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Abstract: In this paper, we investigate the effects of a Lévy jump on the dynamic of propagation of a rumor on a social
network. The random environment is characterized by white noises and Lévy jump and we establish sufficient conditions
for extinction and persistence in the mean of an e-rumor. At the end, we compare our study with our previous one”’ to see
the difference with only white noises.
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1. Introduction

Nowadays, social networks are the main mode of communication and these new tools have made the spread of
information quick and easy. The propagation of fake news can be seen as the one of a virus and controlling them has
been an increasingly complex issue in recent years. Contrary to an attack of a computer with an infected file that you
need to open to be infected, the infection is direct from the moment you have contact with a spreader. Thus the spread of
information has been seen earlier as the spread of an infectious disease in a population ' '-2¢27,

In our first approach, we study the problem of propagation of rumors in the context of optimal control theory. Using
and modifying a model introduced in!"”, we control some parameters involved in the model™ * or some external actions'’,
such as the introduction of a counter-information or the isolation of the more active spreaders. This is done in order to
minimize the spread of bad information on a social network. However the dynamic of a rumor in a network is not exactly
the same as one of the epidemics in a country since an infected is not necessarily infectious, contrary to the epidemic case.
Indeed, someone who knows the rumor has different choices: he can spread it, keep the information and spread it after or
keep it and never spread it. This is due to the mediatic context''”, the impact of education'”, the forgetting mechanism"",
the hesitating mechanism", ... Based on this, we proposed a new deterministic e-rumor model for which we made a
stability analysis in [6]. In the following, as it has been done in epidemic cases *'>'*'"'®*>% e add the random side
in our model with the introduction of white noises. We use results from our last paper'”’ in which we studied the dynamic
of a stochastic e-rumor model, pointed out the thresholds of extinction and persistence of the spreaders densities, and
highlighted the benefit of the introduction of white noises with respect to the deterministic case. In fact, in the present
paper, we begin with this last stochastic model, in which we add a Lévy jump as it has been done in the case of epidemics
in [2, 20, 33, 36] for example. The reader could also refer to [14, 29, 30, 31] for the fractional-order systems. Indeed, the
rumor model may suffer environmental perturbations which lead to a sudden evolution from the ignorants to the spreaders
and cannot be modeled only by the stochastic model. In Section 2, we study the existence and uniqueness of a global
solution of the obtained e-rumor model by using general results on stochastic differential equations™*>* > Then we
focus on its asymptotic behavior by pointing out the threshold of extinction and the one of persistence in Sections 3 and
4 respectively. Finally, a numerical example is carried out to illustrate the theoretical results and we conclude with some
perspectives for future works.

Throughout this paper, let (Q,F,{F},.,,P) be a complete probability space with a filtration {7, } ., satisfying the
usual conditions, that is it is increasing and right continuous while J; contains all P-null sets. Also let (B,(.)), i = 1, 2, be
scalar Brownian motions defined on the probability space. Moreover, let us fix the notations:
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a Nb=min(a,b),aV b=max(a,b), forall a,b € IR and X(t) .f X(&)dé,

that we will use in the following.

Let N be the total number of persons on the social network and u the rate for which an individual enters or leaves the
social network. This population is divided into three groups: one of the ignorants, one of the spreaders, one of the stiflers.
The stiflers are those who know the rumor but do not spread it for the moment. In the following, we denote by I the number
of ignorants, S the number of spreaders and R the number of stiflers. We assume that an ignorant can become a spreader
or a stifler with rates S, or f, respectively. A spreader can become a stifler with rate 8, and a stifler can become a spreader
with rate 6,. Note that obviously a spreader or a stifler can not become an ignorant, however they can just leave the social
network, as all the individuals of the social network with rate u. We begin with the stochastic e-rumor model introduced in

[7]:

1(6)S(¢t I(t)R(t 1(1)S(¢t
d[(t):( N - ﬂ1 ( ) ( ) 132 ( 3\[( )—,Ul(t)jdt—jfl ( ) ( )dB1(t)a
40— ( 4 I(r>S(t) g SORO) , SORW _ ﬂS@J dtsy OO g ROSO) )
N N N
I(t)R(t Sth S)R(t R(@)S(t
IR - (ﬂz () (), 4 SORO _, SO ()_ﬂR(t)jdt_yz O30) 45 1.
N N
where u, B, fB,, 6, 6, are strictly non negatives, B, and B, are independent standard Brownian motions and 7,, 7, are
constants (intensities of the white noises). By replacing =6 -6,, i:%,s :ﬁ and r :%, we obtain the following

stochastic e-rumor model as in [7]:

di(t) = (= Bi(0)s(t) = Pi(t)r(t) — pi(t) ) dt — y,i(1)s(1)dB, (1),
ds(t) = (Bi(t)s(t)— Os(t)r(t) — ps(t) ) dt + y,i(t)s(t)dB, (1) + y,r(t)s(1)dB, (¢),
dr(t) = ( Boi(6)r(t) + Os(0)r () — pr (1)) dt — y,r(6)s(1)dB, (¢). (1)

