructed using MMSE by Ni 
and Teng [18]. Singh et al. [19] and Singh et al. [20] studied the reflection of plane waves at the stress-free/rigid surface 
of a micro-mechanically modeled piezo-electro-magnetic fiber-reinforced composite half-space. A study on the head-
on collision between two solitary waves in a thin elastic plate floating on an inviscid fluid of finite depth was examined 
analytically by means of a singular perturbation method by Bhatti and Lu [21]. An analytical study for oblique wave 
interaction with a semi-infinite elastic plate with finite draft over a step bottom topography was examined using matched 
eigenfunction expansions by Guo et al. [22] by incorporating three different plate edge conditions namely free, simply 
supported and built-in conditions. Venkateswarlu and Karmakar [23] analyzed wave scattering due to multiple porous 
structures over an impermeable elevated bottom. Dhillon et al. [24] investigated the water wave scattering by a dock 
of finite width over a step-type bottom topography using expansion formula for velocity potential. Praveen et al. [25] 
investigated wave transformation due to finite elastic dock over abrupt change in bottom topography. Vijay et al. [26] 
studied Bragg scattering of surface wave train by an array of submerged breakwater and a floating dock. Guha and 
Singh [28] studied reflection/transmission of plane waves in an initially stressed rotating piezo-electro-magnetic fiber-
reinforced composite half-space.

Keeping in view of the above works, vertical barrier over a stepped bottom will be an interesting addition towards 
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an effective barrier. Hence, the aim of the present paper is to analyse the effect of a thin vertical rigid barrier over 
stepped bottom topography on reflection and transmission of incident water waves. This investigation helps in creating 
the calm zone near the seashore. Here, the problem is analysed using matched eigenfunction expansion method. The 
resulting system of equations is solved using algebraic least squares method. The performance of the barrier over step 
is studied through the graphs of reflection coefficient, transmission coefficient and non-dimensional horizontal force for 
various values of physical parameters.

2. Mathematical formulation
Let us assume the fluid under consideration is homogeneous, incompressible, inviscid and the fluid motion is 

irrotational and also simple harmonic in time t. The Cartesian coordinate system is taken with mean free surface along 
the xz-plane and y-axis is vertically downwards (taken as positive) through the thin vertical rigid barrier of length d over 
the step bottom topography (see Figure 1).

Oblique incident waves

Region 1

(0, 0)

z - axis

y - axis

y - axis

x - axis

x - axis

α
d

h1

h2

α

Region 2

Figure 1. Schematic of the problem with rigid barrier over impermeable stepped bottom.

The position of the step is at x = 0, h2 ≤ y ≤ h1 and the barrier is at x = 0, 0 ≤ y ≤ d. The fluid domain is divided into 
two regions such as R1 : −∞ < x ≤ 0, 0 ≤ y ≤ h1, R2 : 0 ≤ x < ∞, 0 ≤ y ≤ h2. Under the small amplitude theory of water 
waves, the velocity potential can be represented by Φ(x, y, z, t) = ℜ{ϕ(x, y)ei(µz−ωt)}, where ℜ denotes the real part and 
ω is the angular frequency of the wave. The complex valued spatial potential ϕ(x, y) denoted as ϕ1 for x < 0 and ϕ2 for x 
> 0, satisfies the Helmholtz equation (Rhee [27])

2 2
2

2 2 0 in the regions ,  1, 2,jR j
x y
φ φ µ φ∂ ∂

+ - = =
∂ ∂

(1)

where µ = k0 sin α, α is the angle of incidence with respect to x-axis and k0 is the wave number of the incident wave. 
Also, ϕj(x, y),  j = 1, 2, satisfies the boundary conditions (Losada et al. [3] and Rhee [27]) as defined below:
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g is acceleration due to gravity and |R| and |T| respectively represent the reflection and transmission coefficients. Here, µ 
= k0 sinα = p0 sin β due to the phase speed along the rays of the incident wave leading to Snell’s law for refraction across 
the step at the bottom. 

In addition to this, the matching conditions at x = 0 due to continuity of pressure and velocity are:
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The study uses the Eqs. (1)-(11) to coin a system of equations and the system of equations will be solved 
numerically to determine R and T which is described in the next section.
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3. Method of solution
The Havelock’s expansion for the velocity potential in regions Rj,  j = 1, 2, are given by
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transcendental equations ktanhkh1 − K = 0 and p tanh ph2 − K = 0 respectively. Here k0, p0 are real roots corresponding 
to propagating mode while kn, pn (n = 1, 2, …) are purely imaginary roots corresponding to evanescent modes. Also 

2 2 2 2,  n n n ns k q pµ µ= - = -  for n = 1, 2, … . The unknowns R, An, T, Bn, n = 1, 2, 3, … are to be determined. After 
truncating the series to a finite number say N, we have 2N + 2 number of unknowns.