The novelty here is the consideration of a Lévy jump and (1) becomes:

di(t) = (= Bi0)s(@) = Boi(e)r(1) = pi(0)) di = ,i(0)s(1)dB, (1) = [, C(w)i(¢ " )s(¢" )N (dt, du),
ds(t) = ( Bi()s(t) = Os(e)r(t) — () ) dt + y,i0)s(6)dB, () + y,r(6)s()dB, (1) + |. C(u)i(¢")s ()N (dt, du),
dr(t) = (Bi(t)r(t) + Os(t)r(t) — ur(t) ) dt — y,r(t)s(t)dB, (1), 2)

where i(¢) and s(¢) are the left limits of i(z) and s(¢) respectively; N(dt, du) = N(dt, du) = A(du)dt, with N a Poisson
counting measure; A is the characteristic measure of N on a measurable subset Z of (0, +00) with A(Z) <+00 and C(u) : Z
x ) — R, is bounded and continuous. This model can be written as:

dX(t)=F(,X(t)dt+M(t, X (t))dB(t)+ JZ h(X(t'),u)N(dt,du), 3)
with
i(?) u=Bi(0)s@) = pi()r(t) — pi(r) =i(0)s(?) 0 0
X(@)=|s@) |,F@t,X(@0) =| Bi()s(t) = Os()r(t) — pus(r) M@, X)) =| ni(Ds@)  yr@®s@ 0
(1) Boi(O)r (1) +Os(t)r(t) — pr(t) 0 —7,r(@)s@) 0
and
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~CW)i(t)s(t™) 0 0
h(X (¢ ) u) = 0 Cw)i(t )st™) 0.
0 0 0

Note that we will not put 7 every time for convenience of writing. Moreover, in order to state our results, we need to
make the following assumptions on the jump-diffusion coefficients:
(H,) For all m > 0, there is L,,> 0 such that:

L|h(x,u)—h(y,u)|2 Aldu)< L, |x—y|2 , with |x| v |y| <m;
(H,) There is a non-negative constant K such that:
|In(1+C(u))| < K.

Let us notice that the assumption (H,) will be useful in the proof of the existence result, whereas the assumption (H,)
will be used to investigate the properties of extinction and persistence after showing the existence and uniqueness of the
solution.

2. Existence of a global solution

In this section, we first establish the existence and uniqueness of a local solution of (3) and then prove that it is global.
Theorem 1 For all initial condition X(0) = X, € (0, 1)’, the stochastic differential equation (3) has a unique local solution.

2
Proof. Let us set |A| = ,1 Z 4., , for any n-order matrix A. Following the same steps as in [7], using standard inequalities
<i,j<n

and the fact that any solution X(.) = (i(.), s(.), 7(.)) is bounded, we can take all the components in (0, 1) without loss of
generality. We then obtain:

\F. X <p+3(B+ B+ )2 () +( B +207+1))s” () +(2(8; +0°)+ 1) (0)

(4)

and

M@ X)) <207 +77). (5)

Moreover, by taking y = 0 in (H,), we obtain:

[ (X f Aty < L, | X[ (6)
since 4(0, u) = 0. By adding (4), (5) and (6), one has:

|F(, X @) +| M@ X @) + jz|h(X,u)|2 Mdu) < 4> +3( B+ By + 1) (0)

(B 207 +12))s> O+ (208, +0°)+ 17 )r* () + 207 +72)+ L, | X O,
that is:

|F(, X)) +|M @ X@)| + L|h(X,u)|2 Mdu) < C, (1+ |X(t)|)2, (7)
with
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C = (387 + B + 1))V (B +200° + 1)) (2085 +0°)+ 1)) v (& + 2077 +72))V L,
Then, let us set X(7) = (i,(¢), 5,(¢), r,(?)) and Y (£) = (ix(?), 5,(¢), r(¢)). With similar arguments, as in [7], we show that:
|[F(6, X (@)= F(6, YO <3[ G +4(B + BN~ () + Q4 + B +30°)(s,(0)—5,(1))’
(1 +3(67 + BN (1)~ (1 (D) ]
and
M (&, X(0) =M@ YO) <47 GO =GO +(07 + 1350 =5,00) + 73050 -1 (0)) ]
Moreover, by using (H,) we obtain:
|F(6, X() - F,YO) +|M 6, X () -M©LYO)| + jz|h(X(.),u) ~h(Y(),0)|" Adu)
<3[ B+ 4B} + BN, i) + QUi+ B7)+307)(s, 5,0 + (1 +3(0° + B)(r, —1,)’ |

2
>

+4[}/12(i2 _il)z +(}/12 +7/22)(S2 _S1)2 +}/22(r2 _”1)2]+Lm

X()-Y()

that is:

|F(t, X(0) = FYO) +[M(6, X (@) =M EY @) + [ [ (©0,0)=h(¥ @O, Adu) < C[X(0)-Y (0,
(8)

with

C, =[3(Gr +4(BIHB)IV QK + B +30°) v (12 +3(0° + B)) |V [4G7 +7) [V L,

With inequalities (7) and (8) and by using a general result of [24], we can claim that there is one and only one local
solution for (3).

Theorem 2 For any given initial condition X(0) = (i, s,, 7;,) in (0, 1)’, there is one and only one global solution of equation
(3), X(?) in (0, 1)*for all # > 0, with probability 1, that is:

P({X (1) (0,1)’, forall £ > 0}) =1.

Proof. This result is inspired by [7] and [33]. The previous theorem gave the uniqueness of a local solution (i(%), s(¢), 7(£))
for t € [0, 7,) where 7, is the explosion time (see [21]). In order to show that this solution is global, we have to show that

7T, =+ a.s. Let n,> 0 be sufficiently large such that i, s,, 75 € L,lfi . For each integer n > n,, let us define the stopping
. n n
time as: 0 !

S |-

T, = inf{t €[0,7,):(i(t) As(t)) <— or (i(t) v s(t)) = l—l},
n

where inf @ = +c0 . It is clear that 7 is increasing as n — +oo. Let us set 7, = lim 7, then 7, <7, a.s. If we can show

n—+xo

that 7_ =+ a.s. then 7, = +o0 a.s. Let us assume that it is not the case. Then there is a pair of constants 7> 0 and € € (0, 1)
such that P(7, <T) > e. Consequently, there is an integer n, > n,such that:

P(T,<T) > ¢, foralln>n, 9)
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Let us define the set D = {(i,s) e (0, 1)2 li+s< 1} and introduce the function V': D — R, defined by:

1 1
V(i(t),s(t) = 6 SO =i -s0)

Moreover, let us transform the e-rumor model (2) into a system of two equations by replacing » by 1 — i — s to obtain
the following:

di(t) = (= Bi(0)s(0) = Bri()(A = i(1) = s(t)) — i(2) ) dt = y,i(1)s(t)dB, (1)
- jz C)i(t)s(t™)N(dt, du),
ds(t) = (Bi(0)s(t) = Os()(1 — i(t) — s(2)) — ps(2) ) dt + yi(t)s(£)dB, (£)
+7,8(0)1 = ()~ s(0))dB, (1) + | L C@yi()s( )N (dt,du). (10)

The use of Itd-Lévy’s formula™ for 7 and the two previous equations leads to:

s(t) it s 1-i0)-s()
dv(i(t),s(t)) = BV (i(t),s(t))dt + (() (t)]dBl(t)ﬂ/z(1_i(t)_s(t) 0 ]de(t)

+I[. 1 _ jﬂ(dt,du),
i) - Cwi(t )st™) s@)+Cwi(t)s) i(t) s(t)

(11)
with
BV (i,5) = LV (i,s) + j{ ! ! L C(?‘)f(t)+c(”)"_(t)}1(du),
(1) = CQ)i(t)s(t) S(f )+Ci()s(@) i) s) i) s(t7)
and
LV (i,s)= ! —i( = Biis = Byi(l—i—s)— pi))
e aCissy BT “
1 1 . . 222 1 1
J{—(l—i—s)z —S—zj(ﬂlzs—QS(l—z—s)—,us)+y1z N [i_3+(l—i—s)3j
1 1 222 2 2.2 2yri’s’
*(N(l_i_s) J(w RO e
Consequently,

BV(i,s)=LV(i,s)+ I { CZ(M)SZ(f) 1 C2(u)l ¢ )}/1( u)

(t) 1-C(u)s(t) s(t) 1+ C(u)i(t

<LV, s)+J { Cz(u) + ! Cz(u)iz(t_)}/l(du)

@) 1-Cw  st) Ci)

L, Cw 1 xc(u>+.;}z(du)
i(t ) 1- C(u) s(t) 1-i(t)—s(t)

<LV(is)+ ‘[ [
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*(u)
C(u)

<LV, s)+'[ [ v C(u)vl]/’t(du)V(z(t ), (s(t7))
but

LV(i.s)=-%~ ﬂl Bl=izs) p o op  Bis P
i i (-i-s) (-i-s) l-i-s

i _ﬁ11+49(1—i—s)+ﬁ+ Bis s

_(l—i—s)2 s s s (I-i=s) 1-i-s

2

HS +712S2+7/1 7/2(1 i— S) 2
(1-i-s) i K s 1 i-s

SO:

2.2 .
s +9(1—Z—S)+£
i i N s

LV (i,s) <—

As  BA-i=s)
i i

it =iz’ p(-ie s)+
s s (1-i—s) l—i—s

R R e e (1]

"
since (i, s) e D. Then we obtain:

BV (i(t),5(t) < K,V (i(1), s(0)) + K,V (i(¢ ), s(0)),
with

K =(B+ Py +u+n)v(0+ -+ +73)

and

C (u)
L= jz(l_ cw” C(u)v 1}((114) .

By replacing in (11), one has:

dv (i(t),s(t) < (K (i(2), s() + KV (i(¢),s(¢)) ) dt

s(0) i(0) s(1) 1-i(t)—s(1)
7 l(i(t) S(t)JdBl(t)+y2(l—i(f)—s(f) s(2) JdB ©

+I( l._ —+—— 1,_ _—,1_— 1_]1\7(dt,du).
Z\i()-C)i(t)st) s@E)+C)i(e)s(t) (k) s(t)
12)

By integrating (12) between 0 and 7, At , we obtain:

Contemporary Mathematics 154 | Séverine Bernard, et al.