Using the relations (12) and (13) in the conditions (8)-(11), we obtain
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Approximate solution of the 2N + 2 unknowns appearing in Eqs. (14)-(18) can be obtained by the method of 
algebraic least-squares for which we consider infinite number of discretized points: (i) ŷ1, ŷ2, ŷ3, … on the barrier (0, 
d), (ii) ỹ1, ỹ2, ỹ3, … in the gap (d, h2) and (iii) y̌1, y̌2, y̌3, … on the step (h2, h1), which lead to an overdetermined system 
with infinite number of equations in the matrix form as

(19),AX b=




where A is the coefficient matrix, b


 is the known vector matrix and X


 = [R, An, T, Bn] (n = 1, 2, 3, …, N) is unknown 
vector matrix to be determined. The least square solution is found for which the following normal system need to be 
solved:
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(20)* * ,A AX A b=




where A* denotes the conjugate transpose of A. If A has linearly independent columns then the least-squares solution is 
unique and is given by

(21)* 1 *( ) .X A A A b-=




Here, it may be noted that the ill-conditioned matrix can be avoided by choosing the appropriate discretized points 
(see Section 5). The non-dimensional horizontal force per unit width of the barrier over the step-type bottom is given by
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4. Energy balance relation
The energy identity relating to reflection and transmission coefficients of the given problem, can be derived by 

using Green’s integral theorem:
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contribution to the integral (23) at the free surface is zero. The contribution from the line x = −X, 0 ≤ y ≤ h1 is
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On adding all of these contributions in Eq. (23), we get the energy identity as
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5. Numerical results
Here, the reflection coefficient |R| and transmission coefficient |T| are computed by solving the system given in Eq. 

(19) using algebraic least-squares method. The non-dimensional horizontal force on the barrier is computed numerically 
from the Eq. (22). These values are shown through tables and also through graphs for various values of parameters. For 
applying the algebraic least-square method, we consider different number of equally spaced discretized points, say m1 
points on the barrier: ŷi = id/(m1 − 1), i = 0, 1, 2, …, (m1 − 1), m2 points in the gap: ỹi = d + i(h2 − d)/(m2 − 1), i = 0, 1, 2, 
…, (m2 − 1) and m3 points on the step: y̌i = h2 + i(h1 − h2)/(m3 − 1), i = 0, 1, 2, …, (m3 − 1). Thus, from Eqs. (14)-(18), 
we obtain 2(m1 + m2) + m3 =  m̂(say) equations in 2N + 2 unknowns which are to be determined by solving the system 
(19). The non-dimensionalization of the physical parameters is made using both the depths h1 & h2. Here, the non-
dimensional parameter are d/h1, Kh1, H = h2/h1, p0h2.

             

|R
| &

 |T
|

p0h2

|R|

|T|

(a)

d/h1

|T
|

(b)

Figure 2. Comparison of the present results with (a) Rhee [27] with H = 0.1, α = 0, d/h1 = 0 (b) Losada et al. (1992) with H = 1.0, Kh1 = 4.262, α = 0.

5.1 Validation

For validation of the present results, the results for absence of barrier and presence of vertical step h2/h1, are 
compared with results of Rhee [27] in Figure 2(a). Here, |R| and |T| against p0h2 are drawn where the present results (solid 
lines) fully coincide with Rhee [27] (stars), proving the correctness of present results. In Figure 2(b), the present results 
for |T| are compared with Losada et al. [3] for vertical barrier over flat bed (in the absence of step). The transmission 
coefficient |T| against the dimensionless barrier length d/h1 for fixed Kh1 = 4.262 and α = 0 is presented in Figure 2(b) 
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where the present results agree well with those of Losada et al. [3]. This proves the correctness of the present results. In 
Table 1, |R| and |T| are calculated for different non-dimensional values of Kh1 and the results tabulated here show that 
the current numerical results verify the energy balance relation (26) showing again the correctness of the present results.

Table 1. Energy identity verification for d/h1 = 0.6, H = 0.9, α = π/4.