[ ava@s@n < [ (K@ s@)+ Ky € )56 )i

e (58 i(&) o (O 1-iO-s5)
1 - dB} 2 . - Bz
o (l‘(f) s(rs)J @, 7 (1—1(;’)—s(§) @ ©)

+IT"“I[. SRR U ¥ U - jmd;’,du).
o @ @i s @) HE) T CwiE @) 1E) s@)

The function  is continuous on D and (i(.), s(.)) are continuous on [0, 7, A¢] so V' is continuous on [0, 7, A¢], which
gives V(i(&),s(E7)) =V (i(&),s(&)) ) as., forall £ in [0, 7, At]. Consequently, one has:

T, At . T, At . T, At Lf)_@
[ ar@@,s@) <[ K + KOV ) sENdé+ | 7,[1.((:) & fB©

+IT,,A,72( s(§)  1-i(§)-s(&)

dB,
0 1-i(&)—s() () j ©

IT””I(. T e e X )ﬂ(dg:dux
o i) —CwiE @) I i@ @) 1@ @)

and the expectation of each terms leads to:
E[V((T, At),s(T, AO)]| SV (iy,50) + (K, + KZ)EUOT" " V(i(&), s(f))df}

<V iy 50) + (K, + K[ E[V (T, A9),5(T, nENE].
By using Gronwall’s lemma, we obtain:

E[V((T, AT),s(T, AT)| <V (iy,s,)e™ . (13)

Let us set Q ={7, <T} for n>n,, then P(Q,)>e from (9). For all weQ,, there is at least one of the terms

i(7,,) or s(7,,) which is equal to 1—l or 1 Jf i(’Tn,a))=1—l or 1 then
non non

V(i(7,),s(T,)) 2 n,

and if s(7,,, ) is equal to 1—l or 1 then:
n o n

V(T,),s(T,) 2 n.
In each cases, we have V' (i(7,),s(7,)) = n and from (9) and (13), one obtains:

V(iypsp)e® ™" 2 E[ 1, V((T,,0),5(T,,0)) | > en,

where 1, is the indicator function of Q,. Letting 7 — o leads to the contradiction that o >V (i,, s, e **>)"

=o00. So we
must have 7 =oo a.s., which completes the proof.
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3. Extinction

In order to state the extinction result, we first need three lemmas.
Lemma 1 Let (i(.), s(.), (.)) be the solution of (2) with the initial condition X(0) = (i,, s,, ;) € (0, 1)’. Then:

lim (O +sO+rO) _

t—>+o0 t

a.s.,
that is:

lim @:O, lim &:0, lim @:0 a.s.

t—+o | t—o>+0 | t—>+0o f

Proof. The proof of this lemma is the same as the one of [7] since the sum of the stochastic differential equations with and
without the Lévy jump is the same. Moreover, these two ones are inspired by [35] for a stochastic SIS epidemic model.
We choose to develop it here to help the reader’s understanding. Let us set u(.) = i(.) + s(.) + (.) and define w(u) = (1 + u)’,
where p is a non negative constant to be determined later. By using It6’s formula, one has:

2
dw(u) = %du +%Zu—v;(du)2 = p(1+u)’ ' du + % p(p—D(1+u)" 2 (du)*.

Moreover,

du = di+ds+dr and (du)? = (di)? +(ds)* + (dr)* + 2(dids + didr + dsdr).

From the equations of system (2) and the standard formulas df’ = 0, dBdB;= (5/ dt (5lj is the Kronecker symbol) and
dBgt = dtdB,= 0, for i, j = 1, 2, one has (di)* = y}i*s’dt , (ds)* = (yPi* +y3rt)sPdt , (dr)? = y3s*rde , dids =—ytis*dr
didr = 0 and dsdr = —y3s*r*dt , then:

(du)2 = ylzizszdt + ylzizszdt + y%rzszdt + y%szrzdt + 2(—y12i2s2dt - y%szrzdt) =0.

Consequently,

dw(u) = p(1+u)?™ [—u(i+s+r)|dt=p(+ w)? (= n)dt = p(1+u)P ™2 (u— i dt,
that is:

dw(u(t)) = Lw(u(?))dt, (14)

with Lw(u) = p(1 + uY’? (u = puu *). For 0 < k < pu, by replacing w(u()) by ¢“w(u(f)) in (14), one has:

d [e’“ w(u(t))] =L [ek’w(u(t))] dt.

Then, by taking the integral between 0 and ¢ and the expectation, one obtains:

E[ e wu(e) | = wu (@) + [ L] X wau(@) Jae: (15)
with

L [ektw(u)] = ke w(u) + " Lw(u) = ke 1+ u)? + pe (1+u)? 7 (u— uu®)
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= pet (1+u)P™? {£(1+u)2 +,u(1—u2)} < pe'H,
p

and H = sup {(1+M)P2 (E_”H_%u _(ﬂ_i)uzj}—ﬂ . By using (15), one has:
P p

uelR,

p

kt V4 V4 pHekt
E[e (+u) ]§(1+u(0)) =

SO:

(1+u(0)”  pH
T
e k

E[(l + u(t))p] <
Then,
lim supE[(l + u(t))p] < PH a.s.
t—>+w k
As u(.) is a continuous function, there is a constant M > 0 such that:
E[(l + u(t))p] <M, forall £ >0.
Note that (14) yields, for § > 0 small enough and k=1, 2, 3, ... so:
E| sup (+u()’ |= E[(l +u(kd))? ] +1,,
kS<t<(k+1)s
with

I, = E{sup

JL ) e @] |

Moreover, there is ¢, > 0 such that:

t
IISCIE{ sup Ik5(1+u(§))pd§

Ko<t<(k+1)8

Then,

E{ sup (1+u(t))p}SE[(l+u(k§))PJ+clr5E|: sup (1+u(t))p}.

ko<t<(k+1)0 kd<t<(k+1)o

Consequently, for § > 0 such that ¢, § < 1, from (16), one has:
E{ sup (1+u(¢))p} < 25[(1 +u(k6))p] <M.