Kh1 |R| |T| |R|2 + γ|T|2

0.5 0.2836709 0.971339 0.998969

1 0.542422 0.839165 0.996779

1.5 0.797381 0.595626 0.995996

2 0.938224 0.339009 0.997709

2.5 0.984274 0.172273 0.999051

3 0.996101 0.085408 0.999610

3.5 0.998994 0.042712 0.999828

4 0.999722 0.021717 0.999918

4.5 0.999916 0.011221 0.999959

5.2 Convergence for N and (m1, m2, m3)

The convergence of N (the number of evanescent modes) and the convergence of number of discretization points (m1, 
m2, m3) are examined. In Table 2, the values of |R| are given versus Kh1 for various values of N = 10, 20, 30, 55 and 60 
for fixed values of d/h1 = 0.6, H = 0.9, α = π/4. The tabular data show that the accuracy in |R| upto two decimal places 
are obtained with N = 55 for all the values of Kh1. Further, the Table 3 shows the tabulated values of |R| and |T| versus 
Kh1 for various values of (m1, m2, m3) for fixed values of d/h1 = 0.3, H = 0.5, α = 0 and N = 55. The tabular data show 
that the accuracy in the results upto four decimal places are obtained with (m1, m2, m3) = (700, 700, 350).

Table 2. |R| versus Kh1 for various values of N = 10, 20, 30, 55 and 60.

Kh1 |R|(N = 10) |R|(N = 20) |R|(N = 30) |R|(N = 55) |R|(N = 60)

0.5 0.301273 0.294279 0.289798 0.284316 0.283670

1 0.564326 0.556549 0.550659 0.543309 0.542421

1.5 0.810078 0.806768 0.802992 0.798008 0.797381

2 0.940626 0.941080 0.940057 0.938443 0.938224

2.5 0.983528 0.984619 0.984594 0.984321 0.984273

3 0.995167 0.995944 0.996081 0.996105 0.996100
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Table 3. |R| and |T| versus Kh1 for fixed N = 55 with different values of (m1, m2, m3).

Kh1 (m1, m2, m3) |R| |T|

0.1 (100,100,50) 0.197766 1.151433

(200,200,100) 0.197685 1.151281

(400,400,200) 0.197632 1.151208

(700,700,350) 0.197599 1.151172

(800,800,400) 0.197588 1.151156

0.5 (100,100,50) 0.294316 1.064908

(200,200,100) 0.294429 1.064789

(400,400,200) 0.294445 1.064757

(700,700,350) 0.294438 1.064742

(800,800,400) 0.294434 1.064736

0.7 (100,100,50) 0.342612 1.019294

(200,200,100) 0.342789 1.019196

(400,400,200) 0.342826 1.019186

(700,700,350) 0.342827 1.019182

(800,800,400) 0.342826 1.019180

5.3 Influence of physical parameters on the reflection coefficient, transmission coefficient and 
force on the barrier over stepped bottom

Here, the reflection |R| and transmission |T| coefficients, and the force on the barrier are calculated numerically and 
plotted through different graphs for various values of the parameters.

                

d/h1 = 0.25
d/h1 = 0.50
d/h1 = 0.75

|T|

|R|

Kh1

|R
| &

 |T
|

Figure 3. |R| and |T| varying against Kh1 for H = 0.8 and α = 0 with different barrier length.
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Figure 4. |R| and |T| varying against Kh1 for d/h1 =0.2 and α = π/4 with different H.

                Kh1

|R
|

α = 0.25
α = π/12
α = π/6
α = π/4
α = π/3
α = 5π/12
α = π/2

Figure 5. |R| versus Kh1 for d/h1 =0.2 and H = 0.5 with different α.

                

d/h1 = 0.25
d/h1 = 0.5
d/h1 = 0.75 |T|

|R|

α

|R
| &

 |T
|

Figure 6. |R| and |T| versus α for Kh1 = 1.5 and H = 0.8 with different length of the barrier.