ko<t<(k+1)d

Let ¢, > 0 be arbitrary. By Chebyshev’s inequality"”", one has:
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(16)

(A +u(t))? }
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sup  (1+u(®))? }

E{

‘_ < ¢ 2M

Pl sup  (L+u()? > (ko) | < 2= < k=123,
ko<t<(k+1)5 (ko) (ko)

Moreover, by using Borel-Cantelli’s lemma”", we obtain for almost all & € Q:
sup  (1+u(®)” < (k6)™, k=1,2,3,...

ko<t<(k+1) 17)

As this last inequality is true for all but finitely many £, there is a ky(w), for almost all w € Q, such that the inequality (17)
is true for k > k,. Consequently, for almost all w € Q, if k >k, and k6 <¢ < (k +1)J, then:

p
log(1+u(t)) < (1+¢,)log(ko) it
log? log(ko)

SO:

?
lim sup log(1+u(t))

<l+g¢,,as.
t—>-+o0 logt?

Letting ¢, — 0, one obtains:

P
lim sup log(1+u(?))

<1, as.
{40 logt

For1<p<1+2,u,onehas,u>p7_1and

lim supM < lim supM Si, as.,
t—>+0 logt t—>+o0 logt p

that is, for 0 < ¢ <1 —%, there are a constant 7= T(w) and a set Q_ such that P(Q_ ) >1-cand fort>T, w € Q_:

logu(t) < (% + a)logt
and so:
Lig
r
lim supM < lim sup =0.
t—>+o0 t t—>+00 t

With the nonnegativity of 7, s and r a.s., we have u non-negative a.s. also, which completes the proof.
Lemma 2 Let (i(.), s(.), 7(.)) be the solution of (2) with the initial condition X(0) = (i, 5o, 7,) € (0, 1)°. Then:

im M=o, 1imM=o, im Mz

t—>+o0 t t—>+o0 t t—>+o0 t

0 as.

and

N GEGAG) ['5©aBy @)
lim ————=0, lim ——-———=

b
t—>+o0 t t—>+o0 t

a.s.
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Proof. Once again, the proof of this lemma is the same as the one of [7] but we choose once again to develop it here to
help the reading. It is inspired by [35] and we also use some results obtained in the proof of Lemma 1.

Let X (1) = [ i()dB, (), Y(0) = [ iO)dBy (), 2(1) = [ s()dBy ), H(0) = [ i()5(£)dB, ()

and R(¢) = I; s? (&)dB, (£). From Burkholder-Davis-Gundy’s and Hélder’s inequalities, we obtain, for 2 <p <1+ 24,
. L P r
E{ sup |H(§)|P} < CPE[ joiz(g)sz(:)d§]2 < CPIZE{ sup i” (&) sup sp(g)} <S2MPC 12

0<¢<t 0<E<t 0<E<t

Let €4 be an arbitrary nonnegative constant. Then,

p 2 42
JS E[IH((kH)é)I J L2MC, [tk o] 2 e, m?

Pl {w: sup |HQ@| > ko) E <
( | | (k6)1+eﬁ+§ (k5)1+5H+g (k5)1+€1-1

ko<t<(k+1)8

according to Doob’s martingale inequality”®'’. Using Borel-Cantelli’s lemma, one has for almost all @ € Q,

v
sup  |H@)| < (k) "3,
ko<t<(k+1)0

holds for all but finitely many k. Hence, there exists a non-negative kg, (@), for almost all w € Q, for which (3) holds
whenever k > ky . Then, for almost all € Q, if k 2 ky and k6 <t < (k+1)d, then:

mlH®OP (+e¢, +2)In(ko
O (e < nte) |y
Int In(kd) 2

SO

In|H®)| 1+e,+2
lim sup [H@)| <— 2
t—>+x Int p

Letting €;; — 0 yields:

In|H@)| 1+2 1 1
jim 17O 107 1,1
t—>+o  Int p 2 p

Then, for an arbitrary small 0 < 5 < %—i, there are a constant T = T'(») > 0 and a set Q, such that P(Q, ) >1-7 and
p

fortZT,weQ”,

—+—+7
11 . H , >
ln|H(t)| < (—+—+77)lnt and lim sup ®) < lim supt =0,
2 p t—>+0 t t—>+00
. 11 .. |H®) . |H®
since 7 +—+—<1.But lim inf——=2>0so0o lim ~—— =0 a.s. Therefore
2 p t—+0 t t—+o  f

lim H—(t): 0.

t—>+0
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The proof is exactly the same to obtain that:

lim &20’ lim ®=0, lim —= A0 =0and lim —= R@) =0.

t—>+0o  f t—>+o t—>+o t—>+0  f

Lemma 3 "Let M = {M(1)},.,be a real martingale locally continuous such that M(0) = 0 and (M (1)) be its quadratic
variation.

| i Mo
Ifthw<M (0,M(©)) =0 as. then lim (M(t),M(t))

and

M), M(t .
if lim sup<()—()>< oo a.s. then lim M©

t—+0 t t—>+o

=0a.s.

Let us remark that this lemma is a general result. This result will be used in the particular case of a Brownian motion

B(t), B(t
B since lim sup<()—()> 1 <+oo a.s. implies that lim —= () =0 as

—>+© t—>+o0

Let us introduce the following notations:
0y = %yi + [ [C)=In(1+Cu))Jidu) and o} = %yg
and

k(t) = jé j In(1+ C()i(E )N(dE, du) .

Let us now set:

2B+ ONf+0+77) ,  (O+73)°
(Br+ O+ pu+a3) 230 +u+03)

Réjl =
Theorem 3 Let (i(.), s(.), (.)) be the solution of (2) with the initial condition X(0) = (i, s, r,) € (0, 1)’. If R(‘)]1 <1 then:

lim su p1 t()<( +0+¢72)(R01 <0 as.,

t—>+©

which means that s(.) tends exponentially to zero a.s., that is the rumor will not spread with probability one.
Proof. We transform (2) in a system of two equations as:

di(t) = |:/1 —(By = Bi(O)s(6)+ By (1) = (B, + /l)i(t)J dt —yi(t)s(t)dB, (1)
- j L CQi(t)s( )N (i, du),

ds(t) = (B, +0)i(0)5(0) + 05 (1) = (O + )s(0) |t + yi(0)s()dB, (1) + (2B, (1)
~i()5(O)dBy (1) = 155> (VB (1) + | C@li(e)s(t )N (dr,du), (18)

with 7(.) =1 = i(.) — s(.). We integrate the two equations of (18) between 0 and ¢ and add the obtained equalities in order to
write:
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i(0) iy + ()= 50 = it + (B +0) | {EWEVE+ B, [[ (VI + 0[5 (EWE — (B, + )] 1)

~(0+ 0, S+ 7, [ VB (&) =1, [, HENS()dB () =, [, 5 (), (©),

which gives:

,82+H

‘. . Ht ) tiz 2] ‘o, _ 9+ﬂ ¢
[ias= G I i($)s(S)dS + +qu (Mg 2= [ s*@ag Ga [ s)ag+p),
(19)
with
#0=-5 1+ p 0=, #5300 =5, = 7., SEMBLE)+ 1 [ @B (&) + 1., 5* (1B (&) |

The application of Ito-Lévy’s formula to the function In s(¢) leads to:

d(Ins() = ((ﬂl +0+92)i(0)+ (O +7D)s(0)— 0+ ) —%(yf R0 —%y%sz 0)

—2i(1)s (1) _%yg - jz [C(u)i(f) ~In(1+ Cu)i(t ))]/l(du)j dt

+91i(0)dB, (1) + 7,dBy (1) = yi(0)dB, (6) = (DA, () + [ In(1+ C()i(t )N (dt, du).

The integration between 0 and ¢ leads to:

t t 1 t
In5(6) = (B +0+ 1) [ HEE +O0+ 1) ] e = O+ wyr == +1)] (@)l

—Eyzjs Mz~ [LiC)s(ende S22 J, [, [ Coviter) —n@+ Coit) etz

o [ HEVB, )+ 1By (0 =12 [ HEVABL () =1, || S(E)ABy(E)+ [! [ n(1+ Cui(E )N (e dur) + s,
The use of the expression of I(; i(&)d¢E of (19) gives:

0+y2 ‘
ins() = PO gy —%y%t - [ [[Cia™) ~n(1+Cie) Plduyde

2t U
(ﬁ2+9)(ﬁ1+9+yz) Py (B + +y2> 0B +0+77) (
dé+—=——"== dé+———== d
b [i@s@az+ o IREGLE i [ 2@
HO ]! s()de - ((’*”);ﬂfe”z)j SO =R L5 e - 0F + R P 0
2
72 [, HES(E)AE +1,B,()) +y (1) + k() + (B, + O+ 1)g(0), (20)
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with

W) = [ (OB (&) =1, [ (OB ()= 1, [ 5()dlBy () + sy,

Then we use the fact that i and s are between 0 and 1 a.s. and the non negativity of C(«) and of the function x — x -
In(1 +x) on IR, to have:

lns([)SMt_(9+#+o_é)t+2(ﬂz HOB +0+73) O+ (B +0+3
2t i Br+u B+

M@z

HO+ 7| 56)E -2 72 15 EE + 1B +y O +KO+ (5 40+ 7900

But

2
1 1 1 0 +92 0 +7y2)? 0 +92)?
- §s2+(9+y§)s=——(y§s2—2y2s—(9+y§)j=—— [yzs— yz] . 2”) <! yf)
2 7, 2 72 72 2y;

then,

ins(e < W 2B EOVBAOTRE) o,y ory, O+3)

B+t 2y

O+ (B +0+y;) [[S@dE+ 7B, () +y @)+ k() + (B, + 0+ 2)p(0).
B+ ’

Finally, by dividing by ¢, one obtains:

SO _ gy 402y 2Bt ONAT047) | O4)
to GO arah) 23O+ ura)

O+ ) (B +0+y3) () ¢(f) U] W(f)
B+ < (t)>+7 —+(B+0+ 2) p - @1

By replacing R;, by its value, one has:

B < @+ v oRy 1+ 7, 22w (g 04y 20 2O O,

t

But

llmy/() 0, 1imM:0’ : k(t)

t—w t—o  f raoo

=0,
following Lemmas 1, 2 and 3. Moreover, there is a non negative constant ¢ such that:

(kk), =J! | [ 100+ Cin | Atdne < [[ede =,

using Proposition 2.4 of [19] and assumption (H,), thus:
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lim <k’—k>’ <c,
t—>+0 t

and the application of Lemma 3 gives:

lim m:0.

t—>+0o

As R} < 1, one has:

lim sup@ <(u +H—H712)(R({1 -1)<0 a.s.