The variation of |R| & |T| against the non-dimensional wave frequency Kh1 for three different lengths of the barrier 
is shown in Figure 3. It is observed that the reflection coefficient increases as the length of the barrier d/h1 increases 
from 0.25 to 0.75. Consequently, the transmission co-efficient decreases as the length of the barrier increases. Also, 
the reflection coefficient increases while transmission coefficient decreases as the non-dimensional wave frequency 
increases. Hence, larger frequency waves gets maximum reflection and minimum transmission. This may happen due to 
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the fact that larger frequency waves almost confined near the free surface and hence gets comparatively more reflection 
and lesser transmission. In Figure 4, the variation of reflection |R| and transmission |T| coefficients as a function of non-
dimensional wave frequency Kh1 for three different step heights at the bottom is reported. The reflection coefficient |R| 
decreases while transmission coefficient |T| increases as the depth ratio H increases (i.e. the step height decreases). The 
effect of depth ratio H on |R| & |T| is diminished as the value of Kh1 becomes larger which may be due to the fact that 
the larger frequency waves i.e. waves with short wavelength are almost confined near the free surface and get lesser 
influenced due to the stepped bottom. It is also noticed that the pattern of transmission coefficient is also different for 
Kh1 < 1, which may be due to phase shift in transmitted waves by altering depth ratio. Figure 5 shows |R| versus Kh1 for 
different values of angle of incidence. As the angle of incidence α increases, the reflection coefficient decreases. Also, 
there is more reflection for normal incidence case (α = 0) in comparison to oblique incidence case. It is also observed 
that |R| becomes unity for α = π/2 for all the frequencies of incident waves, which validate the physical behaviour of 
the problem. In Figure 6, |R| and |T| versus angle of incidence α for different barrier length are plotted. The reflection 
coefficient monotonically decreases with the angle of incidence for all these dimensionless lengths of the barrier 
ranging from 0.25 − 0.75. This is due to the fact that the only x-component of the incident wave is reflected by the 
present barrier and becomes smaller with the increase of angle of incidence. Consequently, the transmission coefficient 
monotonically increases with the angle of incidence for all these dimensionless lengths of the barrier.

                Kh1

|F
h|/
ρg
h 1

A

Figure 7. Dimensionless force varying against Kh1 for d/h1 = 0.3 and α = 0 with different depth ratio H.
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Figure 8. Dimensionless force varying against Kh1 for H = 0.8 and α = 0 with different barrier lengths.
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Figure 9. Dimensionless force versus Kh1 for d/h1 = 0.4 and H = 0.8 with different α.
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Figure 10. Dimensionless force versus α for Kh1 = 1.5 and H = 0.8 with different length of the barrier.

The variation of the non-dimensional horizontal force |Fh|/ρgh1A against the non-dimensional wave frequency Kh1 
is reported in Figure 7. For Kh1 < 2.5, the force on the barrier decreases as H increases while for Kh1 > 2.5, the force on 
the barrier increases as H increases. The pattern in the curves in Figure 7 is changing because there may be a phase shift 
due to alteration of depth ratio for each curve. In Figure 8, the variation of |Fh|/ρgh1A as a function of Kh1 is shown for 
three different lengths of the barrier d/h1 = 0.25, 0.50, 0.75. It is observed that the force on the barrier increases as the 
value of d/h1 increases which is similar to the observations obtained in Figure 3 for reflection curves. Figure 9 shows the 
non-dimensional horizontal force versus Kh1 for three different angle of incidence α = 0, π/6, π/4. The maximum value 
of the non-dimensional horizontal force on the barrier decreases as the angle incidence increases. In Figure 10, the non-
dimensional horizontal force versus angle of incidence α for three different dimensionless lengths of the barrier ranging 
from 0.25 − 0.75 is demonstrated. It is observed that the dimensionless force decreases versus angle of incidence for 
each dimensionless lengths of the barrier. This observation is similar to reflection curves of Figure 6.

6. Conclusions
In the present work, an oblique surface wave scattering by thin vertical rigid barrier over a step bottom topography 

is examined for its solution using matched eigenfunction expansion method by the aid of algebraic least squares method. 
The performance of the barrier over step is studied through various graphs of the reflection and transmission coefficients 
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and non-dimensional horizontal force. The reflection coefficient increases as the length of the barrier and the step 
height increase while it decreases as the angle of incidence increases. Also, the maximum reflection occurs for normal 
incidence of the incident waves. The analysis of non-dimensional horizontal force per unit width of the barrier is also 
examined. As the length of the barrier over the step increases, the peak on force curves goes up. The non-dimensional 
horizontal force and reflection decrease as the angle of incidence increases for a fixed barrier length, which is due to 
the fact that the only x-component of the incident wave is reflected by the present barrier and becomes smaller with 
the increase of angle of incidence. Also, it is noticed that the force on the barrier is less for obliquely incidence waves 
in comparison of normal incidence waves. These results conclude that the barrier along with step works as an effective 
barrier to reflect more incident waves causing calm zone along lee side, yielding less impact on seashore.
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