[—®©

Consequently lim s() =0 a.s.
—w

4. Persistence

We recall two lemmas that the reader could find in [16] and which will be useful in the proof of the persistence result.

Lemma4 Let f ¢ C([O,oo) xQ,(0,00)). If there are two non-negative constants 4, and 4 such that:

In f(£) < At =1y j; FEdE+F(t) as.

t—w

forall >0, with F' C([O,oo)xQ, R) and lim@ =0 a.s., then:

tE)IPoo sup%J-;f(f)df S% a.s.

Lemma 5 Let f € C([0,50)xQ,(0,00)) . If there are two non-negative constants 4, and A such that:

In £(£)> At —J, j; F(E)dE+F(t) as.

F(f)

forall £ > 0, with F € C([0,%0)x Q,R) and limT =0 a.s., then:
—00
N Y A
Jim inf jo f(f)arfzz a.s.
Let us set now:
RS, = MA +0+93)  i+4p
5= )
By + 10O+ 1+0y) 20+ u+0,)
We remark that:
s wBHO+p) i +4y
Ry, =

By +w)O+u+oy) 2(0+p+ay)

B0y 2B OB 0+ (O+3)
(Br+m)O+u+ay)  (Bo+m)O+u+a) 250+ u+0y)
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CWH2By +ONB+0473)  (O+73)’
B+ O+nu+ay) 2950 +u+0,)

(U+2(B +ONB +0+y3) . (0+1) .,
< 1 t— = Roy
(B + 1)@+ p+0,) 295 (0+ u+o,)

since o) < 0, due to the non negativity of the function x - x - In(1 + x) on IR..
Theorem 4 Let (i(.), s(.), (.)) be the solution of (2) with the initial condition X(0) = (i,, 50, 7,) € (0, 1)’. If ROJ2> 1 then:

(B 0O+ 1+ 0) Ry ) _ i ) < fimsup(s0) < (Bo+ O+ e+ o) (RG =)

O+ )(B +0+73) 1% O+ (B +0+73)

which is the persistence in the mean of the phenomenon of rumor spreading.
Proof. The proof has two steps. The first one concerns the limit sup and the second one the limit inf. We start from
inequality (21) of the proof of the extinction result that we multiply by ¢ to obtain:

W+ 2By + OB +0+73) ,  (O+73)°

Ins(t) < (0 +u+0)) -
O+p+a))By+1) 2730+ p+0y)

(ﬂ1+0+7/2 )0+ 1)
(B, + 1)

f S(AE +7,B,(0)+ (B, + 0+ )P0 + k() +y (1),

since <s(t)> = %J.ts(f)df. Then we use the value of ROJ] to obtain:

(ﬁ1+0+72
(B, + 1)

In (1) < (s1+ 6+ 01 (R, ~ 1) SO [ SEME 7B+ (404700 D)+ ()

Let us take:

(B +0+7,) 0+ p)
(B, + 1)

F()=7,B,()+(B,+0+y)p) + k() +y (1), 4 =(u+0+0,)(Ry, 1) and 4, =

FQ@

One has lim —= = 0, following Lemmas 1, 2 and 3, and 4, and 4 are strictly non-negative since ROJZ < R({l and R(‘)lz > 1.

[—0
The application of Lemma 4 gives:

lm sup{s(0)) < (Bo+ O+ p+ o) (R =)
o0 O+ )(B+0+73) ;

which proves the first part of the result. Moreover, by using equation (20) and both the fact that i and s are between 0 and
1 a.s., which implies that —* > -1, —s’ > —1 and —is > —1 a.s. and the increase of the function x > x In(1 + x) on /R,, one

obtains:
HP+0+7) 1 5 5 5, O+ 1)(B +0+73)
Ins(t) 2| ————=—=0O7 +y; +7, +297)—(O+u+ t— dé+F(1),
S| Ty O+ 2)~ (O ) Bt [ sde+F (@)
that is:
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pA+O+y)  wrdn | O+ B0+
(By+m)O+p+0y) 200+p+0,) Br+u

Ins(t)>(0+pu+o,) )j;s(é)d§+F(t)-

By replacing R(‘)]2 by its value, one has:
t
Ins(t) > (0 + u+0,)(Riy =)t — 4 jo s(E)dE+F (D).

Finally, by setting 1, = (6 + pu+ 0, )( ROJ2 —1), one has 4, > 0 since R({z > 1 and the application of Lemma 5 gives:

lim inf (s(r)) > L2t O+ 10y R =)
s O+, +0+7)

which achieves the proof.
Let us set:

s (B30 +0+7)) A+
- .
(By +w)O+u+0y) 20+ p+0y)

We remark that if £, > (it will be the case in the following theorem) then p+2(f8, +60) > p+ B, +36, which leads
to:

(2B, +ONB+0+77) | (et By +30)(B +0+77) | (+ By +30)(B +0+73)
(By+ )0+ -+ 3) (B + )0 +p+03) (B + 10O+ i+ 3)

since 012 < g, due to the non negativity of the function x — x — In(1 + x) on IR, so:

Wr2f+ONA+0+73)  O+13) (u+fo+30)f+0+73) 5 +47
B+ )O+p+0y)  25O0+u+ay)  (Brrw)O@+utoy)  20+p+o,)

that is Ry, < R;).
Theorem 5 Let (i(.), s(.), (.)) be the solution of (2) with the initial condition X(0) = (i,, 5o, ;) € (0, 1)’. If

ﬂ226’9<ﬁ;‘ﬂ’y12+ﬂ_ﬁz 222ﬂ2(ﬁ1+0),y§2 20(B,+0) andR({3>l

2
By +u Brt+u By +p—20

then:

(B, +w)(u+0+0))(Ry, —1)
O+ (B +0+73)

Bt 0O+ 1+ 0) Ry D) _ i e ()
O+mB+0+73) o

< ,hj.l sup(s(t)) <

which is the persistence in the mean of the phenomenon of rumor spreading.
Proof. The right-hand side of the inequality is exactly the same as the one of Theorem 4 and is valid since the fact that R(‘)]3
> 1 implies that ROJl > 1. So it remains to prove that:

J
lim inf(s(t)) > (B + )0+ u+o, )(1203 —-1) as
o O+w)(p+0+73)

By using equation (20), the increase of the function x > x — In(1 + x) on /R., and the fact that £, > 6, we obtain:
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1B +0+73)

2

20(B, +6+73)
By + 1

Ins(r) 2 t—(O+p+oy)t +{ 9 J [li)syae

Pr(Bi+0+73) 1 5 5 )i OB +0+73) 1,
+( i 2(V1+V2)Jjol(§)d5+( T Jj F(&)de

_O+)(B+0+7,

) [ Q2+ 7,80+ k1) -y () + (B, + 0+ 7))
B+ u

u=p - > 2B,(B +0)

With the assumption ylz + V2 , we have:

)
Brt+u By +u

ly12+l ;2.52(,31+9)+l 2 1=p 2,
2 2 Pptu 2 208, + 1)
that is:
1 +0
—y12+ y% ﬁ(ﬁl ) ( M 25 jyz
2 2 Py +u 2 2(p+p)
and
2
ﬁz(ﬁ1+9+72)_1y12_ly§ <0.
b +u 2 2
200, +60) . .
Moreover, the assumption y =2 ———— implies that:
By +u—20
ﬂ2+'u_20y526(ﬁ1+6),that l 6’(ﬁ]"‘é’) 0 2,
208, + 1) P+ 2" Pyt ﬁz*‘ﬂ
so:
0B +0+7)) 12 gong WB+01) 2
Byt 2 Byt

The fact that i and s are in (0, 1) a.s. implies that i < 1, s* < 1 and is < 1. Consequently,

p(B+0+73) _ o (ﬂ1+9+72
Ins(t) > et t—(0+u+ 2)t+[ et ]j dé

Bo(Bi+0+y3) 1 5 5 e (0B+60+73) 1,
+[ Bt 2(7’1 +V2)J_[Odf+[ b+ 1 ]j dc

O+ 0+
By + 1

! s@yde+ F o,

where F(?) is exactly the same as the one of the proof of Theorem 4. Thus:
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2 2 2 2
mﬂﬂz[w+ﬂfHWXM+9+h)_%+4h_{6+ﬂ+%{k_w+ﬂXM+9+h)ysgyﬁ+FU%
By +u 2 B+ 0
which gives:
(u+ By +30)(B +0+73)  pi+4y | (O+w(B+0+73)
lns(t)2(9+,u+0'2)|: om0 oy 20tnee) 1t b jos(g)dgw(z).

By replacing R0J3 by its value, we obtain:
t
Ins(t) = (6+pu+0,)(R — 1)t — zojos(f)dg +F(t),

with the same J, than the one of the proof of Theorem 4. Then we use Lemma 5 with J, = (0 + u+0,)(Ry; —1) which is
strictly non negative since R(‘)]3 > 1 and obtain:

J
lim inf (s()) > L2 O 1+ 02)Fe =) -, o
inde O+ um)(py +0+73)

E

which completes the proof.

5. Numerical example and concluding remarks

In the case where we take the following values:

By B 0, 0, 0=0-0, U N V2 )
1 €1 21 1 14 €1
24 30 720 720 720 60 0.1 048 0.1153

we obtain the following thresholds:

d K J
RO R03 R03

0,84615 1,40143 1,09508

where R¢ and R}, are the thresholds of persistence of the e-rumor in the deterministic case and in the stochastic one with
only white noises respectively, defined in [7] as:

. wO+5)
% B0+ 1)
and
R, =B+ 300H +0+73) % +5

0+ u)(By + 1) 20+u)

With these values, we note that we obtain extinction of the rumor in the deterministic case and persistence in the two

stochastic ones. However, the interval of persistence is smaller in presence of the Lévy jump since R(‘)]3 < Ry in this case.
This numerical example points out the relevance of a stochastic study, as well as the presence of Lévy jump, but other
values of parameters will give of course other interpretations.

Volume 1 Issue 3|2020| 167 Contemporary Mathematics



In this paper, we discussed a stochastic e-rumor model with the Lévy jump. We showed that the system has a unique
global solution. Sufficient conditions for extinction and persistence in the mean have been established. With a numerical
example, we noted that the area of persistence of the phenomenon of e-rumor is bigger in the stochastic case without the
Lévy jump. In future work, we plan to make an optimal control approach adapted to these stochastic e-rumor models in
order to minimize the effects of fake news.
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